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This paper analyzes the peristaltic flow of an incompressible micropolar nanofluid in a tapered asymmetric channel in the presence
of thermal radiation and heat sources parameters.The rotation of the nanoparticles is incorporated in the flowmodel.The equations
governing the nanofluid flow are modeled and exact solutions are managed under long wavelength and flow Reynolds number and
long wavelength approximations. Explicit expressions of axial velocity, stream function, microrotation, nanoparticle temperature,
and concentration have been derived.The phenomena of shear stress and trapping have also been discussed. Finally, the influences
of various parameters of interest on flow variables have been discussed numerically and explained graphically. Besides, the results
obtained in this paper will be helpful to those who are working on the development of various realms like fluidmechanics, the rota-
tion, Brownian motion, thermophoresis, coupling number, micropolar parameter, and the nondimensional geometry parameters.

1. Introduction

Peristaltic pumping is one of the keystones for the develop-
ment of science and engineering research in modern years.
Peristalsis also plays an indispensable role in transporting
physiological fluids inside living bodies, and many biome-
chanical and engineering devices have been designed on the
basis of the principle of peristaltic pumping to transport
fluids without internal moving parts. The problem of the
mechanism of peristaltic transport has attracted the attention
ofmany investigators since the first exploration of Latham [1].
A number of analytical, numerical, and experimental studies
on peristaltic motion of different fluids have been described
under various conditions with reference to physiological and
mechanical environment [2–8].

Micropolar fluids have been a subject of great interest to
research workers and a number of research papers have been
published on this flow model. Physically, micropolar fluids
may represent fluids consisting of rigid, randomly oriented
(or spherical) particles suspended in a viscous medium,

where the deformation of fluid particles is ignored. This
constitutes a substantial generalization of the Navier-Stokes
model and opens a new field of potential applications includ-
ing a large number of complex fluids. Animal bloods and liq-
uid crystals (with dumbbell typemolecules) are few examples
of micropolar fluids. Local conservation laws of mass, linear,
and angular momentum and the energy for polar fluids were
received by Grad [9] by using the method of statistical ther-
modynamics. Eringen [10] proposed the theory ofmicropolar
fluids in which the microscopic effect arises from local
structure and fluid elements of micromotion are taken into
account. Later, Eringen [11] generalized the micropolar fluids
theory to include thermal effects. Using quasi-linearization
finite difference technique, an impact of temperature depen-
dent heat sources and frictional heating on the fully devel-
oped free convection micropolar fluid flow between two
porous parallel plates was analyzed by Agarwal andDhanapal
[12]. Devi and Devanathan [13] premeditated the peristaltic
motion of a micropolar fluid in a cylindrical tube with sinu-
soidal waves of small amplitude travelling down in its flexible
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wall for the case of low Reynolds number. Srinivasacharya
et al. [14] recently examined the peristaltic transport of
a micropolar fluid in a circular tube using low Reynolds
number and long wavelength assumptions.

Nowadays, there is a continuous focus of the researchers
in the flow analysis of nanofluids because of its large number
of applications in biomedical and industrial engineering.
Choi [15] was the first who initiated this nanofluid tech-
nology. A detailed analysis of nanofluids was discussed by
Buongiorno [16]. Sheikholeslami et al. [17] studied the natural
convection in a concentric annulus between a cold outer
square and heated inner circular cylinders in the presence
of static radial magnetic field. After initiating a study of
nanofluids flow under the effect of peristalsis by Akbar and
Nadeem [18], Akbar et al. [19] discussed the slip effects on the
peristaltic transport of nanofluid in an asymmetric channel.
Recently, Mustafa et al. [20] examined the influence of wall
properties on the peristaltic flow of a nanofluid. Mixed con-
vection peristaltic flows of magnetohydrodynamic (MHD)
nanofluids were analyzed by Hayat et al. [21]. The effects of
wall properties on the peristaltic flow of an incompressible
pseudoplastic fluid in a curved channel were investigated
by Hina et al. [22]. Hayat et al. [23] studied the peristaltic
transport of viscous nanofluid in an asymmetric channel.
The channel walls satisfy the convective conditions and also
effects of Brownian motion and thermophoresis have also
been taken into account. The influence of nanofluid char-
acteristic on peristaltic heat transfer in a two-dimensional
axisymmetric channel was discussed analytically by Tripathi
and Bég [24]. Moreover, the tremendous applications of
nanofluids and the interaction of nanoparticles in peristaltic
flows have obtained attentions of many researchers [25, 26].

In the recent years, it is well known by physiologists
[27, 28] that the intrauterine fluid flow due to myometrial
contractions displays peristalsis andmyometrial contractions
may occur in both symmetric and asymmetric directions and
also noted that blood behaves like as a non-Newtonian fluid
in microcirculation [10–12]. Motivated from the above analy-
sis and the importance of peristaltic flows, the purpose of the
present paper is to investigate the effects of thermal radiation
and heat source/sink on the peristaltic flow of micropolar
nanofluids in the tapered asymmetric channel. Therefore,
such a consideration of peristaltic transport may be used to
evaluate intrauterine fluid flow in a nonpregnant uterus [29].
To the best of the author’s knowledge, no attempt is available
in the literature which deals with the peristalsis flow of
micropolar nanofluid in the tapered asymmetric channel.The
present analysis of peristaltic flow is confined to large wave-
length and low Reynolds number assumptions. Explicit solu-
tions are developed for axial velocity, axial pressure gradient,
stream function, microrotation of the nanofluids, nanofluid
temperature, and nanoparticle concentration. The numerical
discussion of the pressure rise, shear stresses, and trapping are
also obtained and the results are discussed through graphs.

