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The analysis of large, multisite neuroimaging datasets provides a promising means for

robust characterization of brain networks that can reduce false positives and improve

reproducibility. However, the use of different MRI scanners introduces variability to the

data. Managing those sources of variability is increasingly important for the generation

of accurate group-level inferences. ComBat is one of the most promising tools for

multisite (multiscanner) harmonization of structural neuroimaging data, but no study

has examined its application to graph theory metrics derived from the structural brain

connectome. The present work evaluates the use of ComBat for multisite harmonization

in the context of structural network analysis of diffusion-weighted scans from the

Advancing Concussion Assessment in Pediatrics (A-CAP) study. Scans were acquired

on six different scanners from 484 children aged 8.00–16.99 years [Mean = 12.37

± 2.34 years; 289 (59.7%) Male] ∼10 days following mild traumatic brain injury

(n = 313) or orthopedic injury (n = 171). Whole brain deterministic diffusion tensor

tractography was conducted and used to construct a 90 x 90 weighted (average

fractional anisotropy) adjacency matrix for each scan. ComBat harmonization was

applied separately at one of two different stages during data processing, either on the (i)

weighted adjacency matrices (matrix harmonization) or (ii) global network metrics derived

using unharmonized weighted adjacency matrices (parameter harmonization). Global

network metrics based on unharmonized adjacency matrices and each harmonization

approach were derived. Robust scanner effects were found for unharmonized metrics.

Some scanner effects remained significant for matrix harmonized metrics, but effect

sizes were less robust. Parameter harmonized metrics did not differ by scanner.

Intraclass correlations (ICC) indicated good to excellent within-scanner consistency

between metrics calculated before and after both harmonization approaches.
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Age correlated with unharmonized network metrics, but was more strongly

correlated with network metrics based on both harmonization approaches. Parameter

harmonization successfully controlled for scanner variability while preserving network

topology and connectivity weights, indicating that harmonization of global network

parameters based on unharmonized adjacency matrices may provide optimal results.

The current work supports the use of ComBat for removingmultiscanner effects on global

network topology.

Keywords: diffusion MRI, structural connectome, multisite harmonization, ComBat, graph theory, pediatric mild

traumatic brain injury

1. INTRODUCTION

Network neuroscience has become a popular approach to
characterize brain structure in vivo in healthy and clinical
populations (1–3). The structural connectome can be mapped
using diffusion-weighted MRI (2, 4–6), a non-invasive technique
that is sensitive to white matter microstructure (7).

Pediatric mild traumatic brain injury (mTBI) is a
prevalent global public health concern (8–11) that is
characterized by subtle and diffuse alterations in brain
tissue [reviewed in (12, 13)]. The neurobiology of pediatric
mTBI remains poorly understood [see (12)]. White matter
microstructural alterations can occur after pediatric mTBI,
and multiple studies have examined specific white matter
tracts using diffusion tensor imaging [DTI; (13–15)].
Emerging evidence indicates that pediatric mTBI can
alter global and regional brain networks (16–19). Thus,
network neuroscience may be a potentially promising tool
that could provide a robust characterization of network
mechanisms involved in this important and highly prevalent
neurological disorder.

Large, multisite neuroimaging studies of pediatric mTBI have
become increasingly common to reduce false positive results
from small samples, increase statistical power, and enhance
reproducibility and generalizability of results (20, 21). For
instance, the Advancing Concussion Assessment in Pediatrics
(A-CAP) study (22) is the largest neuroimaging study of
pediatric mTBI to date, with recruitment occurring at five
children’s hospitals across Canada including longitudinal MRI
assessment using 6 different scanners. The A-CAP study has
the potential to increase scientific and clinical knowledge
about neurobiological outcomes in pediatric mTBI. However,
using multiple MRI scanners introduces non-biological data
variability due to different scanner systems, models, and
sequence protocols, among other factors (23–26). Managing
these non-biological sources of variability in multisite studies
is increasingly important to generate accurate group-level
inferences and enable detection of underlying biological
phenomena (23).

