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Abstract 

Background: Gene expression is an inherently stochastic process, owing to its dynamic molecular nature. Protein 
amount distributions, which can be acquired by cytometry using a reporter gene, can inform about the mechanisms 
of the underlying microscopic molecular system.

Results: By using different clones of chicken erythroid progenitor cells harboring different integration sites of a 
CMV-driven mCherry protein, we investigated the dynamical behavior of such distributions. We show that, on short 
term, clone distributions can be quickly regenerated from small population samples with a high accuracy. On longer 
term, on the contrary, we show variations manifested by correlated fluctuation in the Mean Fluorescence Intensity. In 
search for a possible cause of this correlation, we demonstrate that in response to small temperature variations cells 
are able to adjust their gene expression rate: a modest (2 °C) increase in external temperature induces a significant 
down regulation of mean expression values, with a reverse effect observed when the temperature is decreased. Using 
a two-state model of gene expression we further demonstrate that temperature acts by modifying the size of tran-
scription bursts, while the burst frequency of the investigated promoter is less systematically affected.

Conclusions: For the first time, we report that transcription burst size is a key parameter for gene expression that 
metazoan cells from homeotherm animals can modify in response to an external thermal stimulus.
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Background
Gene expression is an inherently stochastic process, 
owing to its molecular nature [1]. During the last 
15 years, stochasticity in gene expression has been exten-
sively studied and it has become clear that it plays a cru-
cial role in numerous physiological processes (see [2] for 
a recent review). The first studies providing evidence of 
stochasticity in gene expression have been conducted 
on prokaryotic organisms [3, 4]. Then, experiments con-
ducted on eukaryotic organisms indicated that the causes 
of stochasticity could differ between prokaryotes and 
eukaryotes [5–8]. A number of mechanisms which influ-
ence the amount of stochasticity affecting a given gene 

have been identified (see [2]), ranging from chromatin 
dynamics [9, 10] to network dynamical architecture [11, 
12].

In order to analyze gene expression experimental data, 
it is useful to introduce mathematical models of the 
expression process. In the classical “two-state model” 
[13, 14], a gene switches from a closed to an open state 
with constant rates. Although simplified, this description 
is relevant enough to allow reproducing many features 
of stochastic expression data, and to infer the underlying 
chromatin dynamics. In particular, it is able to describe 
the eukaryotic bursty transcription regime, where the 
gene is mostly closed and opens only for brief periods of 
times. Moreover, this model is simple enough to be fit-
ted on high-throughput data such as fluorescence dis-
tributions measured by cytometry. Using this approach, 
we recently showed that the genomic position strongly 
affects the frequency of bursts, rather than burst size. We 
demonstrated that differences in chromatin dynamics 
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at the insertion site could explain at least part of the 
observed clone-to-clone variations [9].

It has been shown in numerous systems that stochas-
ticity in gene expression was a driving force that allowed 
a given clone to reacquire its entire distribution [15–18], 
starting from as little as a single cell in a matter of days 
[19]. One open question then concerns the very long 
time stability (weeks to month) of the original distribu-
tion. In the present work, we used clones with different 
insertion sites of a fluorescent reporter under the con-
trol of the CMV promoter. The choice of such a system 
presents several advantages in our study. First, the CMV 
promoter being a viral promoter, the gene regulation net-
work does not affect its transcription process. The same 
is true with the fluorescent reporter that has no biologi-
cal effect and so will not be targeted from gene regulation 
networks. Moreover, we have previously characterized 
the CMV promoter behavior during chromatin remode-
ling [9] and we can thus use our validated model to study 
the dynamics of gene expression. Importantly, CMV is 
an exogenous promoter: thus, even though the results 
presented might be limited to this specific promoter, the 
mechanisms involved in its regulation are likely not gene-
specific, and may thus have a widespread relevance in 
genomic regulation.

In our study, the fluorescence of these clones has been 
recorded over more than 8 months. At such a long time 
scale, we surprisingly observed the existence of a corre-
lated variation simultaneously affecting the mean expres-
sion of our different clones. We tested possible causes 
for such a clone-to-clone correlation and demonstrated 
that small temperature variations strongly affect the 
mean expression value while the normalized variance 
remains mostly unchanged. In particular, a 2 °C increase 
of temperature resulted in a 40  % reduction of fluores-
cence activity while a 2  °C decrease resulted in ~65  % 
augmentation of the same. By fitting a two-state model 
on the fluorescence distributions measured under dif-
ferent temperature conditions, we demonstrated that 
this effect was related to a modification of the burst size 
(i.e. the number of proteins produced during a transcrip-
tion burst), while their frequency was less systematically 
altered. Altogether our data point toward external tem-
perature influence as a possible cause in the generation of 
gene expression variations in metazoan cells from home-
otherm animals.

