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Summary

 

Evidence accumulated over more than two decades has
implicated Ca

 

2+

 

 dysregulation in brain aging and Alzheimer’s
disease (AD), giving rise to the Ca

 

2+

 

 hypothesis of brain
aging and dementia. Electrophysiological, imaging, and
behavioral studies in hippocampal or cortical neurons of
rodents and rabbits have revealed aging-related increases
in the slow afterhyperpolarization, Ca

 

2+

 

 spikes and currents,
Ca

 

2+

 

 transients, and L-type voltage-gated Ca

 

2+

 

 channel (L-
VGCC) activity. Several of these changes have been asso-
ciated with age-related deficits in learning or memory.
Consequently, one version of the Ca

 

2+

 

 hypothesis has been
that increased L-VGCC activity drives many of the other
Ca

 

2+

 

-related biomarkers of hippocampal aging. In addition,
other studies have reported aging- or AD model-related
alterations in Ca

 

2+

 

 release from ryanodine receptors
(RyR) on intracellular stores. The Ca

 

2+

 

-sensitive RyR channels
amplify plasmalemmal Ca

 

2+

 

 influx by the mechanism of
Ca

 

2+

 

-induced Ca

 

2+

 

 release (CICR). Considerable evidence
indicates that a preferred functional link is present between
L-VGCCs and RyRs which operate in series in heart and some
brain cells. Here, we review studies implicating RyRs in
altered Ca

 

2+

 

 regulation in cell toxicity, aging, and AD. A recent
study from our laboratory showed that increased CICR plays
a necessary role in the emergence of Ca

 

2+

 

-related biomarkers
of aging. Consequently, we propose an expanded L-VGCC/
Ca

 

2+

 

 hypothesis, in which aging/pathological changes occur
in both L-type Ca

 

2+

 

 channels and RyRs, and interact to
abnormally amplify Ca

 

2+

 

 transients. In turn, the increased
transients result in dysregulation of multiple Ca

 

2+

 

-dependent
processes and, through somewhat different pathways, in
accelerated functional decline during aging and AD.
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Introduction

 

It has been over 20 years since it was initially proposed that

altered Ca

 

2+

 

 regulation might play a role in brain aging and

Alzheimer’s disease (AD) (Landfield, 1983, 1987; Khachaturian,

1984, 1989; Gibson & Peterson, 1987; Disterhoft 

 

et al

 

., 1994).

In brain neurons from aging rodents and rabbits, as compared

to neurons from younger animals, Ca

 

2+

 

 influx associated with

action potentials induces a larger Ca

 

2+

 

-dependent afterhyper-

polarization (AHP) (Landfield & Pitler, 1984; Kerr 

 

et al

 

., 1989;

Moyer 

 

et al

 

., 1992; Potier 

 

et al

 

., 1992; Disterhoft 

 

et al

 

., 1996,

2004; Stutzmann 

 

et al

 

., 2006) and impairs short-term synaptic

plasticity (Landfield 

 

et al

 

., 1986; Thibault 

 

et al

 

., 2001). Further-

more, these findings have been reinforced by studies showing

that pharmacologically isolated Ca

 

2+

 

 action potentials (Pitler &

Landfield, 1990; Disterhoft 

 

et al

 

., 1996), whole-cell Ca

 

2+

 

 currents

(Campbell 

 

et al

 

., 1996), and Ca

 

2+

 

 transients during repetitive

spike trains also are larger in hippocampal neurons from aged

animals (Thibault 

 

et al

 

., 2001; Hemond & Jaffe, 2005). Conversely,

Ca

 

2+

 

 influx via ligand-gated N-methyl-D-aspartate (NMDA)

receptor channels appears reduced in aged animals (Barnes 

 

et al

 

.,

1997; Magnusson, 1998; Shankar 

 

et al

 

., 1998).

Our studies on this general Ca

 

2+

 

 dysregulation hypothesis

have focused primarily on apparent excess Ca

 

2+

 

 influx via

voltage-gated Ca

 

2+

 

 channels (VGCC) (Landfield, 1996; Thibault

 

et al

 

., 1998). Studies of the L-type VGCC (L-VGCC) antagonist

suggested that the aging-related increase in Ca

 

2+

 

-mediated

responses might depend on greater activity through L-VGCC

(Moyer 

 

et al

 

., 1992; Campbell 

 

et al

 

., 1996). Increased L-VGCC

activity with aging was confirmed directly by single channel

recording in partially dissociated hippocampal slices (Thibault &

Landfield, 1996). Moreover, changes in L-VGCCs appear to be

functionally relevant, as L-VGCC antagonists improve learning

and memory in aged animals (Deyo 

 

et al

 

., 1989; Disterhoft 

 

et al

 

.,

2004) and some AD patients (Forette 

 

et al

 

., 2002). Furthermore,

the increase in L-VGCC density is positively correlated with

cognitive impairment in aged animals (Thibault & Landfield, 1996).