ComBat is a widely used method for multisite (multiscanner)
harmonization that originated from techniques used for
genomics data (27). It is one of the most well-validated tools
for multiscanner harmonization of structural neuroimaging
data that makes no assumptions about the origin of scanner

variation (26). ComBat implements a multivariate linear mixed
effects regression with terms for biological variables and site
to model the features of interest; the model parameters are
estimated using an empirical Bayes approach. For diffusion
tractography, ComBat has already demonstrated higher
performance for multiscanner harmonization than other
methods such as removal of artificial voxel effect by linear
regression (RAVEL) and functional normalization of metrics
(26). Unlike a general linear model approach that includes site
or scanner as a fixed effect covariate, ComBat demonstrates
better outlier robustness to account for small within-scanner
sample sizes by borrowing information across features to
shrink estimates toward a common mean (27, 28). The
multiplicative scanner effects are also corrected by removing
heteroscedasticity of model errors across scanners (29).
Furthermore, ComBat preserves the variability contributed by
true biological effects [e.g., sex and age; (26)]. However, no
study has yet examined whether ComBat is suitable for graph
theory metrics derived from the structural connectome based
on DTI.

Unlike tractography, which yields a final value for each
white matter tract, connectome analyses use weighted adjacency
matrices to calculate network parameters. In tractography
or region-of-interest analyses, multisite harmonization is
performed on final metrics [e.g., average fractional anisotropy
measures; (26, 30–32)]. However, graph theory analysis takes
place after connections in a network have been mapped,
mathematically represented as an adjacency matrix, and
summarized by the computation of network parameters (33).
Two distinct approaches to data harmonization are therefore
possible in network analysis: (1) before the calculation of
network parameters (i.e., matrix harmonization; harmonization
at the level of connectivity weights), or (2) after calculation of
network parameters (i.e., parameter harmonization). Identifying
the optimal timing of data harmonization during data processing
and analysis may influence the harmonization of multisite
data, and hence has important implications for the accuracy of
conclusions drawn from multisite connectivity studies.

To our knowledge, the performance of ComBat for
multiscanner harmonization in studies of network topology and
neurological disorders has not been evaluated. Therefore, the
present study examined the application of two approaches to
data harmonization across sites in a sample of DTI scans from
children with mTBI or mild orthopedic injury (OI).
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2. METHODS

2.1. Study Design and Procedure
Data were drawn from the Advancing Concussion Assessment
in Pediatrics (A-CAP) study (22), a multisite prospective, cohort
study with longitudinal follow-up in children [Mean age (range)
= 12.37 ± 2.34 years (8.00–16.99 years); 289 (59.7%) Male; see
Table 1] with pediatric mTBI (n = 313) or mild orthopedic
injury (OI; n = 171). Briefly, children were recruited within 48
h of injury from five children’s hospitals across Canada (32),
all of which were members of Pediatric Emergency Research
Canada [PERC; (34)], and returned for three post-injury follow-
up assessments: post-acute (targeted for 10 days post-injury),
3 and 6 months. Injuries and acute signs and symptoms were
assessed during an initial emergency department visit that took
place within 48 h post-injury.

The study was conducted with the approval of the research
ethics board at each study site. All participants provided
written informed assent and parents/guardians provided written
informed consent (22). This study examined data from the
MRI scans collected during the post-acute visit, as previously
described (32, 35).

2.2. Diffusion MRI
Eligible participants completed a 3T MRI scan without sedation
at the post-acute visit [see (35) for details]. In brief, thirty
diffusion-weighted images with different diffusion gradient
encoding directions were acquired at b= 900 s/mm2, along with
five images at b= 0 s/mm2, with 2.2mm isotropic resolution at all
sites [General Electric: TR/TE = 6, 12 s/70, 90 ms; Siemens: 6.3,
7.8 s/55, 90 ms; (22)]. Data collected in Montreal was acquired
using two different scanners, coded as Montreal 1 and Montreal
2, for a total of 6 scanners (“sites”): Calgary (General Electric),
Edmonton (Siemens), Montreal 1 (General Electric), Montreal 2
(Siemens), Ottawa (Siemens), and Vancouver (General Electric).