Methods
Cell culture
All experiments were performed on stably transfected 
6C2 cell clones that have been characterized previously 
[2, 9] and display a single integration site in their genome 
of a mCherry reporter gene under the control of a CMV 

promoter. Briefly, 6C2 cells are a chicken erythroblast 
cell line transformed by the avian erythroblastosis virus 
(AEV; [20]). They were generated 30  years ago in the 
lab headed by Dr. Hartmut Beug. At that time there was 
no animal ethics committee. We did not do any animal 
work by ourselfes, and obtained the cell line from our 
colleague. 6C2 are cultured at 37  °C under 5  % CO2 in 
α-minimal essential medium (Gibco) supplemented with 
10 % (v/v) fetal bovine serum, 1 % (v/v) normal chicken 
serum, 100 µM β-mercaptoethanol (Sigma-Aldrich), 100 
units/ml penicillin and 100 μg/ml streptomycin (Gibco).

Flow cytometry
The mCherry expression level and the cell size were 
measured by flow cytometry with a FACS canto II (Beck-
son Dickinson).

Regarding the mCherry fluorescence, the cells were 
seeded at a fixed concentration 24 h before their analysis. 
Regarding the cell size, the cells were seeded at fixed con-
centration 5  days before their analysis and incubated at 
different temperature. The measurement of the Side Scat-
ter Area (SSC-A), considered as a proxy for the cell vol-
ume [21], has been used to estimate the cell size. The day 
of the analysis, the cells were pelleted by centrifugation 
(200g, 5 min), suspended in Phosphate Buffer Saline 1× 
(PBS, Gibco) and kept in dark on ice until their analysis.

The mCherry expression and the cell size were deter-
mined on 50,000 living cells, gated with the Flowjo soft-
ware. The stability of the cytometer was checked and 
taken into account by analyzing, in each experiment, flow 
calibration particles (SPHEROTM Rainbow; Spherotech 
Inc. Lake Forest, IL, USA) as a calibration reference.

Recovery experiments
The following amount of cells was sorted by FACS among 
the 10  % of cells with the highest mCherry expression 
rate: 10,000, 1000, 100 and 10 cells. Those cells were 
seeded in the following volumes: 10, 1, 0.1 and 0.01  ml 
so as to keep the seeding concentration constant. Cells 
were grown and analyzed as soon as we obtained at least 
50,000 living cells.

Statistical analysis
All statistical analyses were performed with the R soft-
ware [22]. Correlation analyses were conducted with the 
Spearman correlation coefficient, and a limiting p value 
of 0.05. Fluorescence distributions were characterized by 
their mean fluorescence intensity (MFI) and normalized 
variance (NV). Regarding the effect of the temperature 
or CO2 on the fluorescence, cells size and cell division, 
all statistical analyses were performed on relative val-
ues, where the data was first normalized by the values 
obtained in standard cell culture condition on the same 
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clone. This representation allows a better comparison of 
the results as the MFI and the NV could be very different 
depending on the transgene insertion site. To compare 
the samples in different conditions, we employed paired 
Wilcoxon tests, with a threshold of 0.05 on the p value.

Fluorescence measurements on fixed cells
In order to assess whether or not the observed variations 
in cell fluorescence could be due to variation in intrinsic 
protein fluorescence intensity, cells were grown at 37 °C, 
fixed in 4  % paraformaldehyde in PBS, rinsed twice in 
PBS, and incubated for 24 h at 35, 37 or 39 °C before flow 
cytometry.

Protein and mRNAs half‑life measurements
Proteins and mRNAs half-life was measured as previ-
ously described [9]. Briefly, to determine the mRNA 
half-life, the cells were first treated with actinomycin 
D and the mRNA concentration was measured with a 
quantitative-reverse-transcription-Polymerase Chain 
Reaction (qRT-PCR) assay. Regarding the mCherry half-
life, the cells were first treated with the cycloheximide 
and the mCherry concentration was determined by flow 
cytometry.

