
metabolites

H

OH

OH

Communication

Metabolic Fingerprint of Chronic Obstructive Lung
Diseases: A New Diagnostic Perspective

Dimitris Tsoukalas 1,2,*, Evangelia Sarandi 2,3 , Maria Thanasoula 2, Anca Oana Docea 4,
Gerasimos Tsilimidos 2, Daniela Calina 1 and Aristides Tsatsakis 3

1 Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova,
200349 Craiova, Romania; calinadaniela@gmail.com

2 Metabolomic Medicine Clinic, Health Clinics for Autoimmune and Chronic Diseases, 10674 Athens, Greece;
research@metabolomicmedicine.com (E.S.); mariathanasoula84@gmail.com (M.T.);
clinic@drtsoukalas.com (G.T.)

3 Laboratory of Toxicology and Forensic Sciences, Medical School, University of Crete,
71003 Heraklion, Greece; tsatsaka@uoc.gr

4 Department of Toxicology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
daoana00@gmail.com

* Correspondence: dtsoukalas@einum.org; Tel.: +30-21-0361-1054

Received: 2 October 2019; Accepted: 20 November 2019; Published: 26 November 2019
����������
�������

Abstract: Chronic obstructive lung disease (COLD) is a group of airway diseases, previously known
as emphysema and chronic bronchitis. The heterogeneity of COLD does not allow early diagnosis
and leads to increased morbidity and mortality. The increasing number of COLD incidences stresses
the need for precision medicine approaches that are specific to the patient. Metabolomics is an
emerging technology that allows for the discrimination of metabolic changes in the cell as a result
of environmental factors and specific genetic background. Thus, quantification of metabolites in
human biofluids can provide insights into the metabolic state of the individual in real time and
unravel the presence of, or predisposition to, a disease. In this article, the advantages of and potential
barriers to putting metabolomics into clinical practice for COLD are discussed. Today, metabolomics
is mostly lab-based, and research studies with novel COLD-specific biomarkers are continuously
being published. Several obstacles in the research and the market field hamper the translation of
these data into clinical practice. However, technological and computational advances will facilitate
the clinical interpretation of data and provide healthcare professionals with the tools to prevent,
diagnose, and treat COLD with precision in the coming decades.
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1. Introduction

Chronic Obstructive Lung Disease (COLD) develops as a chronic and persistent inflammatory
response to environmental stimuli. It is characterized by airflow limitation and affects the 10%–15%
of the adult population globally, smoking being the most important risk factor for this disease [1].
COLD exacerbation is defined as an acute event caused by viral and bacterial infections with various
germs such as Haemophilus influenzae, Streptococcus pneumoniae and sometimes Staphylococcus aureus
that is difficult to treat [2–4]. More rare causes of exacerbation are: pneumothorax, pneumonia
and parapneumonic pleurisy [5]. In these situations, the patient requires a complex treatment with
antibiotics associated with glucocorticoids [6].

COLD is a very heterogeneous disease and therefore requires advanced and specialized methods
for diagnosis [7]. Traditional methods for COLD diagnoses, such as forced expiratory volume in

Metabolites 2019, 9, 290; doi:10.3390/metabo9120290 www.mdpi.com/journal/metabolites

http://www.mdpi.com/journal/metabolites
http://www.mdpi.com
https://orcid.org/0000-0001-6885-6209
https://orcid.org/0000-0002-1523-9116
https://orcid.org/0000-0003-3824-2462
http://dx.doi.org/10.3390/metabo9120290
http://www.mdpi.com/journal/metabolites
https://www.mdpi.com/2218-1989/9/12/290?type=check_update&version=2


Metabolites 2019, 9, 290 2 of 18

1 second (FEV1) that measures the airflow limitation, are not suitable for all clinical cases, nor reliable
for efficient prognosis, and are not able to clearly distinguish between different phenotypes and
stages of the disease [8,9]. With the advent of precision medicine and patient-oriented approaches,
metabolomics has gained great attention because it reflects the phenotype of the patient and can be
used as a tool in early diagnosis, before the onset of symptoms, in treatment response monitoring, and
to identify and target the metabolic profile of the disease [10] (Figure 1).
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Figure 1. Metabolomics applications in COLD. Metabolites reflect the gene expression under the
influence of environment, microbiome, and lifestyle, the combination of which is involved in the
development of COLD. During the first stages of disease, metabolomic biomarkers can be used in
prevention, early diagnosis, and patient stratification. In advanced stages the metabolic fingerprint can
be used as a complementary tool for treatment selection and to monitor the treatment response and the
overall health status of the patients in follow-up visits.

Several metabolomic studies in recent years have aimed to identify and validate specific biomarkers
that would help in prognosis, as well as facilitating the early and precise diagnosis of the disease,
considering the great heterogeneity of the pathogenesis of COLD [11]. The identification of specific
biomarkers could also predict the response of COLD patients to different treatments depending on the
cause, the stage, and the phenotype/subtype of the disease [12]. Many recent studies used measurement
methods such as nuclear magnetic resonance (NMR), high performance liquid chromatography-mass
spectrometry (HPLC-MS), and liquid chromatography-MS (LC-MS) for the detection of significant
differences between metabolites that participate in various metabolic pathways in the plasma, serum,
and urine of healthy individuals and COLD patients, COLD patients receiving different treatments,
and patients with different phenotypes of COLD. The identification and validation of these biomarkers
based on accurate measurements and validated standards are of crucial importance for the advancement
of precision medicine and the unraveling of the pathogenesis in each COLD patient [13]. The aim of
this article is to present findings from the biomarker discovery in COLD and discuss their potential
application in clinical practice. Table 1 summarizes and compares the experimental design and the
main findings of the metabolomic studies discussed in this article.
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Table 1. Summary of COPD-associated metabolomic studies, including participant characteristics, inclusion/exclusion criteria for participant selection, sample type
analyzed, analytical method used, metabolomic profiling results, and parameters and confounders used for analysis.