2. Mathematical Formulation

Let us consider the motion of peristaltic transport of an
incompressible micropolar nanofluid through a tapered
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Figure 1: Geometry of the generalized channel (tapered asymmetric
channel) with peristaltic wave motion of wall.

channel induced by sinusoidal wave trains propagating with
constant speed but with different amplitudes and phases; see
Figure 1. The governing equations of motion for the present
investigation are [13, 16, 30]
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where 𝑈, 𝑉 are the components of velocity along 𝑋 and 𝑌

directions, respectively, 𝑡 is the dimensional time, the volu-
metric volume expansion coefficient is 𝑐, 𝜌𝑓 is the density of
the fluid, 𝜌𝑝 is the density of the particle, 𝑔 is the acceleration
due to gravity, 𝑃 is the pressure, 𝜇V, 𝛾V, and 𝑘V are the martial
parameters [9–12],𝑇 is the temperature,𝐶 is the nanoparticle
concentration, 𝛼 is the thermal expansion coefficient, 𝜕/𝜕𝑡
represents the material time derivative, 𝛽 is the coefficient
of expansion with concentration, 𝑊 is the microrotation of
the nanofluid, 𝑗 is the microgyration parameter, 𝑇𝑚 is the
fluid mean temperature, 𝜏 = (𝜌𝑐


)𝑝/(𝜌𝑐


)𝑓 is the ratio of

the effective heat capacity of nanoparticle material and heat
capacity of the fluid with 𝜌 being the density, 𝜅 is the thermal
conductivity of the nanofluids, 𝐷𝐵 is the Brownian diffusion
coefficient,𝐷𝑇 is the thermophoretic diffusion coefficient,𝑄0
is the constant heat addition/absorption, and the radioactive
heat flux is 𝑞𝑟.

Hence, for the Rosseland approximation for thermal
radiation, we have [31, 32]

𝑞𝑟 = −
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4
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, (2)

where 𝜎∗ and 𝑘∗ are the Stefan-Boltzmann constant and the
mean absorption coefficient.

Let 𝑌 = 𝐻1 and 𝑌 = 𝐻2 be, respectively, the left and right
wall boundaries of the tapered asymmetric channel. Heat and
mass transfer along with nanoparticle phenomena have been
taken into account. The right wall of the channel is sustained
at temperature 𝑇1 and nanoparticle volume fraction 𝐶1 while
the left wall has temperature 𝑇0 and nanoparticle volume
fraction 𝐶0. The geometry of the wall surface is defined as
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where 𝑎1 and 𝑎2 are the amplitudes of left and right walls,
respectively, 𝜆 is the wavelength, 𝑚 (𝑚 ≪ 1) is the
nonuniform parameter, the phase difference 𝜙 varies in the
range 0 ≤ 𝜙 ≤ 𝜋, 𝜙 = 0 corresponds to symmetric channel
withwaves out of the phase, and further 𝑎1, 𝑎2, 𝑑, and𝜙 satisfy
the condition for the divergent channel at the inlet of flow
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𝑥 =
𝑋

𝜆
,

𝑦 =
𝑌

𝑑
,

𝑡 =
𝑐𝑡


𝜆
,

𝑢 =
𝑈

𝑐
,

V =
𝑉

𝑐𝛿
,

𝛿 =
𝑑

𝜆
,

ℎ1 =
𝐻1

𝑑
,

ℎ2 =
𝐻2

𝑑
,

Ω =
𝑑𝑊

𝑐
,

𝑗 =
𝐽

𝑑2

𝑚 =
𝑚

𝜆

𝑑
,

𝑎 =
𝑎1

𝑑
,

𝑏 =
𝑎2

𝑑
,

𝜃 =
𝑇 − 𝑇0

𝑇1 − 𝑇0

,

𝜎 =
𝐶 − 𝐶0

𝐶1 − 𝐶0

,

𝐺𝑟 =
(1 − 𝐶0) 𝜌𝑓𝑔𝛼𝑑

2
(𝑇1 − 𝑇0)

𝑐𝜇V
,

𝛽 =
𝑄0𝑑
2

(𝑇1 − 𝑇0) ]𝑐𝑝
,

𝑃𝑟 =
𝜇𝑐𝑓

𝜅
,

𝑁𝑏 =
𝜏𝐷𝐵 (𝐶1 − 𝐶0)

]
,

𝑁𝑡 =
𝜏𝐷𝑇 (𝐶1 − 𝐶0)

𝑇0]
,

𝑅𝑛 =
16𝜎
∗
𝑇
3
0

3𝑘∗𝜇V𝑐𝑓
,

Br =
(𝜌𝑝 − 𝜌𝑓) 𝑔𝛽


𝑑
2
(𝐶1 − 𝐶0)

𝑐𝜇
,

Sc = V
𝐷𝐵

,

𝑝 =
𝑑
2
𝑃

𝑐𝜆𝜇
,

𝑅 =
𝑐𝑑𝜌𝑓

𝜇V
.

(5)



4 Applied Bionics and Biomechanics

Using the above nondimensional quantities in (1)–(4), the
resulting equations are
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inwhich𝑁 = 𝑘V/(𝜇V+𝑘V) is the coupling number (0 ≤ 𝑁 ≤ 1)

and 𝑛2 = 𝑑
2
𝑘V(2𝜇V+𝑘V)/(𝛾V(𝜇V+𝑘V)) is themicropolar param-

eter. We introduce the nondimensional variables such as 𝑝
is dimensionless pressure, 𝑎 and 𝑏 are amplitudes of left and
right walls, respectively, 𝛿 is wave number, 𝑚 is the nonuni-
form parameter, 𝑅 is the Reynolds number, ] is the nanofluid
kinematic viscosity, Ω is the dimensionless microrotation,
𝜃 is the dimensionless temperature, 𝜎 is the dimensionless
rescaled nanoparticle volume fraction, Pr is the Prandtl
number, Gr is the local temperature Grashof number, Br is
the local nanoparticle Grashof number, Sc is the Schmidt
number, 𝑁𝑏 is the Brownian motion parameter, 𝑁𝑡 is the
thermophoresis parameter, and 𝑅𝑛 is the radiation parameter
as follows. The above equations can reduce to the classical
Navier-Stokes equation when 𝑘V → 0.