Two‑state model of gene expression
We previously showed [9] that in the considered system, 
protein distributions are well reproduced by a two-state 
model of gene expression, where mRNAs are produced 
during short transcription bursts (“on” state), separated 
by long inactive periods (“off”). Here, we took advantage 
of this behavior to simplify the fitting procedure by con-
sidering the limit of infinitely short bursts (i.e. by con-
sidering that for a given transcription burst, all mRNAs 
are produced simultaneously). The formalism is then 

mathematically equivalent to a “one-state model” (Eq.  8 
in [23]), except that the burst duration is given by 1/koff 
rather than the RNA lifetime. This approximation is rel-
evant here since the mCherry reporter protein half-life is 
much longer than (1) the burst duration and (2) the RNA 
half-life, and it is further validated by the good agree-
ment of the model with experimental curves (Fig. 1a). In 
this case the fluorescence distribution is a negative bino-
mial [23] that be computed analytically. It only depends 
on two parameters: the burst size (b; number of proteins 
produced per burst) that gives the distribution shape and 
the burst frequency normalized by the protein lifetime (f) 
that gives the scale of the distribution:

where ρ and ρ̃ are the RNA production and degradation 
rates, γ and γ̃ the protein production and degradation 
rates, and kon and koff the burst on/off switching rates, 
respectively (see [9] for details). These two parameters 
of the model curves were fitted on the logarithmic distri-
butions with a least-squares method, with a small addi-
tional free translational parameter accounting for the 
background fluorescence. We determined the two degra-
dation rates in independent experiments (see above and 
“Results”). Since in our procedure ρ, γ and koff parame-
ters cannot be separated, we aggregate them into a single 
parameter ργ/koff.

Temperature dependence of kinetic parameters
We describe the temperature dependence of the 
computed kinetic parameters in analogy to classi-
cal kinetic theories [24]. A reaction-limited elemen-
tary process is characterized by an activation energy 
EA, which can be estimated from an Arrhenius plot 

b =
ργ

ρ̃koff
f =

kon

γ̃

Fig. 1 Inference of the bursting kinetic parameters from the experimental distributions after 120 h incubation. a The curves are fitted by negative 
binomial distributions, where the curve shape is related to the burst frequency and the curve horizontal scale to the mean number of proteins per 
burst (see “Methods”). The burst size is the parameter mostly affected by temperature. b The comparison of the parameters inferred on different 
clones suggests that the burst frequency and size depend on the insertion site, but with a common temperature-dependence of the burst size 
(slope of the lines), probably indicative of the same reaction network involved in gene expression, and characterized by an effective activation 
energy EA = −60 ± 3 kcal/mol. The burst frequency exhibits a limited, clone-dependent increase. Values on vertical axes are expressed in natural 
logarithm
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(log(k) vs. 1/T). For small temperature variations 
around T0, ∆T ≪ T0 this energy can be simply com-
puted from the slope of the graph log(k) vs. T  (Fig. 1b): 
log(k(T0 +∆T )) = log(k(T0))+ (EA/kBT ) · (∆T/T0)  . 
For diffusion-limited reactions, the same graph would 
yield a slope corresponding to the case EA = kBT . 
Importantly, in both regimes, the kinetics increases with 
temperature. Here, the burst processes likely involve 
a complex combination of elementary processes, and 
the resulting temperature dependence could thus be 
increasing or decreasing. We compute “effective activa-
tion energies” for the inferred parameters, in analogy 
to the classical theories, and later discuss the significa-
tion of these quantities in terms of molecular events. 
Importantly, for combined kinetic processes [e.g. 
k = (k1 · k2/k3)], the total effective activation energy 
is the sum of the single ones: EA = EA1 + EA2 − EA3. 
In contrast to the usual version, the effective activation 
energy can thus be negative if the reaction is inversely 
dependent on the limiting process.

Results
Characteristic relaxation time
Our first goal was to establish how fast an isolated frac-
tion of cells could recapitulate their initial distribution. 
For this, we sorted cells from a fluorescent reporter-
expressing clone in four sub-populations with differ-
ent sizes, keeping the cell concentration constant (see 
“Methods”). The cells were then incubated and analyzed 
by flow cytometry as soon as the number of cells was suf-
ficient: this took 3 days for the larger cell sub-populations 
and up to 9  days for the smallest cell sub-populations. 
All the sub-populations had returned to their original 
distribution by the time we could perform the first flow 

cytometry analysis. This indicated that the original distri-
bution was a robust phenotype for a given clone, and that 
cells regained this stable regime very fast. We then won-
dered how stable this phenotype might be under much 
longer observation periods.

Fluorescence variations over a long period
We decided to investigate the long-term behavior of two 
clones, C5 and C11. A third clone, 1F4, was added later 
in the experiment. At day 0, cells were randomly split in 
three sub-populations, a, b and c. The day before flow 
cytometry analysis, the cells of the sub-populations were 
plated at the same concentration, thereby avoiding possi-
ble variations induced by variations in cell concentration.

