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Abstract
Advances in pig gene identification, mapping and functional analysis have continued
to make rapid progress. The porcine genetic linkage map now has nearly 3000 loci,
including several hundred genes, and is likely to expand considerably in the next few
years, with many more genes and amplified fragment length polymorphism (AFLP)
markers being added to the map. The physical genetic map is also growing rapidly
and has over 3000 genes and markers. Several recent quantitative trait loci (QTL)
scans and candidate gene analyses have identified important chromosomal regions
and individual genes associated with traits of economic interest. The commercial pig
industry is actively using this information and traditional performance information
to improve pig production by marker-assisted selection (MAS). Research to study
the co-expression of thousands of genes is now advancing and methods to combine
these approaches to aid in gene discovery are under way. The pig’s role in
xenotransplantation and biomedical research makes the study of its genome important
for the study of human disease. This review will briefly describe advances made,
directions for future research and the implications for both the pig industry and
human health. Copyright  2003 John Wiley & Sons, Ltd.
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Introduction

The pig was among one of the first animals domes-
ticated over 7000 years ago and pork is the major
red meat consumed (43%) worldwide [23]. Further-
more, the pig has served as an important model
system for human health and represents a signif-
icant future source of organs for transplantation.
Efforts to unravel the pig genome began in the
early 1990s with the development of the PiGMaP
gene mapping project [1], which was initiated in
Europe and was funded by the European Eco-
nomic Community. PiGMaP involved 18 Euro-
pean labs and a total of 7 other labs from the
USA, Japan and Australia. In the USA, the USDA
launched two efforts. First, the USDA–ARS (US
Department of Agriculture–Agricultural Research
Service) began a sizeable gene mapping project
[21] at the Meat Animal Research Center in Clay

Center, Nebraska. Second, the National Animal
Genome Research Program was developed under
the direction of USDA–CSREES (Cooperative
State Research Education and Extension Service)
in 1993. This program was designed to provide a
structure that included genome coordinators that
would stimulate facilitation and collaboration of
gene mapping in all species, including pigs. Scien-
tists from state and private universities and federal
labs cooperatively created a Swine Genome Tech-
nical Committee, which has met in recent years
at the Plant and Animal Genome (PAG) Meetings.
The US Pig Genome Coordinator activities, in con-
cert with activities of the USDA–ARS and inter-
national gene mapping projects, such as PiGMaP
and others, have allowed the status of the pig gene
map to evolve more quickly and developments in
functional genomics to advance rapidly in the last
several years.
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Gene mapping

New gene markers consisting of microsatellites,
amplified fragment length polymorphisms (AFLPs)
and single nucleotide polymorphisms (SNPs) con-
tinue to be identified and mapped and some inte-
gration of the maps continues to have taken place
as quantitative trait maps are expanded. The largest
single map contains about 1200 markers [21] but no
new large-scale maps have been published recently.
In total there are over 924 genes and 1641 mark-
ers in the database (www.thearkdb.org/browser?
species=pig). There is a developing AFLP map
with about 3000 AFLPs that is likely to be added
to the PiGMaP linkage map some time in the future.
Integration of the linkage, cytogenetic and physical
maps is well under way with the development and
use of chromosome painting [14], a somatic cell
hybrid map [28] and a 7000 rad radiation hybrid
(RH) panel (ImpRH) [30,15]. This RH map now
contains nearly 3000 markers including microsatel-
lites, and over 2000 new expressed sequence tags
(ESTs), of which many are human orthologues
and enable comparative mapping [20,24]. Contin-
ued use of these resources and development of
an advanced 12 000 rad RH map are under way
[29]. This will aid the rapidly developing com-
parative map, which will accelerate the identifica-
tion of the genes explaining variation in traits of
interest, either those identified by QTL studies or
through direct approaches, such as gene association
analyses.

Database activities

Significant pig bioinformatics efforts have been
initiated by the Roslin Institute, Scotland (www.
thearkdb.org) and to a lesser extent in the
USA (www.genome.iastate.edu) to support the pig
genome efforts and display the gene maps [2]. PiG-
BASE, which can be reached through these sites,
has several features, including pig gene mapping
references with over 1093 citations in the database
and gene maps with about 2565 loci. Last year
there were over 2 million hits at these pig genome
sites. Additional websites exist for the cytoge-
netic map of the pig (http://www.toulouse.inra.fr/
lgc/pig/cyto/cyto.htm) and the RH panel map
(http://www.toulouse.inra.fr/lgc/pig/RH/Menu-
chr.htm). A comparative map is also on the web

(http://www.toulouse.inra.fr/lgc/pig/compare/
compare.htm). In addition, a new EST database
(http://pigest.genome.iastate.edu) has been devel-
oped and should become a similarly useful resource.
It is now accessible and contains over 98 988 pig
EST entries and further development will continue.
Other useful gene tools are available from the US
pig genome website (http://www.genome.iastate.
edu).

QTL and candidate genes

Pork production requires efficient growth rate,
reduced feed intake, carcass merit, meat quality and
high levels of reproductive success and survivabil-
ity. Using both commercial and exotic pig breeds,
researchers have initiated experiments to iden-
tify quantitative trait loci (QTLs) affecting these
traits. A large number of QTLs have been reported
on nearly all chromosomes for growth, carcass
and meat quality traits and several chromosomes
for reproduction [3]. The QTLs affecting immune
response traits and disease resistance are far less
numerous. This is an area where gene expression
approaches may be particularly valuable. Follow-
ing discoveries of imprinted genes in other species,
researchers have expanded their projects to find
imprinted and origin-of-parent effects [10]. In par-
ticular, one such region on chromosome 2 has
been intensively investigated [12] and IGF2 impli-
cated in causing a major effect in muscle mass.
The researchers cleverly employed a haplotype-
sharing strategy analysis combined with marker-
assisted segregation analysis to position the QTL
within a 500 kb region. The causal quantitative trait
nucleotide (QTN) was revealed after investigating
over 180 SNPs and this work clearly points to the
need for careful analysis of all gene regions and the
proper animals and phenotypic information. Further
evidence for imprinted regions and genes are likely
to be found now that these approaches have been
developed.

