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Detecting initial correlations 
via correlated spectroscopy 
in hybrid quantum systems
Parth Jatakia1,2*, Sai Vinjanampathy1,3 & Kasturi Saha4

Generic mesoscopic quantum systems that interact with their environment tend to display appreciable 
correlations with environment that often play an important role in the physical properties of the 
system. However, the experimental methods needed to characterize such systems either ignore 
the role of initial correlations or scale unfavourably with system dimensions. Here, we present a 
technique that is agnostic to system–environment correlations and can be potentially implemented 
experimentally. Under a specific set of constraints, we demonstrate the ability to detect and measure 
specific correlations. We apply the technique to two cases related to Nitrogen Vacancy Centers 
(NV). Firstly, we use the technique on an NV coupled to a P1 defect centre in the environment to 
demonstrate the ability to detect dark spins. Secondly, we implement the technique on a hybrid 
quantum system of NV coupled to an optical cavity with initial correlations. We extract the interaction 
strength and effective number of interacting NVs from the initial correlations using our technique.

Quantifying complex dynamics of a correlated system and environment is a necessary step for realizing prac-
tical quantum technologies. Traditionally, majority of the methods describing the dynamical evolution of an 
open-quantum system assume factorization  approximation1, which states that the initial system–environmental 
correlation is negligible. The advantage in assuming absence of correlations between system and environment 
is the guarantee that the evolution of the reduced system is given by completely positive trace preserving maps 
(CPTP) between the reduced system  states2. A typical dynamical equation that appears for describing complex 
quantum systems derived under factorization approximation alongside Markov approximation and rotating 
wave approximation is the GKLS (Gorini–Kossakowski–Lindblad–Sudarshan) master  equation3. However, these 
descriptions fail in the presence of initial correlations, which are present in strongly correlated nanoscale sys-
tem–environment  dynamics4–6.

For such initially correlated system–environment dynamics, the reduced dynamical map describing the 
system evolution is described by “not completely positive” (NCP) maps. NCP-maps capture the effect of initial 
correlations on the subsequent dynamics, since in the presence of correlations, the marginal states and the cor-
relation matrix are not independent. Such NCP-maps have been discussed in the literature from a mathematical 
point of  view7–9, and several theoretical results have been established relating to the violation of laws of physics 
as a consequence of NCP-maps10,11. Process tensor tomography does not assume CP maps and is often used to 
characterize such maps. While state tomography of a d × d density matrix scales as O (d2) , process tomography 
scales as O (d4) and process tensor tomography scales as O (d6)12, making it impractical to characterize even 
modest systems. Thus experimental efforts till date for characterization have been majorly capable of only wit-
nessing the presence of NCP maps by detecting initial correlations. Most of these  techniques13–15 rely on meas-
urement of the change in trace distance in time between two states which initially have same system marginal 
states. Another  method16 to witness initial correlation is by measuring the conditional past-future correlations.

The fact that characterizing NCP dynamics is cumbersome has direct consequences on several forms of 
spectroscopic techniques used. The experimental inconvenience has forced these techniques to be based on 
local master equations (like GKLS) that are based on CP maps formalism which in turn rely on Hilbert space 
dimensionality of the system and the Born–Markov assumption. Hence, it is essential to develop spectroscopic 
techniques that neither rely strongly on number of dimensions of the Hilbert space of the system nor on whether 
these degrees of freedom are interacting with an environment.

OPEN

1Department of Physics, Indian Institute of Technology Bombay, Mumbai, India. 2Department of Electrical 
Engineering, Princeton University, Princeton, NJ 08540, USA. 3Centre for Quantum Technologies, National 
University of Singapore, Singapore, Singapore. 4Solid State Device Group, Department of Electrical Engineering, 
Indian Institute of Technology Bombay, Mumbai, India. *email: pjatakia@princeton.edu

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-021-99718-7&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2021) 11:20718  | https://doi.org/10.1038/s41598-021-99718-7

www.nature.com/scientificreports/

In this work, we propose a new method we call Prepare-Probe-Spectroscopy (PrePSy). Using PrePSy, we show 
selective detection of particular system–environment correlations and furthermore quantify them under some 
assumptions. Our spectroscopic method extracts information about the system–environmental initial correla-
tions by utilizing the role measurements play on correlated systems. Such measurement based methods were 
previously used to characterize NCP  maps17, modify information theoretic  bounds18, characterize correlations 
in the quantum  baths19 and witness initial  correlations20.