We observed that the three sub-populations of each 
clone exhibited a remarkably similar mean fluorescence 
intensity (MFI) and normalized variance (NV) values at 
each given time point during the 230 days of the analy-
sis (Additional file 1: Figures SD1 and SD2), confirming 
the robustness of the observed phenotypes. On the other 
hand, the MFI value of each clone exhibited strong time-
dependent variations (Fig.  2a), while the normalized 
variance seemed to fluctuate on a less marked fluctua-
tion range (Fig. 2b): the C11 MFI vary from 50 to 250 % 
whereas the C11 NV vary from 70 to 130 %, and the same 
holds true for the two others clones. Unexpectedly, the 
MFI variations of all clones appeared to be correlated 
(Fig. 2a), which was demonstrated by a Spearman corre-
lation analysis (Fig. 3a–c). The normalized variances were 
not significantly correlated (Fig. 3d, e). 

These results suggest that the MFI varies quite signifi-
cantly during very long periods, whereas the NV value is 
more constant for a clone. Moreover, we clearly detected 
a correlation between MFIs, which points toward an 

Fig. 2 Variation of the mean fluorescence intensity (MFI) (a) and normalized variance (NV) (b) of mCherry during time. Three clones, randomly 
separated in three sub-populations at day 0, have been analyzed by flow cytometry. The MFI (a) and NV (b) were measured on 50,000 gated lived 
cells. Each curve represents the mean of the three sub-populations and the errors bars represent the standard deviation of the sub-populations
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external cause that would apply to all clones simultane-
ously. We therefore explored the influence of two possi-
ble environmental conditions, CO2 and temperature.

External influences on gene expression
In order to test the impact of these two environmental 
parameters on mCherry expression, cells were incubated 
in several conditions and the MFI and NV of the reporter 
expression were determined by flow cytometry.

We tested the impact of a decrease (2 % of CO2 versus 
5 % of CO2 in standard conditions) and an increase (8 % 
of CO2) of CO2 concentration. As shown in Fig. 4a, both 
types of changes in CO2 concentration induce a decrease 
of the MFI level, and no increase is observed. Conversely, 
for the NV level (Fig. 4b), no decrease was observed. Thus, 
these changes cannot account for the correlated MFI vari-
ations observed in Fig. 2a (MFI varied from 50 to 250 %, 
e.g. C11), nor for the NV variations observed in Fig. 2b.

Regarding temperature, we also tested an increase (39 
vs 37 °C in normal cell culture conditions) or a decrease 
(35  °C) of this parameter. It became immediately clear 
that temperature variation had a profound and significant 
influence on the mean value of the reporter distribution 

(Fig.  5a) whereas it had only a limited impact on its 
NV (Fig.  5b). A temperature increase from 37 to 39  °C 
induced a reduction of 37  % in 48  h and 43  % in 120  h 
of the mCherry MFI (Fig.  5a). When these cells were 
replaced at 37 °C, the MFI increased back to a level 33 % 
lower than initially, indicating a tendency to recover the 
initial distribution. The opposite was true when the cul-
ture temperature was decreased: after 48 h at 35 °C, the 
mCherry MFI value was higher by 64 and 68  % after 
120 h; and the effect was back to 30 % after the cells had 
been replaced at 37 °C (Fig. 5a).

We noticed that temperature changes impacted the 
NV level (Fig. 5b) but in a weaker way than the MFI level 
(Fig. 5a). Moreover, the NV level was mostly affected at 
the beginning of the cell culture change (after 48  h of 
incubation or after replacing the cells for 48 h in a new 
environment), while it tended to go back to its initial 
value after 120  h in the same culture conditions. This 
observation could reflect the response time of each cell to 
environmental changes (Additional file 2).

We therefore concluded that temperature variations 
might well be responsible for the coordinated long-term 
variations that we previously observed (Fig. 2a).

Fig. 3 Correlation test of the mean fluorescence intensity (MFI) and the normalized variance (NV) of mCherry. Shown is the inter-clone correlation 
of the MFI (a–c) and NV (d–f). All clones are compared by pairs with a Spearman’s rank correlation test. When the p value was significant (p value 
<0.05), the correlation coefficient is indicated (R2)
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Indirect influences of temperature
We next ruled out the possibility that the observed vari-
ation in MFI was due to indirect effects of temperature.

First, we verified that temperature had no impact on 
the MFI of fixed cells (not shown) demonstrating that the 
observed effect was not due to a higher brilliance of an 
identical number of proteins.