Candidate genes analyses have been employed
to investigate a variety of traits. To date, signifi-
cant associations have been demonstrated for can-
didate genes for litter size (ESR, PRLR, RBP4),
growth (MC4R), meat quality (PRKAG3), disease
resistance (FUT1, SLA, NRAMP) and coat color
(KIT, MC1R) [3]. The commercial pig industry
is actively using this gene marker information in
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combination with traditional performance informa-
tion to improve pig production by marker-assisted
selection. Positional candidate gene analysis con-
tinues to be used to elucidate other known QTLs
and has recently been useful in uncovering QTN
mutations in PRKAG3 that affect pH and drip loss
[6] and in CAST that affect tenderness [7]. It is
likely that, as QTL experiments are expanded, addi-
tional positional candidates will be identified and
the causative QTN discovered.

Sequencing efforts

Research to date suggests that the porcine genome
has a similar chromosomal organization (2n = 38,
including meta- and acrocentric chromosomes),
size (3 × 109 bp), and complexity to the human
genome. As with other species, researchers have
generated ESTs from cDNA clones randomly
picked from libraries from many tissues. These
projects have varied in size and in the tissues
used [8,17,19,26,27]. The largest of these types
of projects published to date was sponsored by
the USDA and reported the sequencing and initial
analysis of 66 245 ESTs [11]. In addition, 21 499
sequences from reproductive tissue were produced
by a consortium of several research groups [24]. At
present, there are approximately 120 000 sequences
in GenBank, and in the October 2002 TIGR release
there were 17 350 clusters and 31 000 singletons.
More deposits of 5000–10 000 EST sequences
are expected soon. Most importantly, however,
a major Sino-Danish effort to sequence the pig
genome (http://www.piggenome.dk/) has resulted
in approximately 700 000 EST sequences that are
expected to be deposited in the database in the
next 6–8 months. The data obtained by sequencing
these large numbers of ESTs will continue to help
assist comparative mapping efforts, candidate gene
discovery and expression analysis.

Following the request of the NIH, a number of
species have submitted requests to be considered
for sequencing efforts. A ‘White Paper’ [22] was
submitted to NHGRI recently that outlined the role
the pig plays agriculturally, as well as a model for
human biology. In addition to the efforts of the
authors, the White Paper received solid backing
from colleagues from several countries and from
industry personnel from many companies and orga-
nizations. A cooperative project to develop a BAC

map using the existing BAC library resources with
approximately 35× coverage [22] has progressed
nicely. It appears that the pig genome sequenc-
ing effort will receive a ‘high priority ranking’ but,
despite these efforts, sufficient funding remains in
question.

Functional analysis

To better understand the physiological complex-
ity of the pig transcriptome, expression and/or
functional gene analysis needs to be undertaken.
Initially such research was done using a lim-
ited number of genes and techniques, such as
Northern analysis and differential display PCR
[13,25]. Other approaches have included quanti-
tative real-time PCR to determine mRNA levels
for immune response and disease infection lev-
els [9,18]. These approaches, while quite useful,
have proved to be limited in the numbers of genes
that can be considered. Other approaches have
included use of limited numbers of cDNAs on
macroarrays [31]. Given the initial lack of devel-
opment of large-scale cDNA arrays for the pig,
human arrays have been tested and used [13,16].
Experiments with such materials have proved ini-
tially valuable, as reproducibility was generally
high and results were reasonable. However, the
recent advent of large numbers of pig ESTs has
allowed for large-scale expression analysis using
porcine materials only. Pomp and colleagues [4,5]
have used cDNA derived from ovary and follicu-
lar RNA from animals from either an index line
selected for higher litter size or a control line,
and co-hybridized them with 4600 follicle-derived
probes to study gene expression patterns related to
reproductive efficiency. Other projects exist includ-
ing two large-scale efforts in Europe. The first
European Community-supported project is called
PathoCHIP (http://www.pathochipproject.com)
and uses spotted cDNA arrays for disease organ-
ism and immune response genes, while the second,
called QualityPorkGENES (www.qualityporkgen-
es.com) looks at the co-expression of genes related
to meat quality. Cooperative efforts by the US
Pig Genome Coordinator and US and International
researchers have now been directed to developing
a first stage cDNA or oligo spotted array for the
pig genome and human biomedical community. It
is expected that such an array will be commercially
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available in mid-2003. This array and others to be
developed later will advance functional analysis in
the pig.

Conclusions

Understanding the complexity of the pig genome
for both agricultural purposes and for its impor-
tance to human biomedical concerns remains a
significant challenge. In the past decade, large-
scale gene and trait identification and mapping have
taken place and a number of gene tests to improve
pork production are in use in the pig industry.
Sequencing and expression analysis have been ini-
tiated and offer new avenues to understand the
biological complexity of the pig. No longer does
the pig genomics community rely solely on devel-
opments from other organisms, such as the human
and the mouse. This sentiment was also shared by
Nobel laureate Dr Sydney Brenner at this year’s
PAG meeting, where Dr Brenner stated, ‘more seri-
ous people work on important things’, expressing
his belief that scientists should now focus on their
primary species and not model systems. The state
of the art of pig gene discovery and functional
genomics clearly demonstrates such commitment
and progress.
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