We demonstrate PrePSy by detecting the initial system–environment correlations between NV and a P1 defect 
centre to predict the presence of a dark spin in the environment. Here P1 is a dark spin which refers to defects in 
the diamond lattice that does not yield fluorescence under optical excitation. NV centres can be engineered to 
control these dark  spins21–23 and further employ these dark spin as a resource for quantum  sensing24 and quan-
tum  information25. The spectroscopic technique applied in PrePSy additionally facilitates deriving information 
related to system–environment dynamics embedded in the initial correlations. This functionality of PrePSy 
is shown using a spin–photon hybrid quantum system–environment represented by color centers present in 
 diamonds26 or  SiC27,28 placed in an optical resonator. By implementing PrePSy on this setup, information such as 
the photon-mediated interaction strength between two color centers and decoherence led effects are derived. Such 
hybrid QED setups have been used to implement quantum information processing  applications29,30, quantum key 
 distribution31,32 and entanglement  distribution33–35. Among various attempts for constructing such solid-state 
cavity QED systems, NVs coupled to a photonic crystal  cavity36,37, microsphere  resonator38,39, or micro-toroids40,41 
have emerged as a promising candidate. The prevalence of color centers for quantum information applications 
is because of their spin degree of freedom, which has advantages such as a long spin decoherence time at room 
 temperature42–44 and convenient optical readout of spin  state45 in addition to the photonic degree of freedom.

The organization of the manuscript is as follows—in the section “Prepare Probe Spectroscopy (PrePSy)”, we 
describe the three steps—Prepare, Evolve, and Probe, that constitute PrePSy. In section “Toy model”, the PrePSy 
technique is demonstrated using a toy model to detect and measure initial correlations. Section "Application: 
Dark spins coupled to NV" describes the results of applying PrePSy on an NV centre to detect the presence of 
a P1 defect centre in its environment.  In section “Application: Cavity QED with NVs”, the capability of PrePSy 
to decode information related to dynamics of system–environment from the initial correlations is displayed for 
multiple NVs positioned within a photonic cavity signifying a spin–photon hybrid system. Information such as 
the coupling constant and effective number of NVs interacting given the decoherence is extracted.

Prepare Probe Spectroscopy (PrePSy)
To study systems which are initially correlated with their environment, it is well known that operation of an 
entanglement breaking  channel11,17,46 on the system can be used to generate environmental states conditioned 
on the outcome of the system states. In addition to entanglement breaking channel, we use a two dimensional 
spectroscopic technique to probe dynamics of the system interacting with a conditioned state of the environment. 
We demonstrate how the two techniques in tandem can detect and measure initial or intermediate correlations 
in quantum systems alongside detecting the hidden Hilbert space dimensionality of the environment.

Step 1: Conditional preparation. The first step entails preparing the system and environment state. In 
this step, a projective measurement is performed on the system which acts as an entanglement breaking channel. 
This is followed by a unitary transformation of the resultant system marginal state to a standard state.

For a mathematical description of this step, consider a general initial state of the system–environment writ-
ten as

where R is the total state of the system–environment, ρ and τ are the marginal state of the system and environ-
ment respectively, and χ is the correlation matrix. The projective measurement Em projects the system state onto 
|m� , which leads to

Here σ (m) = τ + Trs(|m��m| ⊗ I · χ) is the post measurement state of the environment where Trs(·) is the partial 
trace over the system dimensions. Thus in presence of initial system–environment correlations, projective meas-
urement performed on the system generates environment state conditioned on the measurement. The choice of 
projective measurement operator is crucial as it selectively allows parts of the initial correlation matrix χ , that 
are along the projective operator as shown in section 1 of Supplementary.

Next, the system state is prepared by a unitary transformation to a fiducial state |0� . The total state after 
preparation is as follows,

where Um transforms system state |m� to |0� . Hence, after preparation any difference between two states which 
were projected onto different outcomes ( |m� , |n� ), is only between the environmental states ( σ (m) and σ (n) ). This 
difference between the environmental marginal states is caused only due to the presence of initial correlations. 
We perform step 1 multiple times with variations in the states chosen for projective measurement so that pairwise 
differencing as shown later in Eq. (4) can be applied. We choose orthogonal states for the set of variations in 
projective measurements as it facilitates generation of independent data sets. The number of maximum possible 
iterations scales favourably with the dimensions of the system only.