We then checked whether or not the temperature could 
induce changes in either cell size or cells number. Cells 
were grown for 5 days at different temperatures and ana-
lyzed. Regarding the cell division rate, we did not notice 
any significant effect of the temperature on its value, as 

assessed by blue trypan counting (Additional file 3: Fig-
ure SD3B). The cell volume (as assessed by flow cytom-
etry, see “Methods”, Additional file 3: Figure SD3A) was 
affected by the temperature: we noted an increase by 
20 % of the cell size after 5 days at 35 °C and a decrease by 
15 % at 39 °C.

One reason to check the effect of the temperature on 
the cell size and the cell growth rate was to be sure that 
the higher mCherry content measured at low tempera-
ture was not due to a reduction of the division rate and 
thus to an accumulation of the proteins in the cell. In 
such a case, we would notice a diminution of the growth 

Fig. 4 CO2 influence on the mean fluorescence intensity (MFI) and the normalized variance (NV). Cells were incubated at 5 % of CO2 as a standard 
concentration and at lower (2 %) or higher (8 %) concentration during 48 or 72 h. Then, the MFI (a) and the NV (b) were measured by flow cytom-
etry on 50,000 gated lived cells. The raw data were transformed in percentage (see “Methods”). N = 9, error bars represent SD. Brackets indicate 
significantly different values (*p value <0.05; **p value <0.01 for a paired Wilcoxon test)

Fig. 5 Temperature influence on the Mean fluorescence intensity (MFI) and the normalized variance (NV). Cells were incubated at indicated 
temperature during 48 or 120 h. Then, the cells were replaced at 37 °C during 48 h. The MFI (a) and the NV (b) were measured by flow cytometry 
on 50,000 gated lived cells. The raw data were transformed in percentage of the corresponding sample at 37 °C (see “Methods”). This representation 
permits a better comparison of the results as the MFI and the NV could be very different depending on the genome transgene insertion site. N = 9, 
error bars represent SD. Brackets indicate significantly different values (*p value <0.05; **p value <0.01 for a paired Wilcoxon test)
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rate and an increase of the cell size at 35  °C and the 
inverse would be true at 39 °C. Here, we do not notice any 
effect of temperature on the growth rate, which allows us 
rejecting this hypothesis. However, we do notice a size 
variation that is positively correlated with the overall in 
gene expression level. These two phenomena may there-
fore be part of the cellular response to the variation of 
temperature (see “Discussion” below).

Thus, the observed MFI variations are neither the 
consequence of a modification of the cell cycle, nor of 
intrinsic protein brilliance. It thus became reasonable 
to examine whether MFI variations may result from an 
effect of temperature on gene expression dynamics. We 
therefore examined how temperature changes could 
influence the fit of a two-state model of gene expression, 
which we previously demonstrated to account for fluo-
rescent reporter gene expression distributions [9].

Transcription burst sizes are systematically affected 
by temperature
The two-state model describes the protein produc-
tion process as a three-step process: transcription (that 
depends on the gene on–off cycling), mRNA dynam-
ics (production vs. degradation) and protein dynamics 
(production vs. degradation). It thus incorporates six 
parameters, three of which cannot be distinguished in 
the conditions considered here and are thus treated as an 
aggregated parameter (see “Methods”), resulting in a 4 
parameters model. Among these parameters, two can be 
measured experimentally: the protein and mRNA half-
life (respectively 1/ρ̃ and 1/γ̃). We therefore determined 
whether temperature variation was susceptible to influ-
ence their value. We observed that temperature had no 
influence on protein stability (Fig. 6). mRNA stability was 
differently affected: a significant threefold increase was 
detected at 39 °C, with no significant variation observed 
at 35  °C. Interestingly, this is exactly the opposite direc-
tion to what was expected from the observed lower 
expression at 39  °C. Other parameters of the expression 
process must therefore counterbalance the increase of 
RNA stability.

The two remaining parameters (b and f ) can be 
inferred from the experimental distributions of protein 
numbers. We previously showed [9] that in the consid-
ered system, these distributions derive from a protein 
production characterized by short and infrequent tran-
scriptional events known as bursts. In such conditions 
the number of proteins produced during each burst (b) 
affects the horizontal scale of the distributions, while its 
shape is primarily affected by the bursts frequency ( f , see 
Fig.  1). A suitable mathematical treatment (see “Meth-
ods”) allows to fit the experimental curves at the different 
temperatures, and to infer the underlying parameters.

As can be observed on the example shown on Fig. 1a, 
the scale of the curve is significantly modified (horizontal 
dilatation), while the shape remains comparable. In other 
words, each transcription burst produces fewer pro-
teins at higher temperatures, in line with the reduction 
observed in the mean value of the protein distributions.