In several previous attempts [19–24], we employ the long
wavelength and low Reynolds number approximations and
thus (6) that
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The appropriate boundary conditions are

𝑢 = 0,

Ω = 0,

𝜃 = 0,

𝜎 = 0

at 𝑦 = ℎ1 = −1 − 𝑚𝑥 − 𝑎 sin (2𝜋 (𝑥 − 𝑡) + 𝜙) ,

(12a)

𝑢 = 0,

Ω = 0,

𝜃 = 1,

𝜎 = 1

at 𝑦 = ℎ2 = 1 + 𝑚𝑥 + 𝑏 sin (2𝜋 (𝑥 − 𝑡)) ,

(12b)

which satisfy, at the inlet of channel,

𝑎
2
+ 𝑏
2
+ 2𝑎𝑏 cos (𝜙) ≤ 4. (13)

3. Exact Solution

By integration of (11) with respect to 𝑦 and implementation
in (10) and boundary conditions of (12a) and (12b), the
nanoparticles temperature field is obtained as

𝜃

=
sinh (ℎ1𝜃1) cosh (𝜃1𝑦) − cosh (ℎ1𝜃1) sinh (𝜃2𝑦)
sinh (ℎ1𝜃1) cosh (𝜃1ℎ2) − cosh (ℎ1𝜃1) sinh (𝜃2ℎ2)

.

(14)

Substituting (14) into (11), moreover integrating (11) with
respect to 𝑦 and using proper boundary conditions of (12a)
and (12b), the nanoparticle concentration field is received as
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𝜎 =
(ℎ − 𝑦) (𝑁𝑏 + 𝐵𝑁𝑡 sinh (ℎ2𝜃2) + 𝐴𝑁𝑡 cosh (ℎ2𝜃1)) + (𝑦 − ℎ2)𝑁𝑡 (𝐵 sinh (ℎ1𝜃2) + 𝐴 cosh (ℎ1𝜃1))
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−
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(𝐴 cosh (𝜃1𝑦) + 𝐵 sinh (𝜃2𝑦)) .
(15)

Equation (7) can be written in the following form:
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− (1 − 𝑁)Br𝜎.
(16)

Integration of the above equation yields

𝜕𝑢

𝜕𝑦
= (1 − 𝑁)

𝜕𝑝

𝜕𝑥
𝑦 − 𝑁Ω

−
(1 − 𝑁)𝐺𝑟

𝜃1𝜃2

(𝜃2𝐴 sinh 𝜃1𝑦 + 𝜃1𝐵 cosh 𝜃2𝑦) − (1

− 𝑁)𝐵𝑟 [
2𝑐𝑦 + 𝐷𝑦

2

2

−
𝑁𝑡

𝑁𝑏𝜃1𝜃2

(𝐴𝜃2 sinh 𝜃1𝑦 + 𝐵𝜃1 cosh 𝜃2𝑦)] + 𝐺 (𝑥) .

(17)

From (9) and (17), one can write

𝜕
2
Ω

𝜕𝑦2
− 𝑛
2
Ω =

𝑛
2
(1 − 𝑁)

2 − 𝑁
(
𝜕𝑝

𝜕𝑥
)𝑦 + 𝐴4 sinh (𝜃1𝑦)

+ 𝐴5 cosh (𝜃2𝑦) + 𝐴6𝑦 + 𝐴7𝑦
2

+
𝑚
2
𝐺 (𝑥)

2 − 𝑁
.

(18)

The general solution of the above equation can be written as

Ω = 𝐸 cosh (𝑛𝑦) + 𝐹 sinh (𝑛𝑦) − 1 − 𝑁

2 − 𝑁
(
𝜕𝑝

𝜕𝑥
)𝑦

+
𝐴4 sinh (𝜃1𝑦)

𝜃21 − 𝑛
2

+
𝐴5 cosh (𝜃2𝑦)

𝜃22 − 𝑛
2

−
𝐴6𝑦

𝑛2

− 𝐴7 (
𝑛
2
𝑦
2
+ 2

𝑛4
) −

𝐺 (𝑥)

2 − 𝑁
.

(19)

Making the above equation into (17), one obtains

𝑢 = (
𝜕𝑝

𝜕𝑥
)(

𝑦
2

(2 − 𝑁)
−
𝐴8𝑁 sinh (𝑛𝑦)

𝑛

−
𝐴11𝑁 cosh (𝑛𝑦)

𝑛
) −

𝐴9𝑁 sinh (𝑛𝑦)
𝑛

−
𝐴12𝑁 cosh (𝑛𝑦)

𝑛
+ cosh (𝜃1𝑦)(

(1 − 𝑁)Br𝑁𝑡𝐴
𝑁𝑏𝜃
2
1

−
(1 − 𝑁)Gr𝐴

𝜃21

−
𝑁𝐴4

𝜃1 (𝜃
2
1 − 𝑛
2)
) + (

𝑁𝐴7

3𝑛2

−
(1 − 𝑁)Br𝐷

6
)𝑦
3
+ sinh (𝜃2𝑦)(

(1 − 𝑁)Br𝑁𝑡𝐵
𝑁𝑏𝜃
2
2

−
(1 − 𝑁)Gr𝐵

𝜃22

−
𝑁𝐴5

𝜃2 (𝜃
2
2 − 𝑛
2)
) +

2𝐴7𝑦𝑁

𝑛4

+
𝑁𝐴6𝑦

2

2𝑛2
+ 𝐺 (𝑥)(

2𝑦

(2 − 𝑁)
+
𝐴13𝑁 cosh (𝑛𝑦)

𝑛

+
𝐴10𝑁sinh (𝑛𝑦)

𝑛
) + 𝐻 (𝑥) .