2.2.1. Quality Assurance
Visual quality checks of all raw images were conducted to identify
and exclude scans with structural abnormalities/incidental
findings, scanner artifacts (e.g., warping), incomplete acquisition,
or not collected using the standardized scan parameters (32).
Data that passed the initial quality assessment were subsequently
rated for motion by two trained analysts. Discrepancies were
resolved through a third reviewer blind to initial ratings.
Diffusion-weighted volumes with severe motion artifact were
removed, and any scans with > 7 volumes with severe motion
artifact were excluded from subsequent analysis (36).

2.2.2. Structural Connectome
Detailed image processing methodology has been previously
described (18). Briefly, ExploreDTI (37) was used to preprocess
diffusion images, calculate the diffusion tensor, conduct whole
brain fiber tractography, and compute an adjacency matrix for
each participant. Preprocessing included correction for signal
drift (38), eddy currents, subject motion with rotation of the B-
matrix (39), and susceptibility distortions (40). A deterministic
streamline approach was used for whole brain fiber tractography
(randomized seed points; seed and tractography FA threshold

= 0.10; step size = 0.50 mm; angle threshold = 30◦; step size
= 0.5 mm; streamline length 50–500 mm). The resulting whole
brain fiber tractography was extracted and used to compute an
adjacency matrix for each participant.

The automated anatomical labeling [AAL-90, (41)] template
was used to define 90 nodes in native (diffusion) space using
functions from open-source software packages in MATLAB
R2019a [see (18)]. Fully connected 90 × 90 adjacency matrices
were constructed using the average FA of passing fibers among
nodes in ExploreDTI for each participant and an absolute
threshold of 0.10.

2.3. Global Network Metrics and Multisite
Harmonization
The following global network parameters were calculated
in MATLAB using the GRETNA software toolbox [http://
www.nitrc.org/projects/gretna/; (42)]: global efficiency, global
clustering coefficient, small worldness, modularity, and density.
Network parameters were normalized against 1,000 randomly
generated matrices.

Global network parameters were evaluated before
harmonization and after two different harmonization
approaches: matrix harmonization and parameter
harmonization. The steps used for each approach
are summarized in Figure 1. For both harmonization
approaches, ComBat v1.0.5 (https://github.com/Jfortin1/
ComBatHarmonization/tree/master/R) was conducted in R
v3.6.3 [(43); https://www.R-project.org/] to harmonize the
data for scanner differences. A covariate matrix with group
(mTBI/OI), age at injury, and biological sex was included to
preserve this variance:

mod <− model.matrix(∼ injury+ age+ sex)

2.3.1. Matrix Harmonization
For matrix harmonization, weighted connectivity matrices were
harmonized formultiple scanners and global network parameters
were calculated using the harmonized connectivity matrix for
each participant (see Figure 1). First, the lower diagonal values
of each connectivity matrix were extracted to construct a
dataframe of 4,005 columns corresponding to node connection
pairs among the 90 defined brain regions (nodes), excluding
self-connections [i.e., principal diagonal; (n(n-1))/2]. This was
done because undirected adjacency matrices are diagonally
symmetrical. ComBat was then used to harmonize those
extracted values:

neuroCombat (dat = LowerDiagonal, batch = Site,mod = mod)

After the harmonization of the extracted connectivity weights,
the adjusted square and symmetric weighted matrices were
reconstructed for each participant and subsequently used
to calculate global network parameters. During matrix
harmonization, many of the connection weights that were
0 before harmonization (i.e., indicating that no connection
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FIGURE 1 | Overall study procedure illustrating the data processing steps for the generation global network parameters (A) before harmonization, and the

implementation of (B) matrix harmonization, and (C) parameter harmonization.
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TABLE 1 | Demographic information for the participants at each site/scanner.