The burst size depends on the insertion site, but its 
temperature dependence is universal
On Fig. 1b, we show the evolution of burst frequency and 
bursts size for different clones at different temperatures. 
The error bars reflect the heterogeneity among the sub-
populations (a, b, c) of the same clone. We observed that 
the inferred burst size is reproducible for a given clone 
(main plot). On the opposite, the burst frequency dif-
fers between the clones and between temperatures, but 
also often between the sub-populations (large bars in 
the inset), maybe indicative of different modes of burst 
triggering depending on the conditions. A general ten-
dency for the frequency to increase with temperature is 
observed (Spearman correlation 0.5, p value 0.003), but 
this result depends essentially on one experimental con-
dition (1F4 at 39°). In two of the three clones (C5 and 
C11), the increase is not statistically significant (Spear-
man p values 0.60 and 0.11, vs. 0.006 for 1F4). Note that 
the frequency is also more difficult to fit, because the 
computation depends mostly on small values of intensity, 
which are mostly affected by background noise. Since 
we aim at identifying the generic, clone-independent 
effects, we did not further investigate the effect of tem-
perature on burst frequency. In contrast, the burst size is 

Fig. 6 Impact of the temperature on the proteins and mRNA half-life. 
Cells were incubated during 3 days at 35, 37 and 39 °C and the mRNA 
and proteins half-life were determined as described in “Methods”. 
Shown is the ratio of the half-life at 35 or 39 °C divided by the half-life 
at 37 °C. N = 4, error bars represent SD, Wilcoxon test: *p value <0.05
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significantly more variable among the clones than among 
the sub-population and it consistently decreases with 
temperature in all investigated clones (Spearman p-val-
ues ~2 × 10−5 for all clones). More precisely, we find that 
even though the burst size differs between the clones (dif-
ferent vertical values on the plot), the different lines are 
approximately parallel, indicating identical temperature 
dependence. In analogy to classical theories of reaction 
kinetics, this common slope has a physico-chemical sig-
nification, as the effective activation energy of the under-
lying Arrhenius law (see “Methods”). Here, the notion of 
“effective activation energy” refers to the fact that, strictly 
speaking, the activation energy is defined only for an ele-
mentary reaction process, and must therefore be taken 
with caution speaking of the molecular events associated 
to gene expression, which likely involve a complex net-
work of individual step reactions [25, 26]. The measured 
slope corresponds to a value EA = −60± 3 kcal/mol = 
−101± 5kBT . Here the negative sign indicates that, in 
contrast to elementary processes which always get faster 
with T  (positive EA), the dominant kinetic step here acts 
against protein production (see “Methods”). The com-
mon temperature dependence obtained for the three 
clones may thus reflect an identical chemical network 
for protein production in all cases, while the difference 
among the distributions suggest that the chromatin state 
at the different loci modulates how often and with which 
intensity the reporter gene is actively transcribed. In the 
next section, we discuss the possible mechanistic inter-
pretations of these observations in more details.

Discussion
In order to characterize the dynamics by which popula-
tion heterogeneity in gene expression levels arises, we 
first isolated sub-fractions of cells from a clonal popula-
tion and demonstrated the ergodic behavior of the sys-
tem, with a very fast dynamics of less than 3  days for 
the largest fraction of cells. Numerous previous studies 
have reported the time dependence of the relaxation to 
the original distribution to be a matter of days (from 3 
to 11 days, depending upon the cellular system involved; 
[15–19]). In our system, only the upper bound of the 
relaxation time could be determined, due to the very fast 
time scale involved. This confirms that in our cells the 
mechanisms generating short time heterogeneity operate 
at a rapid timescale (hours to days).

Moreover, in our experiment, even when the popula-
tion was randomly separated in three sub-populations, 
these fractions kept similar MFI values at all timepoints 
along the experiment, indicating the importance of the 
genomic integration point in constraining the mean 
expression value.

We nevertheless observed that this mean expression 
value was highly variable along time for a given clone. 
Unexpectedly, those variations were correlated among all 
of our clones. This suggested the existence of an exter-
nal factor acting on all our clones simultaneously. We 
showed that variations in CO2 concentration did not 
significantly modify the dynamic of the gene expression. 
In sharp contrast, an increase in temperature induced a 
large decrease in the MFI, and a decrease in temperature 
induced a strong increase in the MFI. Interestingly, the 
effect induced by the temperature seems to be revers-
ible, as MFI tend to go back to their original values after 
replacing the cells at initial temperature. Such a revers-
ibility of temperature effects was very similar to the 
effects we observed in a previous study when treating our 
cells with chromatin modifying drugs [2].

The observed variation in MFI is not due to a reduction 
in the growth rate of the cells. However, we could notice 
an increase of the cell size when the temperature is lower. 
We can propose that this phenomenon is a consequence 
of the higher protein production rate which would per-
mit the cell to accommodate the accumulation of a higher 
protein amount.