(20)

The volume flux through each cross section in the wave frame
is given by

𝐹 = ∫

ℎ
2

ℎ
1

𝑢 𝑑𝑦. (21)

Using (21), we find that

𝜕𝑝

𝜕𝑥
= (𝐹 −

𝐴21

𝜃1

(sinh (𝜃1ℎ2) − sinh (𝜃1ℎ1))

−
𝐴22

𝜃2

(cosh (𝜃2ℎ2) − cosh (𝜃2ℎ1))

−
𝐴32 (ℎ

3
2 − ℎ
3
1)

3
−
𝐴29

𝑛
(sinh (𝑛ℎ2) − sinh (𝑛ℎ1))

−
𝐴30

𝑛
(cosh (𝑛ℎ2) − cosh (𝑛ℎ1)) −

𝐴24 (ℎ
4
2 − ℎ
4
1)

4

−
𝐴31 (ℎ

2
2 − ℎ
2
1)

4
− 𝐴25 (ℎ2 − ℎ1))

⋅ (
𝐴20 (ℎ

2
2 − ℎ
2
1)

2 − 𝑁
+
ℎ
3
2 − ℎ
3
1

6 − 3𝑁
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+
𝐴27

𝑛
(cosh (𝑛ℎ2) − cosh (𝑛ℎ1))

+
𝐴28

𝑛
(sinh (𝑛ℎ2) − cosh (𝑛ℎ1))

+ 𝐴26 (ℎ2 − ℎ1))

−1

.

(22)
The corresponding stream function from (20) is

𝜓 = (
𝜕𝑝

𝜕𝑥
)(

𝑦
2

(2 − 𝑁)
−
𝐴8𝑁(cosh (𝑛𝑦) − 1)

𝑛2

−
𝐴11𝑁 sinh (𝑛𝑦)

𝑛2
) −

𝐴9𝑁 cosh (𝑛𝑦)
𝑛2

−
𝐴12𝑁 sinh (𝑛𝑦)

𝑛2
+ (

sinh (𝜃1𝑦)

𝜃1

)

⋅ (
(1 − 𝑁)Br𝑁𝑡𝐴

𝑁𝑏𝜃
2
1

−
(1 − 𝑁)Gr𝐴

𝜃21

−
𝑁𝐴4

𝜃1 (𝜃
2
1 − 𝑛
2)
) + (

𝑁𝐴7

12𝑛2
−
(1 − 𝑁)Br𝐷

24
)𝑦
4
.

(23)

The constant values appeared are listed out in Appendix.
The nondimensional expression for the pressure rise per

wavelength Δ𝑝𝜆 is

Δ𝑃𝜆 = ∫

1

0
∫

1

0
(
𝜕𝑝

𝜕𝑥
)

𝑦=0

𝑑𝑥 𝑑𝑡. (24)

Interestingly, we note that the stress tensor in micropolar
fluid is not symmetric in behavior. For that reason, the
dimensionless form of the shear stress implicated in the
present problem under consideration is given by [30]

𝜏𝑥𝑦 =
𝜕𝑢

𝜕𝑦
−

𝑁

(1 − 𝑁)
Ω, (25)

𝜏𝑥𝑦 = 3𝑦
2
(
Br𝐷 (𝑁 − 1)

6
+
𝐴7𝑁

3𝑛2
) − (

𝜕𝑝

𝜕𝑥
)

⋅ (𝑦 (𝑁 − 1) + 𝐴8𝑁 cosh (𝑛𝑦) + 𝐴11𝑁 sinh (𝑛𝑦)

−
2𝑁𝑦 (𝑁 − 1)

2 (𝑁 − 2)
) + 𝐺(𝐴10𝑁 cosh (𝑛𝑦) − 𝑁

𝑁 − 2

+ 𝐴13𝑁 sinh (𝑛𝑦) + 1) + cosh (𝜃2𝑦)

⋅ (
𝐵Gr (𝑁 − 1)

𝜃2

+
𝐴5𝑁

𝑛2 − 𝜃22

−
𝐵Br𝑁𝑡 (𝑁 − 11)

𝑁𝑏𝜃2

)

− (
𝑁

𝑁 − 1
)(

𝐴5 cosh (𝜃2𝑦)
𝑛2 − 𝜃22

− 𝐹 sinh (𝑛𝑦)

−
𝐺

𝑁 − 2
− 𝐸 cosh (𝑛𝑦) +

𝐴4 sinh (𝜃1𝑦)
𝑛2 − 𝜃21

+
𝐴7 (𝑛

2
𝑦
2
+ 2)

𝑛4
+
𝐴6𝑦

𝑛2
+
(𝜕𝑝/𝜕𝑥) (𝑁 − 1)

𝑁 − 2
)

+ 𝜃1 sinh (𝜃1𝑦)(
𝐴Gr (𝑁 − 1)

𝜃21

+
𝐴4𝑁

𝜃1 (𝑛
2 − 𝜃21)

−
𝐴Br𝑁𝑡 (𝑁 − 1)

𝑁𝑏𝜃
2
1

) − 𝐴9𝑁 cosh (𝑛𝑦)

− 𝐴12𝑁 sinh (𝑛𝑦) +
2𝐴7𝑁

𝑛4
+
𝐴6𝑁𝑦

𝑛2
,

𝜏𝑦𝑥 =
1

(1 − 𝑁)