Study Subjects Criteria Sample Method Metabolites Confounders

Ubhi et al., [14]

Control: n = 66:
non-smokers: n = 15 (8M/7F),

Age: 61,
BMI:27.7

smokers: n = 53,
(34M/19F),

Age: 57,
BMI: 28.6

Patients: n =163
GOLD II: n =69, (46M/23F),

Age: 65,
BMI:27.9

GOLD III: n = 63 (43M/20F),
Age: 64, BMI: 26.9

GOLD IV: n = 31, (18M/13F),
Age: 63,

BMI: 25.8

Controls and COLD patients were
matched for sex, age, and smoking

history
Serum Untargeted

NMR/LC-MS/MS

glutamine, phenylalanine,
creatine, glycine, methionine,

glycerol, monoglyceride,
trimethylamine

BCAA degradation:
isobutyrate,

3-hydroxyisobutyrate,
isoleucine, leucine, valine

Lipid metabolism:
HDL,LDL/VLDL,

monoglyceride, glycerol
Ketone bodies:

acetoacetate, ascorbate,
3-hydroxybutyrate

Analysis based on GOLD
stage, cachexia,

emphysema, diabetes,
patient location, age, sex,

and comorbidities

Ubhi et al., [15]

Control: n =30 (30 M),
Age:57,

BMI: 29.9
Patients: n = 30

GOLD IV
(30 M),
Age:65,

BMI: 26.2

Inclusion
Control: aged 40–75, current or
ex-smokers with >10 pack–year

history, postbronchodilator FEV1 <
80% of predicted

normal and FEV1/FVC ratio < 0.7.
Patients: smoking (≥ 10 pack–years)

and non-smoking (<1 pack–year).
Control subjects: aged 40–75 years

with normal lung function
(post-bronchodilator FEV1>85%
predicted and FEV1/FVC >0.7).

Serum Targeted
LC-MS/MS

glutamine, arginine, aspartate,
aminoadipic acid, proline,
leucine, valine, isoleucine,

g-aminobutyric acid,
a-aminobutyric acid,

4-hydroxyproline

Aminoacids profile
analysis based on weight,

BMI, age, and sex

Kilk et al., 2018
[16]

Control: n =21 (9M/12F),
Age: 37,
BMI: 24

Patients: n =25 (25M),
Age: 67,
BMI: 26

De novo phenotyping according to
characteristics, medication, and

co-morbidities pulmonary function

Blood/
EBC

Untargeted
HPLC-MS

carnitine, glutamine, histidine,
lysine, kynurenine, putrescine,

lysoPC

Analysis based on clinical
parameters and
metabolomics
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Table 1. Cont.

Study Subjects Criteria Sample Method Metabolites Confounders

Novotna et al.,
2018 [17]

Control: n = 10
(5M/5F),

Age: 61.5,
BMI: 25.3

Patients: n = 10
(5M/5F),
Age:55,

BMI: 27.1

Inclusion:
Patients: non-smokers or ex-smokers
>6 months, patients without acute

exposition to carbon monoxide,
COLD patients with

post-bronchodilator values
FEV1 < 60%.

Exclusion:
current smokers or ex-smokers

<6 months, with a known metabolic
disease or kidney disease, or

presence of coronary artery disease.

Blood Untargeted
HPLC-MS/MS

carnitine, phenylalanine,
tyrosine, carnitine/

acycarnitine, valine,
methionine, glycine, leucine,

isoleucine,

Analysis of different
metabolic profiles based

on age, sex, and BMI

Wang et al., 2013
[18]

Patients Phenotype E:
n =22 (20M/2F), Age: 73.64,

BMI: 21.21
Phenotype M:

n =28 (25M/3F), Age:70.18,
BMI: 19.65

Exclusion:
respiratory tract infection,

exacerbation of an airway disease in
the previous 3 weeks, associated

respiratory diseases, serious
cardiovascular disease, cancer,

cognitive impairment,
immunodeficiency, or unable to

complete protocol+D10

Serum Untargeted
NMR

ADP, guanosine, tyrosine,
uridine, maltose, sucrose,
L-threonine, D-glucose,
glycine, proline, betaine,

choline, malonate, L-lysine,
creatine, asparagine, aspartate,

succinate, pyruvic acid,
acetone, ornithine, L-alanine,

lactate, isopropyl alcohol,
L-valine, leucine

No information provided

Chen et al., 2015
[19]

Control:
Non-smokers:

n =37 (19M/18F),
Age: 39.5,
BMI: 26.6
Smokers:

n =40 (35M/5F), Age: 41.8,
BMI: 26.9
Patients
Smokers:

n =41 (38M/3F), Age: 53.2,
BMI: 25.6

Exclusion:
non-smokers with no prior exposure

to cigarette smoking
and no detectable nicotine

metabolites

Serum Untargeted
LC-MS

cotinine, 3-hydroxycotinin,
Quinic acid,

glycochenodeoxycholic acid
3-glucuronide, cysteinsulfonic
acid, glycerophosphoinositol,

phosphatidylinositol,
creatinine, myoinositol,

fibrinogen peptide B,
hydrophobic unknowns

Analysis based on
smoking status and

clinical lung function
parameters
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Table 1. Cont.