(1)R = ρ ⊗ τ + χ ,

(2)Em[R] = |m��m| ⊗ σ (m).

(3)Um ◦ Em[R] = |0��0| ⊗ σ (m),
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Step 2: Two dimensional spectroscopy. The next step is inspired from 2D Phase coherent spectroscopy 
which is routinely deployed for nuclear magnetic resonance (NMR)47,48. An elementary example of 2D spectros-
copy is shown in Fig. 1a. The rotation caused by the first control-pulse is for preparation of spins. The delay t1 and 
t2 is individually varied and separated by a similar rotation generating control pulse. Consequently the signal is 
recorded by measuring an appropriate property for e.g. magnetization is measured for nuclear spin ensemble. 
The signal will be a function of t1 and t2 , and on Fourier transformation will generate a 2D spectrum common 
to spectroscopy. Though one-dimensional spectroscopy suffices the need for characterizing initial correlations, 
we choose two-dimensional spectroscopy. The reason is that with two-dimensional spectroscopy in addition to 
characterizing correlations we can also predict system–environment dynamics based on the correlations meas-
ured. Thus the added benefit of 2D spectroscopy is measuring coherent population transfer channels i.e., valid 
transitions, in a multipartite system required for calculating the system–environment dynamics.

Step 1—“Conditional Preparation” is integrated with the two-dimensional spectroscopy by substituting the 
step 1 in place of the first pulse of the pulse sequence for two dimensional spectroscopy as shown in Fig. 1a. The 
substitution generates a procedure as shown in the first and second part of Fig. 1b. Thus after the conditional 
preparation, the system and environment evolve for time t1 followed by a π/2 pulse generated by suitable rotation 
operator ( Â ). We use the NMR definition of π/2 pulse and loosely extend it to any system Hilbert space to denote 
a π/2 rotation in a plane defined by the operator Â acting on the prepared state. Here, π2  pulse implies traversing 
half the angle between two states, preferably orthonormal to each other. The angle subtended between them is 
θ = 2 ∗ cos−1(|�ψ |γ �|) where |ψ� and |γ � are normalized states. This is then followed by free evolution for time t2.

Step 3: Measurement. The final step is probing/measuring the system with a suitably chosen system 
observable. This system observable is kept constant for all the runs of variations of the projective measurement 
performed in step 1. From the set of these variations, pairs are created for their respective measured signal to be 
differenced as follows

where Mi(t1, t2) is the measured signal where in step 1 the projective measurement was performed along |i� . 
Presence of initial correlation leads to difference in the environmental marginal states after step 1. This type of 
difference is now also seen in the system marginal states due to spectroscopy performed in step 2. Thus pairwise 
differencing at the end implies that effectively we are observing the result of spectroscopy performed on only 
the terms representing the presence of initial correlations. Each of these pairs is then Fourier transformed to 
generate the spectrum. The maximum number of pairs possible is dC2 , however all pairs are not required. Thus 
PrePSy scales as O (d2) with the system dimensions. Figure 1b shows the complete procedure for Prepare Probe 
Spectroscopy (PrePSy).

For zero initial correlations, the total state after step 1 (conditional preparation) will be the same for any 
projective measurement outcome. Thus the total state will also be the same after step 2 (spectroscopy) for any 
projection operator chosen in step 1 (conditional preparation). This is because the same process is performed for 
all states. Hence for any two pairs of different projection operators chosen in step 1 (conditional preparation), 
the pairwise difference in step 3 (measurement) will give zero if there is no initial correlation. Thus if PrePSy 
detects some signal, it implies the presence of correlations. An appropriate choice of the projective measurement, 
rotation operator of the π/2 pulse and final measurement operators will ensure that the initial correlations are 
always almost captured by PrePSy as shown in sections 1 and 2 of Supplementary. This will reduce the need to 
measure all dC2 pairs.

Though the scaling of PrePSy as O (d2) is less than process tensor tomography, which scales as O (d6) , this 
restricted scaling is sufficient to detect the system–environment correlations outside a set of pairs of projective 
measurement choices, which lead to zero detection as shown in Section 1 of Supplementary. This independ-
ence from the environmental dimension provides a huge benefit experimentally. Moreover if the entities in 
the environment interacting with the system increase then on an average the correlations with the system will 
mostly decrease. This effect is due to the fact that a small number of environment spins approximates a thermal 
bath under generic interactions. For typical Hamilonians the correlations always decrease with the increase in 
dimension of the environment generating  thermalization49. This renders PrePSy and other system–environment 
characterizing tools irrelevant in this regime of large environment dimensions.