Site Participants

n (%)

Sex

n (%) male

Age*

M (SD) years

Group*

n (%) mTBI

DPI*

M (SD)

Calgary 120 (25) 71 (59) 12.9 (2.2) 83 (69) 8.8 (3.3)

Edmonton 114 (23) 67 (59) 12.5 (2.3) 75 (66) 9.3 (5.1)

Montreal 1 28 (6) 18 (64) 11.4 (2.0) 25 (89) 10.3 (4.2)

Montreal 2 20 (4) 10 (50) 12.5 (2.2) 15 (75) 12.4 (4.8)

Ottawa 57 (12) 30 (53) 11.9 (2.2) 39 (68) 15.8 (4.7)

Vancouver 145 (30) 93 (64) 12.0 (2.4) 76 (52) 11.7 (5.1)

Total 484 289 (60) 12.3 (2.3) 313 (64) 10.9 (5.1)

*Significant effect of site on age (F = 3.73, p < 0.01), group (χ2 = 18.3, p<0.001), and DPI (F = 21.5, p < 0.001); DPI, days post injury; M, mean; SD, standard deviation.

existed between two nodes) were transformed to negative values.
To correct for this transformation, an additional masking step
was applied to reassign negative weights to 0 prior to graph
analysis. Specifically, the masking step multiplied the binary
connectivity matrix derived before harmonization with the
harmonized weighted connectivity matrix for each participant
(see Figure 1).

2.3.2. Parameter Harmonization
For parameter harmonization, the raw global network metrics
(i.e., calculated before harmonization) were harmonized
for multiple scanners using ComBat. Each parameter was
harmonized in separate models because the distribution of each
parameter is not necessarily related to the distribution of other
parameters. The empirical bias estimation option was not applied
(i.e., eb = FALSE) during parameter harmonization because
each global network parameter was harmonized separately (i.e.,
number of features < n). For each global network metric, the
following model was used to harmonize the data:

neuroCombat

(dat = Parameter, batch = Site,mod = mod, eb = FALSE)

2.4. Statistical Analysis
Statistical analyses were conducted using R v3.6.3. To evaluate
the performance of each harmonization approach (i.e., adjacency
matrix or network parameters), the effect of site was examined
using separate one-way ANOVA models for each global network
parameter. Non-significant scanner effects (p > 0.05) were
interpreted as a successful removal of variability due to different
scanners.

The proportion of significant (p < 0.05) post-hoc pairwise
between-site comparisons was evaluated by calculating the
number of significant uncorrected pairwise comparisons across
scanners, divided by the total number of possible pairwise
comparisons (i.e., n = 15). Correction for multiple comparisons
was not applied for post-hoc t-tests followups, providing a more
conservative evaluation of scanner effects.

The within-scanner consistency of the global network
metrics before (unharmonized) and after each harmonization
approach (matrix harmonization, parameter harmonization) was

examined by calculating the intraclass correlation coefficient
(ICC), with ICC < 0.50, 0.50 ≤ ICC < 0.75, 0.75 ≤ ICC < 0.90,
and ICC≥ 0.90 indicative of poor, moderate, good, and excellent
consistently, respectively (44). Successful harmonization would
reduce the effect of site while preserving the within-scanner
variability for each parameter observed before harmonization.

To evaluate whether ComBat harmonization preserves
biological variability, analysis of covariance (ANCOVA) was
used to examine the effect of site, age at injury, sex, and
group (mTBI, OI) on each network parameter. Significant
effects involving age at injury were further examined using
Pearson correlations, which were compared using a back-
transformed average Fisher’s Z procedure for dependent and
overlapping correlations (45), as implemented using the cocor
package (46). Overlapping correlations were used to conduct
the following pairwise comparisons of age correlations: (1)
matrix harmonization vs. unharmonized data, (2) parameter
harmonization vs. unharmonized data, and (3) parameter
harmonization vs. matrix harmonization.