Study Subjects Criteria Sample Method Metabolites Confounders

Naz et al., 2017
[20]

Control:
Non-smokers:

n =38 (20M/18F),
Age M: 62,
Age F: 55.5,
BMI M: 25.6,
BMI F: 26.5

Smokers: n =40 (20M/20F),
Age M: 52.5, Age F: 54,

BMI M: 25,
BM1 F: 24.2

Patients:
Smokers: n =27 (15M/12F),

Age M: 61,
Age F: 59,

BM1 M: 24.2, BMI F: 23.5
Ex-smokers: n =11 (5 M/6 F),

Age M: 64,
Age F: 58,

BMI M: 29.1,
BMI F: 27.6

Inclusion:
Patients: no allergy or asthma

history, no use of inhaled or oral
corticosteroids, and no exacerbations
for at least 3 months prior to study

COLD patients and smokers
matched for smoking history and

current smoking habits

Serum Untargeted
LC-MS

Both sexes: citrate cycle,
glycerophospholipid
metabolism, pyruvate

metabolism
Sex-enhanced - female COLD:

Fatty acid biosynthesis,
sphingolipid metabolism

Sex-enhanced - male COLD:
cAMP signaling pathway,

retrograde endocannabinoid
signaling, tryptophan

metabolism

Sex-specific metabolomic
analysis

De Benedetto
et al., 2018 [21]

Patients:
Active Coenzyme Q10(QTer)

n =45(34M/11F),
Age: 73,

BMI: 31.2
Placebo:

n =45 (34M/11F),
Age: 73,

BMI: 29.6

Inclusion:
clinically stable, no COLD

exacerbation or hospitalization 4
weeks prior to enrolment, or

receiving bronchodilator treatment
Exclusion:

mechanical ventilation, uncontrolled
diabetes mellitus, severe heart, renal

or hepatic failure and current or
pre-existing malignant disease
within the 3 years, persistent

infections, chronic oral steroid or
immunosuppressive therapy, or

inability to complete tests and use of
statins or amino acid supplements

Plasma Untargeted
LC-MS

lysophosphatidyicholine,
phosphatidylcholine,

sphingomyelins
No information provided

Rodríguez et al.,
2012 [22]

Controls: n =12 (10M/2F),
Age: 65,
BMI: 26

Patients: n =18 (17M/1F),
Age: 68,
BMI: 24

Inclusion:
no COLD exacerbations, no oral

steroid treatment in the previous 4
months, all on bronchodilators and

inhaled corticosteroids, and no major
co-morbidities

Plasma Untargeted
NMR

glutamine, tyrosine, alanine,
valine, isoleucine, creatine,
creatinine, citrate, glucose,
lactate, succinate, pyruvate

No information provided
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Table 1. Cont.

Study Subjects Criteria Sample Method Metabolites Confounders

Hodgson et al.,
2017 [23]

HIV(+)COLD(+):
n =38 (27M/11F),

Age: 38.97
HIV(+)COLD(-):

n=40(29M/11F) Age: 38.93
HIV(-)COLD(+):

n =20 (18M/2F) Age: 48.18
HIV(-) COLD(-):

n =17 (15M/2F), Age: 55.91

Inclusion
HIV-positive controls: normal lung function,

matched on age, sex, region, and smoking status
HIV-negative controls: from the COPDGene

study, matched on lung function, age, sex, and
race

Plasma Untargeted
LC-MS/MS

ceramide, fatty acids,
diacyglycerol,

kynurenine/tryptophan ratio

HIV-associated
metabolomic analysis

Fortis et al., 2017
[24]

Stable COLD:
n =15 (6M/9F),

Age: 68,
BMI: 29.25
AECOLD:

n =12 (4M/8F),
Age: 73.1,
BMI: 28.8

CHF:
n =8 (3M/5F),

Age: 78.5,
BMI: 29.1

PNA:
n =9 (6M/ 3F),

Age: 65.7,
BMI: 29.8

Inclusion
Stable COLD:

COLD diagnosis,
smoking history, FEV1/FVC<lower limit of

normal, FEV1%predicted<60% on stable
respiratory condition

AECOLD:COLD exacerbation, >40 years old,
smoking history>20 pack-years with COLD, or

COLD confirmed with PFTs
CHF: Acute decompensate (systolic or diastolic)

heart failure, defined as change in baseline
dyspnea with evidence of fluid overload, elevated
natriuretic peptides, or known history of chronic

systolic or diastolic heart failure
PNA: Pneumonia, defined as new infiltrate on
admission CXR and symptoms consistent with
pneumonia: malaise, sputum production, fever

(T > 38.0◦C), and crackles in auscultation of lung
Exclusion: History

of both COLD and heart failure, admitted with
acute respiratory failure due to more than one

reason (e.g., COLD and CHF, COLD and PNA, or
CHF and PNA), previously diagnosed with

bronchial asthma, bronchiectasis, bronchiolitis
related to systemic pathology, cystic fibrosis,

obstructive sleep apnea, or upper
airway obstruction

Serum/ urine Untargeted
NMR

glycine, glutamine, alanine,
proline, glutamate, mannitol,

citrate, histidine, formate,
creatine phosphate

Metabolomic analysis
based on different clinical
characteristics of COLD

patients
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Table 1. Cont.