(4)Mij(t1, t2) = Mi(t1, t2)−Mj(t1, t2),

Figure 1.  (a) A generic pulse sequence for two-dimensional spectroscopy. i and j denotes the direction of the 
rotation caused by the pulse. The most commonly used setting is i = j = x called the cosine version of COSY. 
(b) Schematic of the Preparation Probe Spectroscopy (PrePSy). The first part is the preparation part where 
conditional measurement is performed. The second part is the evolve part which is a time delayed pulse and 
time delayed measurement. Finally difference of the measured signals is taken followed by a Fourier transform.
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PrePSy scales not only with the system dimensions but also with sampling being done in t1 and t2 . For a 
sampling size “S” for t1 & t2 and “A” number of averages per sample, there needs to be (A× S)2 measurements. 
Hence the mean number of runs required such that all the data points for a particular choice of preparation is 
(1/P(a)) · (AS)2 where P(a) is the probability of state “a”. Thus the mean number of runs required for a particu-
lar choice of preparation depends directly on the sampling size and indirectly on the system dimensions (P(a) 
depends on system dimensions). Thus PrePSy scales exponentially with the sampling size.

Toy model
In this section, we devise a toy model of a system and environment with initial correlation and characterize it 
using PrePSy. A generic Hamiltonian for the system and the environment can be written as a sum of two parts. 
The first part is a diagonal Hamiltonian that defines the joint energy levels of the system and environment. The 
other part is an interaction Hamiltonian, which may be off-diagonal to promote transitions between different 
levels. We can write a generic density matrix (R) of such a system–environment in the Fano  representation50 as

where {Mi=1...d2−1} and {Nj=1...D2−1} are elements of a Hermitian traceless matrix basis, d(D) is the Hilbert space 
dimension of the system(environment) and �r,�s and Tij are real coefficients such that R is a well-defined density 
operator. Using these guidelines, we construct our toy model.

Here we consider a toy model of a spin–qubit system coupled to a spin–qubit environment as an example and 
demonstrate the effectiveness of PrePSy by measuring initial correlations. Though our constructions are simple, 
the derived conclusions hold true for higher dimensions.

Total Hamiltonian and initial state. A general two-qubit Hamiltonian can be written as

where S(s)i  ( S(e)i  ) is the spin−1/2 angular momentum of the system (environment), ω(s) ( ω(e) ) is the energy differ-
ence between the two states of the system (environment) qubit and �(ij) is the coupling between the two spins.

For the initial state, the general density matrix of two qubits can be written as

where �σ = (σx , σy , σz) is a Pauli vector. For R to be a well defined density matrix, �u, �v ∈ R
3 and Tj,k ∈ R are appro-

priately chosen. Using singular value decomposition, matrix T = {Tjk} can be written as T = Oa diag{c2, c2, c3}Ob 
where Oa and Ob are orthogonal matrices. One can see that T has local unitary equivalence to

where �a, �b, �c are real coefficients chosen such that R is a valid density matrix. Thus a general two qubit state 
can always be reduced, up to local unitary equivalence, to a state in the above form, Since focus is on the cor-
relations in the bipartite system, we set �a = �b = 0 , thus considering only the maximally mixed marginals. The 
system–environment state is given as

Here, {cj} are real parameters consistent with R being a well-defined density operator. For the numerical 
example, arbitrarily but consistently chosen cj and {ω(s),ω(e), �(ij)} are used. PrePSy requires minimum of two 
variations in the projection operator in Step 1 for pairwise differencing, and the number of orthogonal variations 
can go up to the size of the system. Here as the system is itself two dimensional, only two runs with projection 
operators |x��x| and |−x��−x| are performed. The π/2 pulse is chosen to be in a direction perpendicular to both 
the projective operators i.e. about the y-axis for an optimal rotation. The final measurement operator chosen 
is the population measurement of |x� . In section 2 of Supplementary, we present a calculation to understand 
the relation between the various matrix elements discussed in producing the signal detected. The simulation 
performed assumes a closed unitary dynamics of two qubit.