𝜕𝑢

𝜕𝑦
+

𝑁

(1 − 𝑁)
Ω,

𝜏𝑦𝑥 = (
−1

𝑁 − 1
)(3𝑦

2
(
Br𝐷 (𝑁 − 1)

6
+
𝐴7𝑁

3𝑛2
)

− (
𝜕𝑝

𝜕𝑥
) (𝑦 (𝑁 − 1) + 𝐴8𝑁 cosh (𝑛𝑦)

+ 𝐴11𝑁 sinh (𝑛𝑦) −
2𝑁𝑦 (𝑁 − 1)

2 (𝑁 − 2)
)

+ 𝐺(𝐴10𝑁 cosh (𝑛𝑦) − 𝑁

𝑁 − 2
+ 𝐴13𝑁 sinh (𝑛𝑦)

+ 1) + cosh (𝜃2𝑦)(
𝐵Gr (𝑁 − 1)

𝜃2

+
𝐴5𝑁

𝑛2 − 𝜃22

−
𝐵Br𝑁𝑡 (𝑁 − 11)

𝑁𝑏𝜃2

) + 𝜃1 sinh (𝜃1𝑦)

⋅ (
𝐴Gr (𝑁 − 1)

𝜃21

+
𝐴4𝑁

𝜃1 (𝑛
2 − 𝜃21)

−
𝐴Br𝑁𝑡 (𝑁 − 1)

𝑁𝑏𝜃
2
1

) +
2𝐴7𝑁

𝑛4
+
𝐴6𝑁𝑦

𝑛2

− 𝐴9𝑁 cosh (𝑛𝑦) − 𝐴12𝑁 sinh (𝑛𝑦)) − ( 𝑁

𝑁 − 1
)

⋅ (
𝐴5cosh (𝜃2𝑦)

𝑛2 − 𝜃22

− 𝐹 sinh (𝑛𝑦) − 𝐺

𝑁 − 2

− 𝐸 cosh (𝑛𝑦) +
𝐴4 sinh (𝜃1𝑦)

𝑛2 − 𝜃21

+
𝐴7 (𝑛

2
𝑦
2
+ 2)

𝑛4

+
𝐴6𝑦

𝑛2
+
(𝜕𝑝/𝜕𝑥) (𝑁 − 1)

𝑁 − 2
) .

(26)

The numerical computation for the shear stress 𝜏𝑥𝑦 is
obtained at left wall of the channel and whose graphical
representation is presented in the next section.

4. Numerical Results and Discussion

In view of the fact that the constant value of rate of volume
flow 𝐹 gives the pressure rise (Δ𝑃𝜆) always negative and
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Figure 2: Variation of𝑚 on the velocity 𝑢 with respect to 𝑦.

hence pumping action cannot be perceived. To discuss the
found results quantitatively, we assume the form of the
instantaneous volume rate of the flow 𝐹(𝑥, 𝑡) [30, 33–37],

𝐹 (𝑥, 𝑡) = Θ + 𝑎 sin 2𝜋 (𝑥 − 𝑡) + 𝑏 sin [2𝜋 (𝑥 − 𝑡) + 𝜙] (27)

in which 𝐹 = 𝑄/𝑐𝑑, Θ = 𝑞/𝑐𝑑, 𝐹 = ∫
ℎ
2

ℎ
1

𝑢 𝑑𝑦 = 𝜓(ℎ2) − 𝜓(ℎ1),
and Θ is the time-average of flow over one period of wave.

In order to get nearby into the given substantial prob-
lem, we observe physical characteristics of average rise in
pressure, axial velocity, microrotation velocity, shear stress,
nanoparticles temperature, and concentration with respect of
various values to the parameters appearing in the problem by
sketching Figures 2–20 with the constant values 𝑥 = 0.5 and
𝑡 = 0.2. It is found that, in the absence of nonuniformparame-
ter, local temperatureGrashof number, and local nanoparticle
Grashof number, the present analysis reduces to approximate
analytical solution of peristaltic flow of a Newtonian fluid in
asymmetric channel [32].Thus, the results introducedmay be
applied in the real life problems associated with nanoparticles
movement in the gastrointestinal tract, intrauterine fluid
motion induced by uterine contraction, and flow through
small blood vessels and intrapleural membranes.

4.1. Flow Characteristics. Figures 2–7 express that the varia-
tion of axial velocity 𝑢with respect to 𝑦 for different values of
the nonuniform parameter (𝑚), amplitude of right wall (𝑏),
local temperature Grashof number (Gr), Brownian motion
parameter (𝑁𝑏), micropolar parameter (𝑛), and coupling
number (𝑁). The dimensionless axial velocity profiles (𝑢)
satisfy the boundary conditions and are varied by a smooth
curve for different (𝑚) values in Figure 2. This nonuniform
parameter effect has a tendency to slow down the motion of
the fluid which results in decreasing the axial velocity profiles
at the core of the channel. Figure 3 represents the variation of
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Figure 3: Variation of 𝑏 on the velocity 𝑢 with respect to 𝑦.
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Figure 4: Variation of Gr on the velocity 𝑢 with respect to 𝑦.

𝑢with𝑦 for various values of the amplitude of right wall (𝑏). It
is found that an increase of 𝑏 results in increase of the velocity
of the fluid near the right part of the channel. The effects of
Gr and𝑁𝑏 on the axial velocity pattern are shown in Figures
4 and 5. When Gr and 𝑁𝑏 values are larger and 𝑢 curves are
larger too at the central part of the channel, so the velocity
profiles become larger with right wall. This is due to the fact
that buoyancy force gives rise to fluid flow. This force has a
tendency to accelerate themotion of the fluid which results in
increasing the axial velocity profiles at right wall; otherwise
it gets decreased. The effect of coupling number 𝑁 on axial
velocity is depicted in Figure 6. It is observed that the flow
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reversal near the left wall of the channel increases with the
increase of coupling number, while the reversal trend occurs
in the vicinity of the right channel wall. But similar significant
change is found for the variation of micropolar parameter 𝑛
in Figure 7.