Study Subjects Criteria Sample Method Metabolites Confounders

Tan et al., 2018
[25]

Control: n =24 (14M/10F),
Age: 61.5,
BMI: 20.1
Patients:

Phenotype E:
n =20 (9M/11F), Age: 60.6,

BMI: 19.1
Phenotype M:

n =22 (14M/8F), Age: 62,
BMI: 19.8

Exclusion:
other diseases and use of other

medication
Serum Untargeted

NMR

Phenotype E vs. control:
lactate, fructose, glycine, creatine,

asparagine, citric acid, pyruvic acid,
pyruvate, proline, acetone,

L-glutamine, L-proline, ornithine,
lipid CH2CH2CO,

2-hydroxyisobutyrate, threonine,
isopropyl alcohol, pyridoxine,
maltose, L-threonine, L-valine,

glutamic acid, beta-alanine,
cyclopentane, 2-aminoisobutyric

acid
Phenotype M vs. control:

fructose, glycine, pyruvic acid,
pyruvate, proline, acetone, L-proline,

ornithine, lipid CH2CH2CO,
threonine,

isopropyl alcohol, guanosine, betaine,
N-Acetyl-Cysteine(NAC),lipoprotein,

L-alanine
Phenotype E vs. Phenotype M:

L-glutamine, L-alanine

Analysis based on lung
function,

serum samples, medical
history, age, sex, smoking,

physical
examination, and scores
of COLD assessment test

Yoneda et al.,
2001 [26]

Controls: n =30 (29M/1F),
Age: 64

Patients: n =30 (29M/1F)
Age: 64

Exclusion:
other causes of weight loss (diabetes,
endocrine disorders, malabsorption
syndrome, neoplastic, infectious or

liver diseases).
Inclusion:

Patients: receiving anticholinergic
drugs, no requirement of

supplemental oxygen, and no
treatment with glucocorticoids or

theophylline.
Controls and patients matched for

smoking habits

Plasma Untargeted
LC-MS

threonine, valine, leucine, isoleucine,
methionine, phenylalanine, lysine,

taurine, aspartic acid, glutamic acid,
glutamine, serine, proline, glycine,

alanine, tyrosine, ornithine, cysteine,
histidine, arginine, BCAA, AAA,

BCAA/AAA

Aminoacid analysis and
BCAA/AAA ratio
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Table 1. Cont.

Study Subjects Criteria Sample Method Metabolites Confounders

Singh et al., 2017
[12]

COLD patients:
Standard therapy: n =20 (20 M)

Age: 64.2,
BMI: 23.2

Standard+Doxy:
n =30 (30M)

Age: 67,
BMI: 22.7

Exclusion:
significant cardiac and other

co-morbidities, history of
exacerbations in the preceding 6

weeks, and history of doxycycline
intolerance or co-existing pulmonary
condition affecting the assessment or

intervention for COLD

Serum Untargeted
NMR

formate, citrate, imidazole,
lactate, L-arginine, fatty acid No information provided

Engelen et al.,
2000 [27]

Control:
Physically inactive: n=

15(10M/5F),
Age: 67

Physically active: n =7(7M),
Age: 63
Patients:

EMPH+ (with macroscopic
emphysema):

n = 12 (10M/2F), Age: 64
EMPH- (without macroscopic

emphysema):
n =15 (11M/4F), Age: 64

Inclusion:
Patients: chronic airflow limitation

(FEV1 < 70%),irreversible
obstructive airway disease (<10%

improvement of predicted baseline
FEV1 after inhalation of

b2antagonist), in clinically stable
condition and without respiratory
tract infection or exacerbation of
their disease for at least 4 weeks

before the study
Exclusion:

malignancy, cardiac failure, distal
arteriopathy, recent surgery, severe

endocrine, hepatic, or renal disorder
and use of anticoagulant medication

Muscle
biopsy/serum

Untargeted
HPLC

glutamate, glycogen, glucose,
pyruvate, lactate,
lactate/pyruvate

Analysis of physical
activity-dependent
metabolic profiles

Airoldi et al.,
2016 [28]

Controls: n= 11(4M/7F),
Age: 55.27

Patients:
n =11 (8M/3F),

Age: 53

Inclusion: protease inhibitor
genotype ZZ-α1-antitrypsin

deficient(PiZZ-AATD)patients with
pulmonary emphysema recruited

from the Department of
Pulmonology

of Leiden University Medical Center,
The Netherlands

Control group with non-smoking
healthy volunteers, with normal

spirometry results and no significant
history of respiratory diseases

EBC Untargeted
NMR

acetate, 2,3-butanediol,
propionic acid, lactate,

butyrate, acetone, benzoate,
fatty acid, formate, propylen

glycol, alanine, ethanol,
acetoion, isopropanol

No information provided

Abbreviations: GOLD: Global Initiative for Chronic Obstructive Lung Disease; BCAA: branch chain amino acids; AAA: aromatic amino acids; FEV1: forced expiratory volume in 1 second;
FVC: forced vital capacity; CXR: chest X-ray; COLDGene: Genetic Epidemiology of Chronic Obstructive Pulmonary Disease; Doxy: doxycycline; PFTs: pulmonary function tests; EBC:
exhaled breath condensate; NMR: nuclear magnetic resonance; LC-MS: liquid chromatography-mass spectrometry; HPLC-MS: high performance liquid chromatography-mass spectrometry.
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2. The Diagnostic Value of Metabolome in COLD