PrePSy on toy model. For a maximally mixed initial state with non-zero correlation, applying PrePSy 
gives the peaks shown in Fig. 2a. For the simulation, we chose 150 sample point in t1 and t2 . Thus a total of 
1502 = 22,500 experiments were run for each outcome of the conditional preparation step. The probability of 
each outcome is 1/2 since the initial state is chosen to be a maximally mixed marginal state. Thus roughly for 

(5)R = 1

dD
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each outcome, an actual experiment would run twice so that one out of the two is the desirable outcome. If the 
number of averages for each run is A, then the total number of actual experiments would be 2 · 2 · 22,500 · A2 . 
There is an extra 2 to account for the two variations required to form a pair. Hence we can see PrePSy scales as 
(1/P(a)) · (AS)2 where A is the number of averages, S is the number of samples and P(a) is the probability of one 
of the outcomes.

Thus obtaining non-zero data in the form of peaks implies that it does detect correlation correctly as discussed 
previously. The position of the peaks in the 2D diagram in Fig. 2a describes the frequency corresponding to 
the energy gap of two states between which a population transfer occurred during t1 and t2 . The peak positions 
depends on the interaction Hamiltonian which dictates the energy gap. The intensity of the peak represents 
the quantity of the population transferred and hence depends on the initial density matrix and thus the ini-
tial correlations. Upon measuring the variation of intensity of any peak with the correlation strength, a linear 
dependency is revealed. This is shown in section 2 of Supplementary, where Eq. (7) in Supplementary implies 
that derivative of the signal measured with initial correlation is independent of the initial correlation proving 
the aforementioned statement. Linearity is not surprising because the master equation is linear in the density 
matrix which contains the correlation. Plot of total signal intensity (2D sum of the signal over all frequency) 
versus correlation is shown in Fig. 2b.

If the equation of this line is known a priori, then by applying PrePSy and measuring the total intensity of 
the total signal generated by PrePSy, initial correlation can be calculated from the equation of the line. Thus to 
measure correlations the equation of line must be known.

To know the equation of a line two data points are required. Out of which first is trivial i.e. the line passes 
through (0, 0). One more data point, if acquired, should be sufficient. However, knowing the system–environ-
ment correlation a priori is nontrivial. If the Hamiltonian of the system–environment is entirely known then a 
simple method for calculating the other data point is using the Gibb’s thermal state where initial correlation can 
be calculated. Performing PrePSy on the thermal state of the system and environment will give an additional 
data point. If the Hamiltonian is unknown, then the equation of the line defining the correlation for the meas-
ured signal cannot be estimated. In this case, for a small enough system–environment Hilbert space, brute force 
method can be used to learn Hamiltonian parameters from the PrePSy data.

As mentioned earlier one-dimensional spectroscopy suffices for characterizing initial correlations. The results 
of PrePSy, if 1D spectroscopy is performed on the toy model instead of 2D spectroscopy is shown in section 3 of 
Supplementary. Unlike 2D spectroscopy, for PrePSy with 1D spectroscopy, Hamiltonian parameters cannot be 
learned from the measured signal as the signal generated by a particular Hamiltonian is no longer unique. The 
loss of uniqueness is briefly discussed in the conclusion section.

Application: Dark spins coupled to NV
The environment of an NV centre is a spin-bath that generates fluctuating magnetic field leading to the decoher-
ence of the NV centre spin. Various decoupling schemes  presented51,52 work to increase the coherence of the 
NV centre spin. A category of the spins in the environment is dark spins i.e., electronic and nuclear spins that 
cannot be initialized or detected  optically53.

Here we consider substitutional nitrogen (P1) defect centres which are dark electron spins among a diverse 
set of dark spins. Coupling with proximal P1 centres is possible by tuning a static magnetic field to a level 
 anticrossing21, but this technique fails if the dark defect is unknown. We present PrePSy as a technique to detect 
dark spins in the environment irrespective of its gyromagnetic ratio or hyperfine coupling.