4.2. Heat Transfer and Nanoparticle Mass Transfer Distri-
butions. The dimensionless nanoparticle temperature and
concentration profiles (𝜃, 𝜎) satisfy the boundary conditions
and are varied by a smooth curve for different 𝛽,𝑁𝑏, and 𝑅𝑛
values. In the absence of amplitude of left wall 𝑎 = 0, heat
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Figure 7: Variation of 𝑛 on the velocity 𝑢 with respect to 𝑦.
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source/sink 𝛽 = 0, Prandtl number 𝑃𝑟 = 1, thermal radiation
parameter 𝑅𝑛 = 0, and nonuniform parameter 𝑚 = 0 our
nanoparticle temperature and concentration distributions
results are in close agreement with earlier works of Tripathi
and Bég [24]. The effects of heat source/sink parameter (𝛽)
on the nanoparticle temperature and concentration distribu-
tions are displayed in Figures 8 and 9. That is, increase in the
heat source strength amounts to increase in energy supply
to the tapered asymmetric channel and opposite behavior
is noticed form nanoparticle mass transfer. The effects of
Brownianmotion parameter on the nanoparticle temperature
and concentration distributions are considered in Figures 10
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and 11. When 𝑁𝑏 is larger and 𝜎 curve is lower, so the mass
transfer effect is higher for a larger𝑁𝑏 and opposite behavior
found in heat transfer. In nanofluid system, the size of the
nanoparticle generates Brownian motion which affects the
heat and mass transfer properties. As the particle size scale
approaches to the nanometer scale, the Brownian motion of
particles and its diffusion effect on the liquid play a significant
role in heat transfer. For prominent values of𝑁𝑏, the Brown-
ian diffusion effect is large compared to the thermal diffusion
effect. Figure 12 shows the variation of thermal radiation
parameter over the temperature field.Therefore higher values
of thermal radiation parameter imply higher surface heat
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flux and so, it decreases the temperature within the tapered
asymmetric channel, whereas opposite effects are observed in
a nanoparticle mass transfer as shown in Figure 13.

4.3. Spin Velocity Distribution. The variation of microrota-
tion velocity (Ω) with respect to 𝑦 for various values of cou-
pling number (𝑁), Brownian motion (𝑁𝑏), and nonuniform
parameter (𝑚) are shown in Figures 14–16. Parabolic micro-
rotation velocity profile is observed for the present flow prob-
lem.The velocity is maximumorminimumnear the center of
channel. The cause of coupling number on the microrotation
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velocity is illustrated in Figure 14. It is seen that in the micro-
rotation velocity increases by increasing the coupling number
𝑁 (i.e., microrotation velocity for the micropolar nanofluid
is wider than that of the region for Newtonian nanofluid).
In the case of 𝑁 = 0, there is no appreciable difference
between Newtonian nanofluids and micropolar nanofluids.
The microrotation velocity for the Brownian motion param-
eter (𝑁𝑏) is plotted in Figure 15. It is seen that, with the
increase in the Brownian motion parameter, microrotation
velocity profile decreases andmaximummicrorotation veloc-
ity occurs at 𝑁𝑏 → 0. Figure 16 depicts the microrotation
velocity field for different values of nonuniform parameter. It
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is also viewed that the microrotation velocity for a divergent
channel (𝑚 > 0) is higher compared to its value for a uniform
channel (𝑚 = 0).

4.4. Shear Stress Distribution. It is well known that the stress
tensor is not symmetric in micropolar nanofluid. In Figures
17–19, we have plotted the shear stresses 𝜏𝑥𝑦 at the left wall for
values of the nonuniform parameter, micropolar parameter,
and coupling number. One can observe from Figure 17 that
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the wall shear stress decreases with an increase in the nonuni-
form parameter. From Figure 18, we notice that shear stress is
in oscillation behavior, which may be due to the creation of
contraction and expansion walls. It is indicated that the shear
stress decreases with an increase in themicropolar parameter
𝑛, while it increases as the coupling number 𝑁 increases in
Figure 19. Hence, we observed that the shear stress for a New-
tonian nanofluid is less than that for a micropolar nanofluid.

4.5. Trapping Phenomena. The effects of nonuniform param-
eter, coupling parameter, and micropolar parameter on the
streamlines are shown in Figure 20. Besides, a comparison
between uniform channel and the nonuniform channel is
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Figure 19: Shear stress profile 𝜏𝑥𝑦(𝑥) for different values of𝑁.

made in Figures 20(a) and 20(b). We note that the size
of the trapping bolus increases with increasing nonuniform
parameter and symmetry nature is also noticed with respect
to uniform symmetric channel. The effects of𝑁 on trapping
are presented in Figures 20(b) and 20(c). This figure reveals
that the size of lower bolus decreases with an increase in 𝑁.
FromFigures 20(c) and 20(d), it is clear that the trapped bolus
increases in size as 𝑛 increases.

5. Concluding Remarks

A mathematical model is presented to study wall induced
flow of a micropolar nanofluid in the most generalized
(tapered asymmetric) channel with the presence of heat
source and thermal radiation parameters. The flow model in
the rotation of nanoparticles was included. Long wavelength
and low Reynolds number assumptions are used in themath-
ematical modeling. In this investigation, special emphasis
has been paid to study the flow features, the axial velocity,
the nanoparticles temperature and concentration, the shear
stress, and the trapping phenomena. The study leads to the
following conclusions:

(i) The axial velocity of fluid decreases at the core part of
channel when𝑚 is increased as anticipated.