2.1. COLD Versus Healthy

There are two main analytical strategies used in metabolomics studies for the identification and
evaluation of biomarkers, the untargeted and the targeted metabolomics analysis. The main differences
between the two strategies are the level of sample preparation required, the number of the metabolites
detected, and the level of the quantification of the metabolites. The selection of the appropriate strategy
in each case is mostly based on these objectives [29]. More specifically, untargeted metabolomics is
used to detect unknown metabolites and unexpected changes in metabolite concentrations, being able
to measure a very large number of metabolites. They use a combination of multiple analytical methods
in order to maximize the number of metabolites detected and increase the coverage of the metabolome.
In untargeted metabolomics the sample preparation involves the extraction of the metabolites from the
biological sample into a solvent that is suitable for the analytical method used. The analysis of the
sample is performed with several analytical methods (such as NMR, LC-MS, or GC-MS), depending
on the sample type and the objective of the analysis. During the analysis, the peak area of each
metabolite that is recorded in the mass spectral analysis is selected, and statistical evaluation of the
peak abundances is performed in order to define significant changes between the metabolic profiles
of two or more groups under investigation [30]. The next step compares and assigns the signals
obtained, with metabolite IDs existing in metabolomics databases. This approach provides a relative
quantification of the metabolites, as the peaks obtained cannot be compared to calibration curves made
with chemical standards, which is necessary for full quantification. Finally, the biological importance of
each metabolite identified is determined by statistical analysis and biological interpretation. However,
although great progress has been made in expanding metabolomics databases with new metabolites, a
significant portion of signals detected in untargeted studies still cannot be identified due to the absence
of their spectra in the databases. Identification of unknowns is generally accepted as the bottleneck of
untargeted metabolomics.

On the other hand, targeted metabolomics aims to analyze specific metabolites and fully quantify
their changes. It analyses a group of a small number of metabolites that are chemically characterized,
predetermined, and involved in known metabolic pathways, providing their accurate identification
and quantification. In targeted metabolomics, only the metabolites of interest are retained during
sample preparation, while the rest of the biological species are removed. During the statistical analysis,
itis determined how well the selected metabolites contribute to the separation of the groups under
investigation, e.g., between the control and the phenotype of interest. As expected, data analysis and
biological interpretation is simpler in studies that use targeted metabolomics compared to those using
untargeted metabolomics. Moreover, targeted methods have a greater selectivity and sensitivity than
untargeted methods, as they can be performed only if a standard curve of the metabolite is available.
Finally, they perform full and accurate quantification of the selected metabolites by using internal and
chemical standards for each of the metabolite in the study [31].

Most of the metabolomic data obtained the past few years on COLD were based on untargeted
metabolomics studies aimed at the identification of unknown metabolites, serving as biomarkers.
In particular, untargeted metabolomic studies sought to identify specific biomarkers for COLD by
measuring differences in metabolites between healthy individuals and individuals with COLD. More
specifically, several studies showed that aminoacid metabolism, lipid metabolism, energy metabolism,
and oxidative stress pathways were disturbed in COLD patients compared to healthy controls.
One of the biggest clinical studies, with respect to the number of individuals involved, included
a control group of 66 healthy individuals and three groups of 70, 64 and 44 Global Initiative for
Chronic Obstructive Lung Disease (GOLD) patients with different stages of COLD (stage II, stage
III, and stage IV, respectively) [14]. In this study, NMR and LC-MS showed significant differences in
metabolites involved in aminoacid metabolism including glutamine, phenylalanine, 3-methylhistidine,
branched-chain amino acids (BCAAs) and glycine in the serum of COLD patients compared to the
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control group. Moreover, it showed differences in ketone bodies, lipoproteins, and creatine, which
is involved in energy metabolism. Following this, a targeted metabolomic study on aminoacid
metabolism showed increased glutamine, aspartate, and arginine in 30 COLD IV patients compared to
30 healthy individuals by LC-MS [29] confirming that pathways of aminoacid metabolism are often
affected by COLD.

Similarly, in 2018, studies using HPLC-MS showed altered aminoacid metabolism, including
decreased levels of the aminoacids arginine, proline, alanine, and phenylalanine. Moreover, the
free carnitine to acylcarnitine ratio which is important for energy metabolism was decreased, while
lysophosphatidylcholine, which is involved in lipid metabolism, was increased in the serum of COLD
patients compared with healthy individuals [16,17]. Consistently, differences in acetate, ketone bodies,
M-hydroxyphenylacetate, carnosine, pyruvate, phenylacetyglycine, 1-methylnicotinamide, creatinine,
and lactate, many of them involved in energy metabolism, were found in the urine of 32 COLD patients
compared with 21 healthy individuals, measured by NMR [18].

2.2. COLD Classification Based onGenetic and Environmental Factors

COLD is in many cases affected by environmental and genetic factors, a fact that makes the
discovery of its pathogenesis even more complicated. According to the World Health Organization
(WHO), several environmental factors cause COLD, such as air pollution, occupational dust, and
chemicals, and frequent lower respiratory infections during childhood. However, tobacco smoke is the
primary cause of COLD. Therefore, all the recent COLD studies assessing the effect of environmental
factors on the metabolic profile of patients are focused on tobacco smoke. For example, 37 healthy
smokers, 41 COLD-smokers, and 37 non-smokers participated in a study aimed at discovering serum
metabolic markers associated with early-onset COLD [19]. It was found that out of 1181 distinct
molecular ions detected in the sera of the subjects that participated in the study, 23 were differentially
expressed in COLD-smokers versus healthy smokers. These biomarkers included fibrinogen peptide
B, myoinositol, glycerophosphoinositol, fumarate, cysteinesulfonic acid, and creatinine that appeared
to be increased in the COLD-smokers compared with the healthy smokers and some peptides
with an undefined sequence that had chromatographic retention time consistent with fatty acids
and lipids, involved in lipid metabolism. Furthermore, it was found in another study on healthy
controls, healthy smokers, and smokers with COLD that fatty acids, sphingolipid pathways, and
cyclic adenosine monophosphate (cAMP) signaling were disturbed in COLD-smokers compared with
healthy smokers [20].