In addition to the accumulating evidence of increased Ca

 

2+

 

influx through L-VGCCs, there is also recent evidence that

altered function of intracellular organelles might play a critical

role in Ca

 

2+

 

 regulation during aging or AD (Toescu & Verkhrat-

sky, 2003). In particular, changes in intracellular Ca

 

2+

 

 release

from the endoplasmic reticulum (ER) appear likely to contribute

to brain Ca

 

2+

 

 dyshomeostasis, and have been associated with
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changes in [Ca

 

2+

 

]

 

i

 

. Therefore, in this review, we summarize several

lines of evidence implicating altered release from intracellular

stores in aging and AD, and attempt to integrate this evidence

with the role of Ca

 

2+

 

 influx in aging-related Ca

 

2+

 

 dysregulation.

 

Interactions between L-VGCCs and Ca

 

2+

 

-
induced Ca

 

2+

 

 release from the endoplasmic/
sarcoplasmic reticulum

 

Several comprehensive reviews have recently considered

mechanisms associated with Ca

 

2+

 

 sequestration and release by

the ER in both peripheral cells (Bootman 

 

et al

 

., 2001; Berridge,

2002; Carafoli, 2002; Fill & Copello, 2002) and in neurons

(Paschen & Mengesdorf, 2005; Verkhratsky, 2005). Accordingly,

only the points most relevant to ER function in brain aging are

briefly recapitulated here. Two distinct intracellular Ca

 

2+

 

 release

channels are present in several types of muscle and brain cells,

the inositol 1,4,5-trisphospate receptor (IP

 

3

 

R) and the ryanodine

receptor (RyR), each having multiple isoforms in different tis-

sues. These receptor channels function to amplify or trigger Ca

 

2+

 

rises initiated by either plasmalemmal Ca

 

2+

 

 influx or ligand bind-

ing, thereby inducing Ca

 

2+

 

 signaling cascades. Amplification is

achieved through either the actions of Ca

 

2+

 

-induced Ca

 

2+

 

release (CICR), provided by RyR, or actions of IP

 

3

 

-induced Ca

 

2+

 

release (IICR) through IP

 

3

 

Rs.

Originally described in skeletal and cardiac muscle cells, RyRs

in the membrane of the sarcoplasmic reticulum are an integral

and essential Ca

 

2+

 

 source for excitation-contraction coupling

(Endo, 1977; Fill 

 

et al

 

., 1989; Takeshima 

 

et al

 

., 1989; Meissner,

1994). Furthermore, an apparent direct physical interaction,

which favors alignment between L-VGCCs and RyRs, enables

L-VGCCs to function as a preferred source of extracellularly

derived Ca

 

2+

 

 in triggering CICR from RyRs and amplifying Ca

 

2+

 

transients (Lu 

 

et al

 

., 1994; Cheng 

 

et al

 

., 1996; Wang 

 

et al

 

., 2001).

In the brain, similar Ca

 

2+

 

 amplification functions of RyRs have

been identified, again mediated in part by a close juxtaposition

to L-VGCCs (Chavis 

 

et al

 

., 1996; Empson & Galione, 1997;

Borde 

 

et al

 

., 2000; Fagni 

 

et al

 

., 2000; Sukhareva 

 

et al

 

., 2002).