(ii) The axial velocity increases near the left wall of
channel and decreases near the right wall of the
channel with increase of the coupling number and
micropolar parameter.

(iii) The nanoparticles mass transfer 𝜎 has reverse behav-
ior when compared to heat transfer.

(iv) Coupling number and Brownian motion parameters
have opposite effects on the microrotation velocity.
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Figure 20: Streamlines for 𝑚 = 0, 𝑁 = 0.01, 𝑛 = 0.1 (a), 𝑚 = 0.3, 𝑁 = 0.01, 𝑛 = 0.1 (b), 𝑚 = 0.3, 𝑁 → 1, 𝑛 = 0.1 (c), and 𝑚 = 0.3,
𝑁 → 1, 𝑛 = 0.9 (d). The other parameters chosen are 𝑎 = 0.2, 𝑏 = 0.3, 𝑚 = 0.3, Θ = 1.5, 𝜙 = 𝜋/2, 𝑁𝑡 = 0.2, 𝑁𝑏 = 0.3, 𝑅𝑛 = 0.9, Pr = 0.5,
Gr = 0.6, Br = 0.2, 𝛽 = 0.2, and 𝑡 = 0.2.

(v) The walls shear stress 𝜏𝑥𝑦 decreases with the increase
of nonuniform parameter 𝑚 at the left wall but the
opposite behavior is identified for coupling number.

(vi) It may be interesting to note that the size of trapped
bolus gets increased with increasing of nonuniform
parameter.

We ultimately conclude that our theoretical analysis bears the
potential to be useful in the field of biomedical and industrial
engineering.

Appendix

The following constants are used in solution section:

𝜃1 =

−𝐴2 + √𝐴
2
2 − 4𝐴3

2
,

𝜃2 =

−𝐴2 − √𝐴
2
2 − 4𝐴3

2
,
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𝐴 =
−sinh (𝜃1ℎ1)

sinh (𝜃2ℎ2) cosh (𝜃1ℎ1) − sinh (𝜃1ℎ1) cosh (𝜃1ℎ2)
,

𝐵 =
cosh (𝜃1ℎ1)

sinh (𝜃2ℎ2) cosh (𝜃1ℎ1) − sinh (𝜃1ℎ1) cosh (𝜃1ℎ2)
,

𝐶 = −𝐷ℎ1 +
𝑁𝑡

𝑁𝑏

𝐴 cosh (𝜃1ℎ1) +
𝑁𝑡

𝑁𝑏

𝐵 sinh (𝜃2ℎ1) ,

𝐷 =
1

ℎ2 − ℎ1

+
𝑁𝑡

𝑁𝑏 (ℎ2 − ℎ1)
𝐴 (cosh (𝜃1ℎ2)

− cosh (𝜃1ℎ1)) +
𝑁𝑡

𝑁𝑏 (ℎ2 − ℎ1)
𝐵 (sinh (𝜃2ℎ2)

− sinh (𝜃2ℎ1)) ,

𝐸 = 𝐴8 (
𝜕𝑝

𝜕𝑥
) + 𝐴9 + 𝐺𝐴10,

𝐹 = 𝐴11 (
𝜕𝑝

𝜕𝑥
) + 𝐴12 + 𝐺𝐴13,

𝐺 = (
𝐴17 − 𝐴14

𝐴16 − 𝐴19

)(
𝜕𝑝

𝜕𝑥
) + (

𝐴18 − 𝐴15

𝐴16 − 𝐴19

) ,

𝐻 = −(𝐴14 +
𝐴16 (𝐴17 − 𝐴14)

𝐴16 − 𝐴19

)(
𝜕𝑝

𝜕𝑥
) − 𝐴15

− (
𝐴16 (𝐴18 − 𝐴15)

𝐴16 − 𝐴19

) ,

𝐴1 =
𝑁𝑡 + 𝑁𝑏

𝑁𝑏 (ℎ2 − ℎ1)
,

𝐴2 =
𝑁𝑏𝑃𝑟𝐴1

1 + 𝑅𝑛𝑃𝑟

,

𝐴3 =
𝑃𝑟𝛽

1 + 𝑅𝑛𝑃𝑟

,

𝐴4 =
𝑛
2
(1 − 𝑁)𝐴

(2 − 𝑁) 𝜃1

(
Br𝑁𝑡
𝑁𝑏

− Gr) ,

𝐴5 =
𝑛
2
(1 − 𝑁)𝐵

(2 − 𝑁) 𝜃2

(
Br𝑁𝑡
𝑁𝑏

− Gr) ,

𝐴6 = −
(1 − 𝑁)Br𝐶𝑛2

2 − 𝑁
,

𝐴7 = −
(1 − 𝑁)Br𝐷𝑛2

2 − 𝑁
,

𝐴8 =
(1 − 𝑁) ℎ1

(2 − 𝑁) cosh (𝑛ℎ1)

−
(1 − 𝑁) sinh (𝑛ℎ1) (ℎ1 cosh (𝑛ℎ2) − ℎ2 cosh (𝑛ℎ1))

sinh (𝑛 (ℎ1 − ℎ2)) cosh (𝑛ℎ1)
,

𝐴9 = −(
𝐴33

cosh (𝑛ℎ1)

+
(cosh (𝑛ℎ1) − cosh (𝑛ℎ2)) sinh (𝑛ℎ1)

sinh (𝑛 (ℎ1 − ℎ2)) cosh (𝑛ℎ1)
) ,

𝐴10 =
1

(2 − 𝑁) cosh (𝑛ℎ1)

−
sinh (𝑛ℎ1) (cosh (𝑛ℎ2) − cosh (𝑛ℎ1))
(2 − 𝑁) sinh (𝑛 (ℎ1 − ℎ2)) cosh (𝑛ℎ1)