These experiments were performed on 6C2 cells, a 
chicken erythroblast cell line transformed by the avian 
erythroblastosis virus [20]. Since the chicken body tem-
perature is 41  °C, one can rule out that our cells were 
experiencing a heat shock at any temperature tested. For 
similar studies to be conducted in mammalian cells, it is 
therefore probable that the temperature range should be 
adjusted, in order not to bypass the standard temperature 
of 37 °C.

The culture temperature therefore seems to be an 
important factor to take into account when analyzing 
gene expression. One should also emphasize that the NV 
was only poorly affected, which is in line with our molec-
ular explanation (see below).

We showed that temperature affects the number of pro-
teins produced during each transcription burst, and we 
quantified this dependence for cells incubated for 120 h 
(Fig.  1). Unsurprisingly, we found that cells incubated 
only 48  h exhibited a smaller temperature dependence 
(~25 % weaker slope), and the observed effect was even 
smaller for cells that were first cultured for 120  h, then 
set back to 37  °C for 48  h (~70  % weaker slope). These 
observations are related to the lifetime of the fluores-
cent protein employed (around 47  h): in these samples, 
a significant fraction of the proteins were in fact pro-
duced at a temperature of 37  °C, which results in dilut-
ing the effect under investigation. In the 120 h samples, 
although a minor remaining proportion of proteins was 
produced before the temperature change, the quantified 
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temperature dependence reflects much more faithfully 
the underlying molecular processes.

We investigated what could be the molecular basis for 
such a temperature-induced effect. We first ruled out a 
possible influence of temperature on the stability of the 
reporter mRNAs or proteins. Indeed temperature had 
either no effect or an inverse effect on their stability. An 
increase of the mRNA stability while a diminution in 
proteins is observed could reflect an impact of the tem-
perature on the protein translation rate. However, the 
literature seems quite unconvincing as depending on the 
study or possibly on the organism, the temperature does 
not display the same impact on protein translation rate 
[27, 28].

We therefore tried to determine whether temperature 
could alter the dynamics of gene expression, by fitting 
our data to a two-state model. We established that the 
burst frequency could be increased by temperature, but 
this effect was observed in only one of the three clones 
tested, and thus depends on the transgene insertion 
point. Since the effect of the temperature on the mean 
gene expression was observed within all three clones 
tested, the modification in burst frequency is likely not to 
be the dominant underlying mechanism. In contrast, the 
burst size inferred from the data, i.e. the number of pro-
teins produced during each burst, was found to decrease 
with temperature independently of the transgene inser-
tion point, in line with the reduction observed in the 
mean value of the protein distribution. A symmetrical 
situation was observed for lower temperatures. These 
results therefore suggest that, at least for the investigated 
promoter, temperature modifies the gene expression by 
modulating the mean burst size.

One may then wonder what molecular processes are 
driving this modulation. As previously mentioned, the 
burst process likely involves a complex combination of 
elementary processes [25], which could a priori all be 
influenced by temperature, either directly or indirectly. 
Some of these processes might be specific to the gene/
locus considered: for instance, any event or compound 
modifying epigenetic marks such as histone acetylation 
or DNA methylation, or nucleosome positioning, will 
affect chromatin condensation and subsequently also 
the gene expression dynamics. But temperature might 
also be involved in a more global control of gene expres-
sion, involving e.g., the metabolic pathways, which would 
then affect all genes. Based on our data, can we infer how 
these different layers of regulation are affected by tem-
perature variations ?

In the framework of the two-state model, the burst 
frequency is given by the chromatin opening rate, i.e. a 
parameter that depends on the insertion point of the 
transgene [9]. Interestingly, previous works on plants 

subjected to large temperature fluctuations (10  °C) [29] 
have highlighted a complex control of gene expression 
by temperature involving a regulation of the chroma-
tin state. The clone-specific effect of temperature on 
burst frequency inferred from our data might reflect a 
comparable mode of control in our mammalian system, 
which would influence the duration between two burst-
ing events. If this control exists, its efficiency seems 
extremely dependent on the genomic location.