The other major source of intracellular Ca

 

2+

 

 occurs in response

to stimulation of IP

 

3

 

Rs by IP

 

3

 

 generated from activation of a

number of metabotropic G-protein-coupled receptors. In some

cases IP

 

3

 

Rs can also trigger Ca

 

2+

 

-sensitive K

 

+

 

 channels and

hyperpolarize neurons (Sawada 

 

et al

 

., 1987; Fink 

 

et al

 

., 1988;

Furuichi 

 

et al

 

., 1989; Zhang 

 

et al

 

., 1990; Berridge, 1993;

Khodakhah & Ogden, 1995; Irving & Collingridge, 1998;

Taylor 

 

et al

 

., 1999; Johenning 

 

et al

 

., 2002; Rossi & Taylor,

2004). Moreover, IP

 

3

 

Rs are also sensitive to Ca

 

2+

 

 concentrations

(Bezprozvanny 

 

et al

 

., 1991; Missiaen 

 

et al

 

., 1992; Tsukioka 

 

et al

 

.,

1994; Hagar 

 

et al

 

., 1998) and, depending on the cell type studied,

it appears that IP

 

3

 

R may also be favorably aligned with L-VGCCs

or metabotropic glutamate receptors (mGluR), through inter-

actions with the scaffold protein Homer 1a (Tu 

 

et al

 

., 1998; Fagni

 

et al

 

., 2000; Yamamoto 

 

et al

 

., 2005).

Release of Ca

 

2+

 

 from these two intracellular channels is

regulated in part by the Ca

 

2+

 

 concentration gradient present

between luminal ER Ca

 

2+

 

 and cytoplasmic Ca

 

2+

 

 (Alonso 

 

et al

 

.,

1999; Kiryushko 

 

et al

 

., 2002; Solovyova 

 

et al

 

., 2002) and is, thus,

also dependent on the Ca

 

2+

 

-refilling function of sarcoplasmic/

endoplasmic reticulum Ca

 

2+

 

-ATPases (SERCA). Sarcoplasmic/

endoplasmic reticulum Ca

 

2+

 

-ATPases maintain the relatively

high levels of Ca2+ in the ER (hundreds of µM) that serve CICR,

and IICR, and, in the process, contribute to the control and

reduction of cytosolic Ca2+ (Thastrup et al., 1990; MacLennan

et al., 1997; Mogami et al., 1998; Meldolesi, 2001; Berridge,

2002; Verkhratsky, 2004).

Dysregulated Ca2+ and ER function in models 
of ischemia and toxicity

Although cell culture models of Ca2+-dependent cell death are

generally not viewed as clear models of brain aging, or even

AD, they are often employed in studies of ischemic events.

These events increase in frequency with advancing age, and it

is also possible that neuronal vulnerability from such events

increases with aging. Therefore, examining the role of Ca2+

release from intracellular stores in cell death models may help

elucidate implications of aging-related alterations in intracellular

release. In particular, delayed toxicity after exposure to high

glutamate (GLU) in cell culture (excitotoxicity) is a common

model used to mimic a wide range of neurological insults,

including anoxia/ischemia, head and spinal cord trauma, and even

chronic neurodegenerative diseases such as AD. Dysregulated

Ca2+ homeostasis and altered Ca2+ influx through NMDA receptors

were identified as primary contributors to neuronal cell death

early in the study of excitotoxicity (Rothman & Olney, 1986;

Choi et al., 1987; Wahl et al., 1989; Regan & Choi, 1991;

Randall & Thayer, 1992; Dubinsky, 1993; Lu et al., 1994; Marks

et al., 1996; Tymianski & Tator, 1996; Toescu, 1998; Lee et al.,
1999; Limbrick et al., 2001; Lipton, 2004). In excitotoxicity mod-

els, Ca2+ dysregulation is frequently manifested as an irreversible

Ca2+ rise or slowed Ca2+ clearance, and is ultimately associated

with neuronal death.

Several investigations of excitotoxicity have focused on a

potential role of the ER in sustained Ca2+ elevations. These studies

have found that blocking CICR with high concentrations of

ryanodine, which lock RyRs in a low conductance state

(Bezprozvanny et al., 1991; Coronado et al., 1994; Humerickhouse

et al., 1994), or irreversibly inhibiting SERCA function and pas-

sively emptying ER stores with thapsigargin prior to GLU expo-

sure, reduces sustained Ca2+ plateaus, as well as other indices

associated with neuronal cell death (e.g. lactate dehydrogenase

(LDH) release) (Frandsen & Schousboe, 1991; Segal & Manor,

1992; Leski et al., 1999; Clodfelter et al., 2002). Similar results

have been noted in models of stroke and ischemia, particularly

in astrocyte preparations (Duffy & MacVicar, 1996; Kuwabara

et al., 1996; Verkhratsky et al., 1998; Aley et al., 2006). Some-

what paradoxically, while short-term ER Ca2+ depletion prior to

an insult appears protective against necrotic (excitotoxic) cell death,

long-term depletion of ER Ca2+ induces apoptosis, as indicated by

elevations of apoptotic markers, stress responses and disturbance
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in protein synthesis, and/or massive cell death (Doutheil et al.,
1999; Mengesdorf et al., 2001; Verkhratsky & Petersen, 2002;

Paschen, 2003; Verkhratsky & Toescu, 2003; Lindholm et al., 2006).