Within-scanner age correlations on the unharmonized data
were calculated to provide a reference value for the expected age
correlation for each network parameter following harmonization.
The reference value was calculated based on the means of
within-site age correlations, weighted by the corresponding
sample size of each scanner. Weighted means were calculated
because sites with a greater number of participants may
influence the correlation values to a greater extent than sites
with smaller cohorts. Successful preservation of age-related
biological variability across all scanners following harmonization
would approximate the weighted mean of within-scanner age-
correlations. Group differences between mTBI and OI were
calculated using t-test.

3. RESULTS

3.1. Presence of Site/Scanner Effects
Before Harmonization
Before harmonization, all global network metrics differed by site
(see Table 2 and Figures 2A, 3A). The largest site effect was
observed for global efficiency [F(5) = 651.08, p < 0.001], with
14 of 15 (93%) significant between-site comparisons, followed
by modularity [F(5) = 309.87, p < 0.001; 13 (86%) significant
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between-site comparisons], density [F(5) = 286.23, p < 0.001;
13 (86%) significant between-site comparisons], small worldness
[F(5) = 182.93, p < 0.001; 12 (80%) significant between-site
comparisons], and clustering coefficient [F(5) = 86.38, p < 0.001;
12 (80%) significant between-site comparisons].

3.2. Matrix Harmonization
Main effects of site remained significant for global network
metrics after matrix harmonization (Table 2 and Figures 2B,
3B). However, pairwise site differences were less pervasive after
harmonization for global efficiency [F(5) = 3.88, p < 0.001; 4
(26%) significant between-site comparisons] and small worldness
[F(5) = 170.69, p < 0.001; 11 (73%) significant between-site
comparisons], but not for modularity [F(5) = 158.06, p <

0.001; 13 (86%) significant between-site comparisons], density
[F(5) = 286.23, p < 0.001; 13 (86%) significant between-site
comparisons], or clustering coefficient [F(5) = 295.44, p < 0.001;
15 (100%) significant between-site comparisons].

Within-site consistency of unharmonized and matrix
harmonized metrics ranged from poor to excellent (Figure 3B).
The highest consistency was observed for density [ICC = 1.00],
which is the only parameter that measures the presence of
connections but ignores their weights. Global efficiency and
modularity also had excellent ICCs [Mean (range) = 0.96
(0.91, 0.99) for both], whereas consistency was good for small
worldness [Mean (range) = 0.85 (0.57, 0.95)] and poor for
clustering coefficient [Mean (range)= 0.21 (0, 0.62)].

3.3. Network Parameter Harmonization
Site was not significantly associated with global network metrics
after parameter harmonization (Table 2 and Figures 2C, 3C).
The within-site pre-post harmonization ICCs (Figure 3C) were
consistently excellent for global efficiency [Mean (range) = 0.99
(0.99, 1)] and density [Mean (range) = 0.98 (0.97, 1)], and
good to excellent for clustering coefficient [Mean (range) = 0.97
(0.86, 1)] and modularity [Mean (range) = 0.91 [0.85, 0.99)] and
moderate to excellent for small worldness [Mean (range) = 0.86
(0.73, 0.99)].

3.4. Relationships Between Network
Topology and Age Before and After
Harmonization
Age significantly correlated with the following unharmonized
network parameters (Figure 4A): global efficiency (r = 0.16,
p < 0.001), clustering coefficient (r = 0.13, p < 0.003) and
density (r = 0.12, p < 0.006). After matrix harmonization
(Figure 4B), the correlation between age and global efficiency
(r = 0.38, p < 0.001) was larger than before harmonization
(z = 3.63, p < 0.001). After parameter harmonization, age-
correlations increased (Figure 4C) for efficiency (r = 0.44, p <

0.001), clustering coefficient (r = 0.21, p < 0.001), and density (r
= 0.27, p < 0.001), although only age correlations for efficiency
(z = 4.71, p < 0.001) and density (z = 2.40, p < 0.016) were
significantly larger compared to the unharmonized data.