The interaction between NV center and P1 defect is described by the magnetic dipole–dipole interaction 
and can be written as

Figure 2.  (a) 2D data of PrePSy on the toy model with parameters as cx = −0.8 , cy = 0 , cz = 0 , �(xx) = 4 Hz , 
�
(yy) = 3 Hz and �(zz) = 3.5 Hz . A total of 150 steps were simulated for variation in both t1 and t2 . Presence of 

peaks denotes existence of initial correlation. (b) Plot of the variation in total signal strength (sum of the 2D 
data) vs the initial correlation cx.
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where r̂ is a unit vector in the direction of the line joining the two spins, |r| is the distance between them and 
γNV & γP1 are the gyromagnetic ratio of the NV center and P1 center. Applying secular approximation under 
the assumption that the two spins are quite far from resonance we get

We choose a static magnetic field of 100G, and the defect to be approximately 8 lattice points away for the open 
quantum simulation. For this arrangement, the interaction strength is around 50 MHz. The result of applying 
PrePSy on the NV centre is shown in Fig. 3. For PrePSy, the initial state was chosen to be a thermal state at room 
temperature of NV centre and P1 centre combined.

The presence of a signal generated by PrePSy indicates the presence of dark spins in the vicinity of the NV 
centre. Further characterization of the defect by analyzing the PrePSy data is feasible by fitting Hamiltonian 
models. Few techniques exist that employ 2D spectroscopy similar to PrePSy to characterize nearby  spins54,55. 
There are even  techniques56,57 that can detect and calculate the position and type of the dark spins by manipula-
tion of the dark spins is not required by PrePSy.

Application: Cavity QED with NVs
Developing reliable interfaces between photons and the  NVs58 are particularly tricky due to a significantly small 
fraction of fluorescence contributed by zero phonon line and low coupling strength of NVs interacting with 
cavity photon. Moreover, these cavities have dimensions in the nanoscale regime which generates low yield and 
in addition to that positioning of quantum emitters is not  deterministic59. Thus scaling to multiple quantum 
emitters coupled with photons scales the difficulty.

Additionally, the interactions of individual NV center with cavity photon is measured with the Purcell 
enhancement of the spontaneous  emission60 and hybridization of the electronic  state61. However, for multiple 
emitters interacting with photons, although dipole–dipole interaction between the emitters is negligible, emit-
ter–emitter interaction will exist through photon mediation. This will give rise to  entanglement62,63. Thus for 
many quantum emitters interacting with cavity photons, characterization using previous methods becomes 
nontrivial. For such type of setups, we demonstrate that PrePSy can quickly provide valuable insights.

As most of the system–environment properties are encoded in the correlations, we present PrePSy as an 
auxiliary characterizing technique for such systems where coupling between entities is sufficiently stronger than 
collective decoherence effects. With PrePSy, we demonstrate for multiple NVs trapped within a cavity the ability 
to read off parameters like coupling constant, the quantity of NVs coupled to the cavity. We choose a single NV 
to be the system and the cavity, along with other NVs to be the environment, as shown in Fig. 4a.

Hamiltonian dynamics. The NV has an S = 1 electronic ground state labeled as |3A2� = |E0� ⊗ |ms = 0,±1� 
where |E0� is the orbital angular momentum state and |ms = 0,±1� are the spin angular momentum states. The 
optical transition between the ground and excited state manifold is spin preserving but changes the orbital angu-
lar momentum. The spin–photon coupling can be reduced to an effective pairwise photon mediated Jaynes–
Cummings model with the help of laser-induced Raman transition between two centers via the exchange of 
virtual cavity  photons64.

To show this consider that the cavity mode in optical regime dispersively couples to the jth NV center’s 
transition between the excited state ( |e� = |A2�:=1/

√
2(|E−�|ms = 1� + |E+�|ms = −1�) and a states in the 

ground state manifold ( |0�:=|E0�|ms = −1� ), with coupling constant gj and detuning � as shown in Fig. 4b. The 
selectivity of the states is because of the spin selectivity nature of the optical transition and this particular �-type 

(10)Ĥint = −µ0γNVγP1�
2

4π |r|3
[

3
(

S
NV · r̂

)(

S
P1 · r̂

)

− S
NV · SP1

]

.

(11)Ĥint = −µ0γNVγP1�
2

4π |r|3 ·
(

1− 3cos2θ
)

· SNVz SP1z .