Thus, excessive release of Ca2+ from the ER may play an

important role in excitotoxicity. Moreover, evidence suggests

that such excessive release may be dependent on the relative

maturity of the cells. It is well established that embryonic cortical/

hippocampal neurons become increasingly vulnerable to GLU

toxicity after a few weeks in culture (Choi, 1992; Toescu &

Verkhratsky, 2000), an age in culture that coincides with the

emergence of sustained Ca2+ plateaus following GLU insult

(Attucci et al., 2002). Interestingly, ryanodine is particularly

effective in reversing the Ca2+ plateau and in providing neuro-

protection in older cultures (Fig. 1) (Clodfelter et al., 2002).

Moreover, recent evidence suggests that the lethal Ca2+ plateau

may be maintained by sustained Ca2+ influx via depolarized

NMDA receptors (Norris et al., 2006). Together, these data indi-

cate that the plateau may be sustained by CICR. Although age

in culture is clearly not equivalent to brain aging, it is associated

with increasing vulnerability and Ca2+ influx, which may model

some aspects of normal aging (Porter et al., 1997). Conceivably

therefore, if Ca2+ release from ER is altered with aging, this alter-

ation may develop in parallel with altered Ca2+ influx (Clodfelter

et al., 2002).

Ca2+ release from ER in models of AD

With the increasing development of transgenic (Tg) mouse

models of AD, numerous studies testing the view that altered

Ca2+ homeostasis might play a role in AD have recently emerged.

Initial studies in fibroblasts from AD patients (Gibson et al.,
1996) or in cells bearing the human presenilin 1 (PS1) AD muta-

tion (Begley et al., 1999; Guo et al., 1999; Leissring et al., 1999;

LaFerla, 2002; Stutzmann, 2005) found evidence of abnormal

Ca2+ release through IP3R pathways (Leissring et al., 1999).

Interestingly, abnormal IP3-mediated Ca2+ elevations in fibroblasts

have also been seen in asymptomatic members of AD families

(Etcheberrigaray et al., 1998).

Several studies also have implicated RyRs as being responsible

for enhanced intracellular release in PS1 mutated animals

(Chan et al., 2000; Mattson et al., 2000; Schneider et al., 2001;

Popescu & Ankarcrona, 2004; Stutzmann et al., 2006). Smith

and colleagues (2005) examined cultured cortical neurons from

mice bearing a transgene containing three AD-related muta-

tions (3×Tg mice), which develop both plaques and tangles, and

observed an increase in RyR expression along with greater Ca2+

efflux from the stores in response to caffeine (an agonist at the

RyR) (Smith et al., 2005). A recent study combining electro-

physiological and Ca2+ imaging methods in cortical slice neurons

from Tg mice bearing the PS1 mutation alone, or the 3×Tg trans-

gene, or nontransgenic control animals, assessed the effects of

aging vs. those of the PS1 mutation on ER release (Stutzmann

et al., 2006). This study found that the PS1 mutation is a critical

calciopathic mutation and that increased RyR expression is likely

a major factor in the AD mutation-mediated enhancement of

ER release. Although photolysis of IP3 was shown to evoke larger

Ca2+ transients and Ca2+-dependent hyperpolarizations in Tg

mice, the increase in IP3 effects was mediated by CICR from RyRs,

triggered in response to IICR. However, some puzzling results also

were seen. The enhanced IP3-mediated Ca2+ release and resulting

Fig. 1 Ryanodine protection of older cultured hippocampal neurons from excitotoxicity. Following a glutamate insult, older cultured neurons exhibit a sustained 
[Ca2+]i elevation leading to cell death. Confocal indo-1 Ca2+ imaging shows ryanodine facilitated the recovery (decline) of the Ca2+ plateau and protected older 
neurons following glutamate insult (modified from Clodfelter et al. copyright 2002 with permission from Elsevier).
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hyperpolarization was larger in Tgs than in non-Tgs at all ages

and did not change with aging in any Tg or non-Tg model. Con-

versely, the AHP induced by trains of spikes and VGCC activa-

tion increased with aging in all three model strains but did not

differ between Tg and non-Tg mice (Stutzmann et al., 2006).