,

𝐴11 =
(1 − 𝑁) (ℎ1 cosh (𝑛ℎ2) − ℎ2 cosh (𝑛ℎ1))

sinh (𝑛 (ℎ1 − ℎ2))
,

𝐴12 =
(𝐴34 cosh (𝑛ℎ1) − 𝐴33 cosh (𝑛ℎ2))

sinh (𝑛 (ℎ1 − ℎ2))
,

𝐴13 =
(cosh (𝑛ℎ2) − cosh (𝑛ℎ1))
(2 − 𝑁) sinh (𝑛 (ℎ1 − ℎ2))

,

𝐴14 =
ℎ
2
1

2 − 𝑁
−
𝐴8 sinh (𝑛ℎ1) + 𝐴11 cosh (𝑛ℎ1)

𝑛
,

𝐴15 = −
𝑁 (𝐴9 sinh 𝑛ℎ1 + 𝐴12 cosh (𝑛ℎ1))

𝑛

+ cosh (𝜃1ℎ1) (
(1 − 𝑁)𝐴 (Br𝑁𝑡 − Gr𝑁𝑏)

𝑁𝑏𝜃
2
1

−
𝑁𝐴4

𝜃1 (𝜃
2
1 − 𝑛
2)
) + sinh (𝜃2ℎ1)

⋅ (
(1 − 𝑁)𝐵 (Br𝑁𝑡 − Gr𝑁𝑏)

𝑁𝑏𝜃
2
2

−
𝑁𝐴5

𝜃2 (𝜃
2
2 − 𝑛
2)
)

+
𝑁𝐴6ℎ

2
1

2𝑛2
+ (

𝑁𝐴7

3𝑛2
−
(1 − 𝑁)Br𝐷

6
) ℎ
3
1 +

2𝑁𝐴7ℎ1

𝑛4
,

𝐴16 =
2ℎ1

2 − 𝑁
+
𝑁(𝐴13 cosh (𝑛ℎ1) + 𝐴10 sinh (𝑛ℎ1))

𝑛
,

𝐴17 =
ℎ
2
2

2 − 𝑁
−
𝐴8 sinh (𝑛ℎ2) + 𝐴11 cosh (𝑛ℎ2)

𝑛
,

𝐴18 = −
𝑁 (𝐴9 sinh 𝑛ℎ2 + 𝐴12 cosh (𝑛ℎ2))

𝑛

+ cosh (𝜃1ℎ2) (
(1 − 𝑁)𝐴 (Br𝑁𝑡 − Gr𝑁𝑏)

𝑁𝑏𝜃
2
1

−
𝑁𝐴4

𝜃1 (𝜃
2
1 − 𝑛
2)
) + sinh (𝜃2ℎ2)

⋅ (
(1 − 𝑁)𝐵 (Br𝑁𝑡 − Gr𝑁𝑏)

𝑁𝑏𝜃
2
2

−
𝑁𝐴5

𝜃2 (𝜃
2
2 − 𝑛
2)
)

+
𝑁𝐴6ℎ

2
2

2𝑛2
+ (

𝑁𝐴7

3𝑛2
−
(1 − 𝑁)Br𝐷

6
) ℎ
3
2 +

2𝑁𝐴7ℎ2

𝑛4
,

𝐴19 =
2ℎ2

2 − 𝑁
+
𝑁(𝐴13 cosh (𝑛ℎ2) + 𝐴10 sinh (𝑛ℎ2))

𝑛
,

𝐴20 =
𝐴17 − 𝐴14

𝐴16 − 𝐴19

,

𝐴21 =
(1 − 𝑁)Br𝑁𝑡𝐴

𝑁𝑏𝜃
2
1

−
(1 − 𝑁)Gr𝐴

𝜃21

−
𝑁𝐴4

𝜃1 (𝜃
2
1 − 𝑛
2)
,

𝐴22 =
(1 − 𝑁)Br𝑁𝑡𝐵

𝑁𝑏𝜃
2
2

−
(1 − 𝑁)Gr𝐵

𝜃22

−
𝑁𝐴5

𝜃2 (𝜃
2
2 − 𝑛
2)
,



14 Applied Bionics and Biomechanics

𝐴23 =
𝑁𝐴7

3𝑛2
−
(1 − 𝑁)Br𝐷

6
,

𝐴24 =
𝐴18 − 𝐴15

𝐴16 − 𝐴19

,

𝐴25 = −𝐴15 − 𝐴16𝐴24,

𝐴26 = −𝐴4 − 𝐴16𝐴20,

𝐴27 =
𝑁 (𝐴10 − 𝐴8)

𝑛
,

𝐴28 =
𝑁 (𝐴13 − 𝐴11)

𝑛
,

𝐴29 =
𝑁 (𝐴24𝐴13 − 𝐴12)

𝑛
,

𝐴30 =
𝑁 (𝐴24𝐴10 − 𝐴9)

𝑛
,

𝐴31 =
2𝐴7𝑁

𝑛4
+
2𝐴24

2 − 𝑁
,

𝐴32 =
𝑁𝐴6

2𝑛2
,

𝐴33 =
𝐴4 sinh (𝜃1ℎ1)

𝜃21 − 𝑛
2

+
𝐴5 cosh (𝜃1ℎ1)

𝜃22 − 𝑛
2

−
𝐴6ℎ1

𝑛2

− 𝐴7 (
𝑛
2
ℎ
2
1 + 2

𝑛4
) ,

𝐴34 =
𝐴4 sinh (𝜃1ℎ2)

𝜃21 − 𝑛
2

+
𝐴5 cosh (𝜃1ℎ2)

𝜃22 − 𝑛
2

−
𝐴6ℎ2

𝑛2

− 𝐴7 (
𝑛
2
ℎ
2
2 + 2

𝑛4
) .

(A.1)
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