The only known genetic factor affecting COLD is ZZ-a1-antitrypsin deficiency which was
associated with changes in the pyruvate metabolism mediators including acetoin, propionate, acetone,
and propane-1,2 diol in the EBC from a group of ZZ-a1-antitrypsin-deficient COLD patients [28].

3. Matching the Right COLD Treatment to the Right Patient

In addition to the establishment of specific biomarkers necessary for prognosis and accurate
diagnosis of COLD, the analysis of the effect of different treatments on metabolites of COLD patients is
also of critical importance. COLD patients receiving standard therapy in combination with doxycycline
treatment presented disturbed levels of formate, citrate, imidazole, L-arginine, lactate, and fatty
acids compared with COLD patients receiving only the standard therapy measured in serum by
NMR [12]. Moreover, 90 COLD patients after supplementation with anti-oxidant QTer (co-enzyme Q10
supplement) and creatine presented different levels of lysophosphatidylcholine, phosphatidylcholine
and sphingomyelins in the plasma measured by LC-MS [21]. The authors concluded that the
intervention resulted in improved respiratory function and body composition possibly linked to the
changes in the metabolic profile. Finally, another intervention study analyzed the effect of endurance
exercise for 8 weeks on COLD patients compared with healthy subjects [22]. According to this study,
only the healthy group showed significant metabolic changes before and after training, including
an increase in aminoacids, such as glutamine, tyrosine, alanine, valine, and isoleucine, as well as
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creatine, succinate, pyruvate, glucose, and lactate measured in their plasma. On the other hand,
COLD patients showed only disturbed lactate levels in the plasma after exercise, supporting the
idea that plasma metabolic profiling combined with different interventions can contribute to the
phenotypic characterization of COLD patients and enhance our understanding of the involvement of
muscle dysfunction.

Phenotyping of COLD has been challenging for both researchers and clinicians due to the
heterogeneity of the disease. Thus, some studies have been focused on identifying different metabolic
biomarkers between different COLD phenotypes and pathological profiles [9]. For example, a study
comparing the plasma metabolites measured by LC-MS in 38 HIV-associated COLD patients with
38 healthy individuals, showed that kynurenine/tryptophan ratio, ceramide, and fatty acids were
increased in the patients while diacylglycerol was decreased [23]. Moreover, serum and urine samples
from stable COLD patients were compared with samples from acute respiratory failure patients caused
by COLD exacerbation, pneumonia, and heart failure [24]. As measured by NMR, several metabolites
including glutamine, alanine, proline, histidine, creatine, oxoglutarate, cis-aconitate, citrate, mannitol,
niacinamide, nicotinamide, and furoylglycine exhibited different levels between stable COLD patients
and patients with acute respiratory failure. These results suggest that discrimination between COLD
phenotypes caused by different pathogenesis is possible due to different metabolites being affected in
each case.

Another characteristic example of discriminating different COLD phenotypes based on
metabolomics is two studies on COLD patients with phenotype E and phenotype M. COLD phenotypes
E and M are two out of the three phenotypes that were identified according to the dominance
of emphysema and the presence of bronchial wall thickening based on high-resolution computed
tomography (HRCT). Phenotype E exhibits apparent emphysema without bronchial wall thickening,
while phenotype M exhibits apparent emphysema with bronchial wall thickening. These studies
showed disturbed levels of ADP, choline, glycine, threonine, proline, tyrosine, ornithine, L-alanine,
L-valine, L-leucine, fructose, pyruvate, and isopropyl alcohol in the serum measured by NMR in
both phenotypes [25,32]. L-threothine, creatine, citric acid, L-glutamine, maltose, ornithine, glutamic
acid, asparagine, betaine, cyclopentane, and pyridoxine were affected only in type E COLD, while
malonate, N-acetylcysteine, guanosine, and lipoprotein only in type M COLD. However, there is some
inconsistency in the metabolic profiles between studies on phenotype E and M COLD. For example,
guanosine appears perturbed in both phenotypes in one case [32] and only in type M in another
case [25]. Moreover, pyruvic acid is affected in both type E and M COLD in one study and only in
type E in another study. Such inconsistencies and discrepancies between metabolomic studies aimed
at the identification of biomarkers for the same disease are commonly seen in heterogeneous and
multifactorial diseases as the COLD.

4. Discussion

COLD is a chronic disease with various symptoms of the respiratory tract but also with a divergent
metabolic fingerprint. A great number of COLD patients suffer from cachexia or metabolic syndrome,
which has been strongly correlated to hospitalization and morbidity. The metabolic pressure in chronic
diseases has been supported by several researchers stressing the need to find tools that can detect
nutritional deficiencies, and metabolism disruptions that are related to the disease [33,34].