While little is known regarding underlying mechanisms, it

appears that altered CICR, perhaps in combination with IICR,

confer some of the phenotypes of disrupted Ca2+ homeostasis

in neurons from 3×Tg mice. Still, other sources and mechanisms

likely also contribute. The PS1 mutation (which, alone, does not

induce amyloid plaques), in combination with amyloid precursor

protein (APP) mutations, increases Aβ production (Mullan &

Crawford, 1993; Price & Sisodia, 1994; Tanzi et al., 1996;

Holcomb et al., 1998; Selkoe, 1998). Some studies have found

that Aβ production can exacerbate Ca2+ responses to NMDA

or GLU exposure (Mattson, 1997). Furthermore, Aβ toxicity has

been attributed, in part, to effects on VGCCs (Davidson et al.,
1994; Weiss et al., 1994; Ueda et al., 1997; Ramsden et al., 2002;

Bobich et al., 2004; Webster et al., 2006), which could trigger

CICR from IP3Rs or RyRs (Koizumi et al., 1998; Ferreiro et al., 2004).

However, APP proteolysis (γ-secretase activity) alone does not

appear sufficient, because the PS1 mutation (rather than other

more amyloidogenic mutations) must be present for the Ca2+

dysregulation to occur (Stutzmann et al., 2006). A possible

alternative mechanism suggests that presenilins form Ca2+ leak

channels in ER membranes of mouse fibroblasts, independently

of γ-secretase activity. Mutations in presenilin interfere with this

leak function, and result in greater Ca2+ filling and release from ER

(Tu et al., 2006). Furthermore, a gene microarray study con-

ducted in autopsied hippocampal tissue from human AD patients

(Blalock et al., 2004) found that multiple genes encoding pro-

teins involved in ER receptor function, or in protein folding and

chaperoning, which are also mediated in part by the ER, were

down-regulated in incipient AD. These widespread changes may

reflect ER membrane/receptor instability in sporadic AD as well.

In addition, it should be noted that effects of PS1 mutations

on Ca2+ dysregulation have been observed to occur via other

processes, including capacitative Ca2+ entry (Yoo et al., 2000;

Smith et al., 2002; Herms et al., 2003; Zatti et al., 2006), changes

in mitochondrial potential (Begley et al., 1999; Ankarcrona &

Hultenby, 2002; Chan et al., 2002; Behbahani et al., 2006), and

L-VGCCs (Cook et al., 2005). Clearly therefore additional work

will be needed to resolve the relative contributions of the dif-

ferent sources to the Ca2+dysregulation seen in various models

of neurodegenerative diseases.

Neuronal ER release in normal aging

Electrophysiological markers of brain aging have been exten-

sively characterized in the hippocampal formation (Landfield &

Pitler, 1984; Moyer et al., 1992; Barnes, 1994; Thibault et al., 1998;

Norris et al., 1998; Disterhoft et al., 2004; Burke & Barnes, 2006),

a region well-established to be important for memory processes

and highly vulnerable to deleterious/degenerative changes with

aging. Many of the consistent biomarkers of aging, such as the

slow AHP (sAHP), are Ca2+-dependent or Ca2+-mediated.

However, it is important to assess the degree to which the ER

contributes to the established biomarkers of aging. Both CICR

and IICR pools exist within the ER of hippocampal CA1 and CA3

pyramidal neurons. The amount of Ca2+ released via CICR and

IICR depends on binding of intracellular ligands including Ca2+,

cyclic ADP ribose (cADPR), nicotinic acid adenine dinucleotide

phosphate (NAADP) or IP3 (Verkhratsky, 2005), and also

depends on the Ca2+ sequestering capacity of the ER, which

determines ER Ca2+ content ([Ca2+]L) (Verma et al., 1992;

Murayama & Ogawa, 1996; Dawson, 1997; Garaschuk et al.,
1997). Solovyova and colleagues using a dual indicator loading

technique (low affinity indicator for imaging Ca2+ in the ER, and

high affinity indicator for imaging Ca2+ in the cytosol) were able

to show that the resting [Ca2+]L in sensory neurons is in the

range of 200–300 µM, and high concentrations of IP3 or caffeine

result in approximately a 40% decrease in luminal Ca2+ (Solovyova

et al., 2002). Depolarization induced [Ca2+]L release was less

effective, ranging from 5 to 30 µM. Other techniques for imag-

ing Ca2+ within the ER include the use of aequorin or cameleons.