Figure 3.  (a) Schematic of NV coupled to a nearby electron spin of P1 defect center. (b) PrePSy applied 
on a single NV with a single P1 defect center in its proximity. Parameters chosen are B = 100 Gauss , 
|r| = 1.2 nm = 8 lattice points away and at an angle of 0◦.
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transition was recently used for spin–photon  interaction61. Under the condition � ≫ gj , the cavity operators can 
be adiabatically eliminated. To perform adiabatic elimination, time-averaging of the Hamiltonian is performed 
given that the cavity is  detuned65. The corresponding Hamiltonian is reduced to

In addition to cavity interaction, a largely detuned σ+ laser is coupled to the same transition with Rabi fre-
quency �′

j and detuning �′ ( � ≫ �
′
j ). The purpose of this laser transition is to eliminate the stark shift term of 

the state |0� generated by the vacuum state of the cavity.
Another adiabatic elimination of the excited state manifold of NVs is possible if a σ− laser is coupled to 

|e� ↔ |1� (where |1� = |E0�|ms = +1� and Rabi frequency is �j ) to create a two photon Raman process Fig. 4C. 
Thus the effective Hamiltonian in the subspace of {|10�, (|e0� + |0e�)/

√
2, (|e0� − |0e�)/

√
2, |01�} is

where ξi,j = �i�j/�ij and �ij = gigj/� . The adiabatic elimination is valid only when the effective NV–NV 
coupling is much larger than the laser coupling ( �ij ≫ �i ,�j ). The derivation of the effective Hamiltonian as 
shown in Eq. (13) which is twice adiabatically approximated is derived in section 4 of Supplementary.

If effective pairwise coupling is uniform i.e. ξi,j = ξ∀i, j then Hamiltonian for the group of two level systems 
can be written in terms of collective angular momentum operators ( Jx , Jy , Jz ) as

where N is the number of NVs in the cavity. The Hamiltonian derived is a type of non-linear rotator of spins 
and is called a one-axis twisting Hamiltonian. We simulate the density matrix evolution given in Eq. (15) where 
Ĥ is given by Eq. (12).

The Hilbert space spanned by ρ includes the system’s (single NV) and the environment’s (other NVs) Hilbert 
spaces. The system–environment is weakly coupled to a super environment (bath). The decoherence processes 
due to this bath considered for the Lindblad master equation are spontaneous emission and spin-lattice de-
excitation. Here, σαβ = |αi��βi| , κ is the cavity decay rate, γ i

10 is the spin-lattice de-excitation rate and γ i
ej is the 

spontaneous emission from the excited state of NV.

(12)
Hadiab =

∑

i, j
i �= j

gi ∗ gj
�

|ei0j��0iej| +H .C.

(13)
Ĥeff =

∑

i, j
i �= j

ξi,j|1i0j��0i1j| +H .C.,

(14)Ĥeff = 4ξ
(�J 2 − J2z

)

− 2ξN · I,

(15)

ρ̇ = −ι

[

Ĥ , ρ
]

+
∑

i

γ i
10

(

2σ̂ i
01ρσ̂

i
10 −

{

σ̂ i
01σ̂

i
10, ρ

})

+
∑

i

∑

j=0,1

γ i
ej

(

2σ̂ i
jeρσ̂

i
ej −

{

σ̂ i
ejσ̂

i
je , ρ

})

,

Figure 4.  (a) Schematic of NVs trapped in a cavity. The blue NV is chosen as the system spin and the rest of 
the NVs are considered as a part of the environment. (b) Energy level diagram of NV center with red (blue) line 
denoting cavity mode (laser field) coupling to the NV. (c) Raman transition between NV1 and NV2 in dressed 
state basis i.e. |±� = (|01� ± |10�)/

√
2 with coupling � = g1g2/�.
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PrePSy on cavity QED with NVs. The NV-cavity setup weakly coupled to a super environment is ini-
tialized to Gibb’s state at room temperature where the initial correlation between system NV and other NVs is 
primarily dependent on the interaction strength and decoherence rate. For the NV-cavity system, the coupling 
strength of the interaction Hamiltonian can be few orders higher than the cavity decay  rate66,67. Hence the ther-
mal state will have significant correlations between the system NV and other NVs in the cavity generated by 
photon-mediated coupling. The choice of the initial thermal state also simplifies state preparation.

For applying PrePSy, conditional preparation is performed with for two variations of the projection operator 
|+x��+x| and |−x��−x| defined in the Hilbert subspace of |0�, |1� and the system is then prepared to |+x� . The 
π/2 rotation is generated by σ̂y in the same Hilbert subspace. The final measurement is the population of the 
system NV in the state |+x� . Results for PrePSy’s simulation for an open quantum system dynamics of 6 NV 
centers trapped in an optical cavity is shown in Fig. 5 below where a single NV is considered as the system and 
the rest of the NVs are defined as the environment.