The mean burst size, on the other hand, depends on 
several reaction rates (see equation in “Methods”): it 
increases with the mRNA and protein production rates, 
and decreases with the RNA degradation rate and the 
chromatin closing rate (1/burst duration). Since the 
RNA degradation rate was shown to decrease with tem-
perature (at 39  °C), it cannot account for the observed 
decrease in burst size. Rather, this feature could result 
from a decrease in either burst intensity (RNA/protein 
production rate) or in burst duration. Our data lacks the 
required time resolution to discriminate between these 
alternate explanations; this may be addressed in the 
future by single-cell time-lapse microscopy using short-
lived proteins [30]. However, the observation of a com-
mon temperature dependence of the mean burst size in 
all our clones (even though the value of the burst size 
is different), tends to suggest an effect independent of 
the insertion point. This seems to favor the hypothesis 
of an effect of temperature on burst intensity, driven by 
a reduction in RNA or protein production rate, rather 
than a burst duration (related to local chromatin dynam-
ics). With our study involving only one reporter gene, we 
cannot distinguish whether this effect is gene-specific or 
reflects a more global response to temperature variations. 
In the latter case, a plausible attractive explanation is that 
the cell adjusts its metabolism to temperature variations, 
which would in turn modify the efficiency of the tran-
scription/translation machinery in a gene-nonspecific 
manner. This suggestion is supported by the positive cor-
relation between temperature variations and metabolic 
activity observed in a wide range of organisms [31], and 
secondly by the role of metabolic fluxes in coupling met-
abolic control and gene expression [32–34], which may 
be involved in cell-decision making processes involved in 
cell differentiation [35]. Maybe surprisingly, in our case, 
the increased metabolic activity driven by higher temper-
ature would then result in a reduction in gene expression.

In this work, we have underlined that small variation in 
cell culture temperature significantly alters the transcrip-
tional process of the CMV promoter. Since CMV is one 
of the strongest promoters and, as a consequence, is often 
used in studies requiring transient or stable transgene 
expression, our study emphasizes that the cell culture 
temperature should then be tightly controlled to avoid 



Page 10 of 11Arnaud et al. BMC Molecular Biol  (2015) 16:20 

misinterpretation of the data. In our case, using such an 
exogenous system allowed us to directly relate the pro-
tein distributions observed to the transcriptional process.

The next step should now be dedicated to the impact 
of temperature variations in the expression of endog-
enous genes, in order to assess the generality of our 
observations and to analyze the underlying molecular 
mechanisms mentioned above. Regarding this question, 
the reader should note that a putative global increase 
or decrease of expression related to temperature varia-
tions cannot be assessed by usual transcriptomics tech-
niques (e.g. microarray or RNA sequencing), which only 
provide expression levels normalized within an experi-
mental condition (see e.g. [36]). A new study will thus 
require specific experimental setups and a dedicated 
analysis methodology, so as to provide absolute levels 
of transcripts per cell. This remark could be an explana-
tion why an effect as general as the one that we observe, 
and which might have drastic consequences in a wide 
range of experiments, has to our knowledge never even 
addressed in the literature, even though many stud-
ies were dedicated to the relative expression changes 
induced by temperature variations (see e.g. [37] or [38]). 
Even though our results are in principle limited to a sin-
gle exogenous promoter, they suggest that similar effects 
might be present in a wide range of experiments, but 
remain undetected in absence of a dedicated methodol-
ogy. Conversely, the latter will allow exploring the physi-
ological context where temperature could be involved in 
gene expression modifications in particular in the circa-
dian rhythm. It has been shown that peripheral clocks are 
entrained by temperature variations of small amplitude 
(2.5 °C) in homeothermic vertebrates [39]. It is not pres-
ently known if this involves transcriptional regulation or 
not. The most obvious circumstance in metazoans were 
such a temperature-dependent process might be relevant 
is of course episodes of fever; here, we note that the pro-
moter used in our study comes from a virus which may 
benefit from an adjustment to fever. Further work would 
particularly gain from newly developed single-cell tech-
niques (see e.g. [40]) that may give access to the mean 
and NV of endogenous genes expressed in cells of the 
immune system when confronted to a sudden elevation 
of temperature.

Conclusion
We investigated the sources of gene expression stochas-
ticity by using a cell line expressing a fluorescent reporter 
gene under the control of a CMV promoter. We observed 
that the mean expression value was highly variable along 
time for a given clone, but that those variations were 
strongly correlated among all of our clones. We found 
that small temperature differences could account for such 

an effect since 2 °C variations were shown to significantly 
affects the mean expression of our reporter gene. We 
further demonstrated that temperature acts by modify-
ing the size of transcription bursts, while the burst fre-
quency of the investigated promoter is less systematically 
affected.

We therefore report, for the first time, that transcrip-
tion burst size is a key parameter for gene expression that 
metazoan cells from homeotherm animals can modify in 
response to an external thermal stimulus.

This is an intriguing observation that raises the ques-
tion as to whether it is specific to the system used (CMV 
promoter in chicken cells) or whether this is a more 
generic phenomenon.
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