Untargeted metabolomic profiling of COLD patients has indicated several potential metabolite
biomarkers that participate in aminoacid metabolism, lipid metabolism, and energy metabolism, as
well as oxidative stress. From the pathways mentioned, the most commonly affected among the studies
was the metabolism of aminoacids (Table 1). Levels of glutamine, phenylalanine, 3-methylhistidine,
BCAAs, glycine, aspartate, arginine, alanine, cysteine, and ornithine were consistently affected in
COLD patients compared to healthy controls. The most consistent metabolic pattern of amino acids in
COLD includes reduced plasma levels of the BCAAs leucine, isoleucine, and valine, and a decreased
muscle glutamate concentration. The reduction in glutamate status was linked to reduced muscle
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glutathione levels and enhanced glycolysis which is evident from the increase in plasma lactate during
exercise in COLD patients [22,27]. Another COLD-associated metabolic pattern that is commonly
observed includes perturbed plasma levels of alanine, tyrosine, glutamine, aspartic acid, lysine, proline,
and ornithine in COLD patients compared with the control group (Table 1). These findings may
result from the fact that patients with COLD have increased resting energy expenditure (REE) and
are in a state of hypermetabolism, that is the increased consumption of calories per kilogram, to
cover the increased effort for respiration [35–37]. This is further supported by the finding that low
levels of BCAA/AAA (aromatic amino acids) and increased REE were significantly correlated with the
percentage of ideal body weight, percentage of arm-muscle circumference, and % FEV1, especially
in underweight COLD patients [26]. The authors suggested that disturbed aminoacid metabolism is
a characteristic of underweight COLD patients and may be linked to disease severity and reduced
respiratory muscle efficiency.

However, as already mentioned, there is some variability and inconsistency between the results
of different metabolomic studies on COLD that hampers the validation of biomarkers. This could
be explained due to different measurement techniques and standards used in each study, different
sample preparation, handling and processing conditions, different quality control samples and internal
standards, and different number of replicates used in each study that are rarely mentioned [12], different
characteristics of the subjects involved, including age, sex, physical activity, nutritional status, and
exposure to different environmental conditions, and very importantly the heterogeneity of COLD
with respect to the lung function and its pathogenesis [11,38]. In particular, the quality controls and
internal standards used among studies varied significantly, with some of the most commonly used
being, either a mix of known metabolites that were placed randomly in the MS run, or a mixture
of the sample with isotopically labelled internal standards of diagnostic metabolites, or a pooled
extract from all serum samples, for example, that was stored in single-thaw aliquots and used to
correct for potential day-to-day and batch-to-batch LC/MS data drift [17,19,23,24]. Intra-individual and
inter-individual variability is a major limitation of the studies that aim to find the metabolic signature
of COLD. Appropriate selection of patients, detailed medical, nutritional and lifestyle history, and
dosing treatment history are crucial in these studies. However, the collection and processing of this
large amount of data can be challenging for large studies. Thus electronic health records (EHR) can
be a very helpful tool of precision medicine [13]. In addition, the clinical interpretability of results
is affected by the sampling site. As has been discussed elsewhere, peripheral blood which the most
commonly used sample site, may not be representative for some diseases [39]. In COLD, analyzing
samples from different sites, e.g., bronchoalveolar lavage fluid (BALF), exhaled breath condensate
(EBC) and plasma can be very useful for the thorough characterization of the pathologic profile of each
patient [40]. Breath analysis has already provided promising results for infections and lung cancer
diagnosis setting the grounds for other diseases, including COLD [41].

The major problem of modern medical science, according to the medical doctor Seth J. Baum, lies
on the lack of communication between clinicians and researchers leading to the poor interpretability of
human studies [42]. In the case of metabolomics, most data are obtained from untargeted analysis in
patients compared to non-patients aiming to find “metabolic hits” that could be used to discriminate
the two groups. However, in a study by Kilk K and his team, it was shown that COLD patients were
discriminated from the control group only when results from the targeted analysis were assessed and
not the whole metabolic profile [16]. In particular, they integrated untargeted metabolomic data from
two different sample specimens (peripheral blood and EBC), demographic and clinical characteristics,
and targeted metabolomic analysis of peripheral blood. Combination of clinical/demographic and
untargeted metabolomic data was used in order to find associations between clinical/demographic and
metabolic parameters that would allow an attempt at de novo phenotyping of COLD. The authors
discuss that in addition to the targeted metabolic profile, clinical parameters could also discriminate
COLD patients from healthy participants which is reasonable considering that the COLD diagnosis is
based on these clinical parameters.
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As has been discussed elsewhere, biomarker discovery and validation should follow a multistep
approach using untargeted metabolomics for the initial screening followed by quantitative analysis
through targeted metabolomics and biological interpretation of the results [39] (Figure 2). Specifically,
untargeted metabolomics focuses on the global detection of small molecules in a sample and correlates
them to known libraries and databases. It is a pre-validation phase that is often performed in small
cohorts focused on the qualitative identification and relative quantification of the metabolites detected,
in order to generate a hypothesis which should be further validated by targeted metabolomics.
Following the pre-validation phase, targeted metabolomics focuses on the validation of an existing
hypothesis by measuring well-defined subsets of metabolites through their correlation with reference
standards [43,44]. It offers the opportunity of absolute quantification of the metabolites measured and
defines the metabolic pathway involved in the pathogenesis of a disease. This leads to the assessment
of biomarkers for prediction, prevention, and early diagnosis of a disease [45]. As a next step, the
longitudinal dynamic profiling of the identified biomarkers is crucial for their longitudinal validation
based on pharmacodynamics and pharmacokinetics. The biological interpretation of this data allows
the establishment of dynamic biomarkers that could predict and describe the inter-individual variation
in disease progression, treatment response, and clinical outcome. Finally, validation studies in larger
patient cohorts that assess the robustness of the discovered biomarkers are the last validation step
allowing their application in individualized clinical practice.Metabolites 2019, 9, x FOR PEER REVIEW 14 of 18 
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Figure 2. The steps of the discovery and validation of metabolomic biomarkers. Untargeted
metabolomics identifies candidate biomarkers using global databases which are introduced to the
validation stage. Initial validation is achieved with targeted metabolomics which is a quantitative
analysis of well-defined and pre-selected subsets of metabolites that leads to the generation of
biomarkers for prediction, prevention, and early diagnosis of a disease. Biomarkers for prognosis
and clinical outcome can be generated by integrating the metabolites from targeted metabolomics
in longitudinal studies. Large cohorts using these biomarkers can lead to further validation and
application to clinical practice.