The result of PrePSy displays peaks placed uniformly in the frequency domain. Similar to standard 2D coher-
ent spectroscopy, the position of the peak corresponds to the gap between the energy levels. Consider Hamilto-
nian for six spins given by Eq. (14), where the energy separation between two eigen-states ( |jh,mh� , |jk ,mk� ) in 
term of quantum numbers (j, m) is

For all possible combination of (h, k) a peak will be observed in the 2D map. A peak at (x, y) corresponds to 
energy transition x during t1 and energy transition y during t2 respectively. For example the smallest energy gap 
according to Eq. (16) is between |0, 0� and |1, 1� which is 4ξ = 0.004 and the peak closest to the origin in the 
figure at (0.004, 0.004). Thus from PrePSy pairwise coupling for simple systems can be easily calculated. At the 
positions predicted by the Eq. (16), multiple smaller peaks are visible rather than a single peak because of the 
adiabatic approximation. The simulation is performed for Eq. (12), which does not assume adiabatic elimination 
of the excited state |e� ; however, the Eq. (16) does.

Since there is decoherence in the form of spontaneous emission and cavity decay, higher energy levels even-
tually are depopulated, thus all peaks will not appear in the image and the higher frequency peaks are generally 
less visible.

The total number of peaks visible corresponds total number of transitions possible. For 6 spins there are 10 
distinct eigenenergy levels and 12 distinct energies of the transition. However Fig. 5 displays approximately 6 
distinct energies which indicates the presence of decoherence and is equivalent to 4 spins interacting without 
decoherence. From this point of view, in the presence of noisy environment 6 NVs in the cavity are effectively 
just 4 NVs in the cavity without any decoherence.

Conclusions and discussion
PrePSy is capable of witnessing specific correlations, as demonstrated with the help of a toy model in Section 
“Toy Model”. In addition to this, we show that PrePSy can also measure specific correlations because of the linear 
dependence of initial correlations on the signal measured. In Section “Application: Dark spins coupled to NV”, 
by predicting dark spins in the environment, we demonstrate the capability of PrePSy to detect correlation of NV 
with electron spins near it. In section “Application: Cavity QED with NVs”, we illustrate the potential of PrePSy 
to derive information related to the system–environment dynamics from the initial correlation using a cavity 

(16)Eh,k = 4ξ
((

jh − jk
)(

jh + jk + 1
)

+
(

m2
h −m2

k

))

Figure 5.  PrePSy applied on a single NV placed in a cavity with an environment of five other NVs. Parameters 
are chosen as � = 10g and � = 0.01g , ξ = 0.001g.
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QED setup. More specifically, PrePSy measures the coupling constant of a spin–photon interaction between 
NVs and photons of an optical cavity and estimates the effective number of NVs interacting with the cavity in 
the presence of decoherence.

Experimentally deploying PrePSy is feasible for a vast array of practically relevant physical systems since 
PrePSy assumes little about the system–environment state and is motivated for generic quantum systems. For 
color center–cavity QED systems, PrePSy is achievable with current experimental  techniques36,68,69 where experi-
mentally spin–photon coupling has been demonstrated. The only requirement for applying PrePSy is a clear 
demarcation of system and environment. The system should be such that it is amenable to measurement, projec-
tion and rotation. Moreover, pulse sequences applied to the system should not affect the environment beyond 
producing conditional post-measurement states. This demarcation can restrict the physical systems PrePSy is 
applicable to. An example in NMR is the inability to separate out a single molecule as the system and the rest as 
environment because it works on ensemble statistics.

When experimentally performing PrePSy, 2D spectroscopy is preferred as it aids in quantifying the type of 
interaction Hamiltonian. As population transfer channels vary with different interaction Hamiltonian, so will 
the 2D image obtained. However, for 1D spectroscopy, two different Hamiltonians can give results that are not 
differentiable. For example, if 1D spectroscopy is applied to 3 NVs with pairwise interactions and a closed chain 
of 4 NVs, the same number of peaks will be visible for both the cases. Hence 2D spectroscopy differentiates 
between these two cases. The result of PrePSy for both these cases, as shown in Fig. 6, is strikingly different.

As our method scales favorably with the system size, it can be conveniently applied on NVs with any other 
form of  ancilla70–72. We hope this will find applications in characterizing complex quantum systems that have 
initial or intermediate correlations.
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