No significant correlations with age were observed for
modularity and small worldness before harmonization, but
modularity significantly correlated with age following matrix
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FIGURE 2 | Violin plots illustrating the distribution of values across sites for global network parameters calculated (A) before harmonization, after (B) matrix, and (C)

parameter harmonization.
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FIGURE 3 | Heatmaps illustrating pairwise between-site differences and t-values (lower diagonal) and within-site ICC values (principal diagonal) for the global network

parameters calculated (A) before harmonization, after (B) matrix, and (C) parameter harmonization.
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FIGURE 4 | Scatter plots illustrating the Pearson correlations between age at injury and each global network parameter calculated (A) before harmonization, after (B)

matrix, and (C) parameter harmonization.
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harmonization (r = −0.11, p =0.018), and both parameters
showed significant age relationships following parameter
harmonization (modularity: r = −0.15, p < 0.001; small
worldness: r = −0.13, p < 0.003), although the coefficients were
not significantly higher compared to the unharmonized data (p
> 0.05). Clustering coefficient (z = 0.26, p < 0.008) and density
(z = 2.40, p < 0.016) were significantly stronger following
parameter as compared to matrix harmonization. Within-group
age correlations are reported in Supplementary Table 1. No
significant effects of sex or group were observed for any of the
network parameters (see Supplementary Table 2).

4. DISCUSSION

The popularity of large, representative datasets from
collaborative, multisite research initiatives and structural
connectomics has increased in recent years. Previous studies
demonstrated that ComBat can control for site (scanner)
differences while preserving biological variability (e.g., due to
injury group, age, sex) for several MRI modalities (26, 29, 47, 48).
This is the first study to validate the use of ComBat for the
structural connectome. Here, ComBat was successfully used
to harmonize structural connectivity data based on diffusion-
weighted MRI across multiple scanners (“sites”). Parameter
harmonization reduced the variability associated with different
scanners to a greater extent than matrix harmonization, although
both approaches reduced site differences in global network
metrics. As expected, both harmonization approaches also
preserved biological effects of age on network parameters.
Moreover, expected age-related associations with global network
parameters were stronger after applying parameter as opposed
to matrix harmonization. Overall, the results extend the validity
of using ComBat harmonization to network parameters derived
using diffusion-weighted MRI.

Parameter harmonization showed superior performance for
removing scanner effects compared to matrix harmonization.
Furthermore, parameter harmonization is more computationally
efficient. Matrix harmonization requires a series of steps that
involve value translation. Specifically, connectivity weights were
deconstructed from the matrices by extracting the lower (or
upper) diagonal elements, organized in a high dimensional
data frame for harmonization, and reconstructed back in
square matrices following harmonization. In some instances, this
approach transformed connection weights that were initially 0
(i.e., no connection exists between two nodes in unharmonized
data) to negative values, requiring an additional step reassigning
these values to zero before graph analysis. Thus, matrix
harmonization preserved the location, but not the strength
of connections among node pairs. In contrast, parameter
harmonization requires only one step. This appears beneficial in
preserving the true global properties of the network, as illustrated
by the reduced variability of the within-site consistency between
the parameter harmonized and unharmonized global network
metrics (see Figure 3).

Before harmonization, global efficiency exhibited more robust
site effects than other measures, such as clustering coefficient.

Matrix harmonization reduced (e.g., global efficiency),
introduced (e.g., clustering coefficient), or maintained (e.g.,
density) site effects compared to the unharmonized data.
The variable performance of matrix harmonization across
different metrics may indicate that properties of the network
other than the pairwise connection strengths are affected by
scanner. Except for density, global parameters included in
the present analysis encode information about the topology
(i.e., location) as well as the weights of connections among
distinct brain regions. Density, which reflects the number of
connections regardless of their strengths, did not demonstrate
differences in the magnitude of site effects following matrix
harmonization (see Figures 2, 3), indicating that site differences
are present in topological properties of the network beyond the
strengths of pairwise connections (e.g., the number or location
of connections). In addition, clustering coefficient quantifies
segregation across brain regions (i.e., nodes) by counting the
occurrence of existing connections between groups of three
nodes. Since matrix harmonization does not alter the location
of connections, groups of connected nodes maintain their
configuration before and after harmonization. Furthermore,
the magnitude of scanner effects might differ slightly among
connections, and matrix harmonization might differently impact
the reciprocal connection strengths across groups of nodes (i.e.,
it targets pairs of nodes), potentially explaining the variable
performance for removing site effects in the case of clustering
coefficient (see Figures 3A,B). These topological properties may
be better controlled by parameter harmonization, because global
parameters already encode this information.