Improvements and major future steps must be taken in the field of metabolomics in general,
regarding more reliable and precise metabolite identification, data analysis and interpretation of the
biological relevance of the biomarkers identified. As already mentioned, metabolite identification in
untargeted studies remains the main bottleneck in data analysis and interpretation [46]. In contrast
to genomics, there is a lack of metabolite databases with enough depth and breadth covering entire
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metabolomes and including all the molecular diversity that is available. There are two main types
of resource available in the field at the moment, databases of measurements and genome-based
metabolic reconstruction databases, but these do not fulfill the needs of metabolomics. To achieve
efficient metabolite identification, coordinated effort across research groups and countries worldwide
is required, with many resources and developments employed. This concerted effort is crucial to enrich
databases with long-term supported registries of tools and standards that will help researchers decide
which well-tested tools and standards to use for each purpose [47]. However, there is not only a lack
of metabolites’ profiles in the metabolomics databases, but there are also different confidence levels
provided by databases based on the structural identification of the metabolites [48]. To achieve the
highest confidence level, there should be authentic chemical standards available, that can be matched
to the data from the biological samples analyzed. However, this process is hampered by the lack
of availability of authentic chemical standards for many metabolites, a problem that can be solved
with the contribution of bioinformatics and chemoinformatics. Finally, interpretation of the biological
relevance of measured metabolites will be facilitated by the mapping of their chemical structures. This
can be achieved by using a combined multi-omics data integration approach, which could eliminate
the differences between different databases, as one may focus on the biological role of the metabolite,
while another on the metabolites’ chemical structure and properties.

The goal of precision medicine is to provide tailor made treatment for all, considering the
inter-individual variation in treatment response. Pharmacometabolomics is an emerging and rapidly
evolving field regarding the identification of metabolic biomarkers or networks that will facilitate the
treatment selection and appropriate dose. It was first introduced by Clayton et al., who developed a
predictive model based on the metabolic changes of rats after treatment compared to the pre-treatment
profile [49]. Today the scientific community focuses on the identification of metabolic biomarkers of
disease progression and treatment response which requires longitudinal studies able to capture the
dynamic metabolites combining pharmacokinetic and pharmacodynamics [27].

There is accumulating evidence which suggests that nutritional deficiency plays a key role in
COLD patients which partially explains the metabolic imbalances that are observed in the metabolomic
profile of these patients [50]. Although it remains to be unraveled to which extent these metabolic
alterations are the cause or a symptom of the disease, nutritional interventions have been suggested to
be beneficial. Intake of omega-3 polyunsaturated fatty acids has been shown to exert anti-inflammatory
effects in chronic respiratory conditions such as asthma and COLD [51]. For example, in a double blind
6 months Randomized Control Trial (RCT) on asthma we showed that fatty fish intake significantly
reduced the levels of the bronchial inflammation marker, eNO, which was correlated to the serum
increase of docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA), and omega6/omega3 ratio
reduction after the intervention [52]. Furthermore, the immune-modulatory effect of Vitamin D has
been shown to be important for the improvement of muscle weakness and exacerbation events in COLD
patients [53,54]. Therefore, metabolomics could be used as an assessment tool of the nutritional needs
of patients with COLD for interventional studies on the efficacy of nutrients on disease prevention
and treatment.

The outstanding advantage of metabolomics is that the clinical doctor will be able to provide
a personalized diagnosis and treatment according to the patient’s metabolic profile and not the
symptomatology [38]. There is growing evidence that chronic malnutrition is a common denominator
in many chronic diseases, including COLD, and our aim is to detect and target the metabolic pathways
that have been affected [17,55]. We intend to continue our research in this direction and determine the
metabolic fingerprint of COLD and other chronic diseases and provide evidence on the beneficial role
of nutritional intervention to the metabolic background of these diseases.

5. Conclusions

Overall, even if great progress has been made in the field of metabolomics for COLD diagnosis
and treatment, and a big range of metabolites are suggested as potential biomarkers for COLD most
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of them are still not validated. Common metabolic patterns of COLD patients include changes in
the aminoacid metabolism and the ratios of certain aminoacid groups such as the BCAA/AAA ratio.
These metabolic biomarkers have been associated with clinical symptoms, such as weight loss and
reduced % FEV1, contributing to the selection of the right specialized treatment for each clinical case.
However, large and longitudinal studies with a thorough analysis of the demographic variables of
patients and the metabolic profiles will facilitate the validation of these biomarkers. The majority of
the metabolomic studies were research-based, performing untargeted analysis of COLD patients and
ending up with a large amount of metabolomic data that was difficult for scientists and clinicians to use.
Tools of precision medicine, including HER and computational analysis, will help the management and
analysis of data, and pharmacometabolomics will bring precision medicine closer to clinical practice.
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