Correlations between age and network parameters were
generally larger following both harmonization approaches, but
were slightly more robust following parameter harmonization.
One exception was the relationship between age and clustering
coefficient, which weakened following matrix harmonization.
This is in line with the other results, suggesting that matrix
harmonization may be problematic for clustering coefficient.
The detection of significant age effects following parameter
harmonization, even in the absence of significant correlations for
the unharmonized data, raises the question of whether additional
variability was added to the data during harmonization that
might have artificially boosted the relationship between age and
network topology. Further analyses suggest this is not the case,
because the age correlation following parameter harmonization
were closer to the weighted means of within-scanner correlations
before harmonization (see Supplementary Table 1). In addition,
previous studies show relationships between age and global
network topology in typical development (49–51) and children
with TBI (19). This indicates that parameter harmonization
may better preserve age-related biological variability compared
to matrix harmonization and to the unharmonized data,
although differences between the two harmonization approaches
were small.

The children with mTBI and OI did not differ in any global
network metrics before or after each harmonization approach.
This was expected given that DTI and NODDI indices of white
matter microstructure did not differ between groups previously
in this sample (18, 32, 35), and other pediatric samples at similar
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time points (52). Another study compared a subset of this sample
(children recruited at the Calgary site) to typically developing
children and also did not find global or regional (nodal) network
differences between mTBI and mild OI groups post-acutely, but
did find an effect of injury more generally relative to typical
development (18).

The current study did not address the effect of data
harmonization applied prior to the generation of adjacency
matrices, which is an additional possibility to account
for the variability across different scanners [e.g., using
methods described by (26, 53, 54)]. It has been suggested
that connectome generation can be stable across scanners
based on the derived network parameters (55). While
future studies may consider this, data harmonization prior
to connectome construction is increased in complexity,
involving additional processing steps. These include warping
the data into a common space and deconstructing brain
images to build a voxel by participant data frame, which
does not allow for the construction of adjacency matrices in
native diffusion space. Following voxelwise harmonization,
data would need to be reconstructed into subject-specific
brain images (i.e., harmonized FA maps), which may impose
substantial feasibility challenges due to the high computational
complexity and number of additional transformations involved
in this process.

There are some limitations to the current work. Weighted
connectivity matrices were analyzed in this study; future
multisite studies might examine whether differences in binary
matrices relate differently to the effects of site. We did not
assess the influence of different thresholds on harmonization.
In addition, the current study used only one parcellation
for the construction of adjacency matrices, and future
studies might focus on whether other parcellations are
similarly affected by site effects particularly when running
matrix harmonization. While most methods use similar
preprocessing steps, slight variations in these steps and how
they are applied can impact calculated diffusion metrics,
and thus may be important to explore in future studies.
Data acquisition in the current study included single shell
diffusion-weighted data. Multishell acquisition protocols
may be differently affected by site effects, which might be
addressed in future studies. Lastly, the current study used
deterministic tractography, and future analyses might consider
testing the effect of harmonization on networks derived using
probabilistic tractography, as the two approaches have been
shown to differ in terms of within- and between-scanner
consistency (55).

5. CONCLUSIONS

The present paper validates the utility of ComBat harmonization
in the context of graph theoretical analysis for structural
connectivity derived from DTI. The harmonization of
global parameters derived from unharmonized adjacency
matrices provided superior performance as compared with the
harmonization of connectivity weights for removing between-
site differences, preserving the within-site variability and
preserving age-related biological variability in the data.
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