However, there are limitations with these techniques, as the

Ca2+ reporting proteins must be genetically engineered and

selectively targeted to the ER (Miyawaki et al., 1997; Alonso

et al., 1998; Solovyova & Verkhratsky, 2002). In addition, they

require long incubation times for transfecting and loading and,

thus, preclude their use in acute brain slices.

Consequently, there have been only a handful of studies in

neurons examining the effects of aging on ER Ca2+ concentra-

tion and release, or on RyR expression. Studies focusing on

measures of ER Ca2+ content have generally relied on the use

of single wavelength indicators to measure changes in [Ca2+]i
transients activated by caffeine, and have found varying results,

depending on the experimental approach or preparation. In an

early study, no net change in ER Ca2+ release with aging was

reported in synaptosomes from the whole brain (Martinez-

Serrano et al., 1992). More recently, acute dissociation of several

brain regions (cerebellar, basal forebrain, and hippocampal

neurons) from aged animals found that CICR magnitude was

reduced and that Ca2+ transients recovered more slowly

(Verkhratsky et al., 1994; Kirischuk & Verkhratsky, 1996;

Murchison & Griffith, 1999; Xiong et al., 2002; Alshuaib et al.,
2006). In studies focusing on RyR expression, no clear pattern

or consistent changes have been seen in neurons of normal

aging rats and mice. Two studies reported no change in brain

RyR expression during aging (Martini et al., 1994; Stutzmann

et al., 2006), although a recent study of peripheral neurons

found a transient elevation in protein levels (RyR3) in mid-aged

rats (Vanterpool et al., 2006).

Another approach to the investigation of the possible role of

the ER in brain aging is to examine the effects of aging on Ca2+-

dependent processes that are modulated, in part, by intra-

cellular Ca2+ release. In CA1 neurons, postsynaptic injection of

IP3 or of RyR inhibitors prevents the induction of long-term poten-

tiation and attenuates paired-pulse facilitation (Wang & Kelly,

1997). Similarly, bath application of thapsigargin or cyclopiazonic
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acid (blockers of SERCA) prevents the induction of long-term

depression in both single neurons and in field potential meas-

ures (Reyes & Stanton, 1996). High concentrations of ryanodine

also selectively reduce the sAHP and spike-frequency accom-

modation (Borde et al., 2000; Shah & Haylett, 2000). While

examining the effect of aging on long-term depression induc-

tion (Norris et al., 1998), Foster and colleagues recently reported

that cyclopiazonic acid, thapsigargin or ryanodine (agents that

reduce CICR) all prevented long-term depression in aged neu-

rons (Kumar & Foster, 2005). However, long-term potentiation,

which tends to be decreased with aging (Burke & Barnes, 2006),

was enhanced by high ryanodine concentrations in aged slices

(Kumar & Foster, 2004). Ca2+-dependent processes mediated

largely by IICR and mGluRs activation also have been shown to

change with aging. Compared to younger animals, type 1

mGluR activation results in a reduced phosphoinositide turnover

in aged rats, perhaps mediated by a reduction in phospholipase

C activity (Nicolle et al., 1999). Similarly, protein kinase C (PKC)

was also reported to show reduced activity in aging neurons

(Araki et al., 1994; Pascale et al., 1998).

Thus, the evidence on the nature of altered CICR or IICR in

neurons of normally aging mammals is somewhat inconsistent,

perhaps reflecting the type of preparation, cell or brain region

specificity, or the difficulty in imaging Ca2+ and its sources within

the intact hippocampal slice (Brown & Jaffe, 1994). Recently

therefore we sought to systematically test the contributions of

CICR to aging changes in one of the brain regions studied most

extensively in relation to aging (hippocampus). Specifically,

we tested the key prediction that, if increased CICR plays a

major role in normal brain aging, then blocking it with high

concentration ryanodine should reduce the aging differences

in multiple Ca2+ biomarkers of aging.

More broadly, in fact, several other important tenets of the

overall Ca2+ hypothesis have, for some time, required adequate

testing. These tenets and predictions include: (i) if a common

mechanism of Ca2+ dysregulation underlies many aspects of

brain aging, then multiple Ca2+-dependent biomarkers of aging

in the hippocampus should emerge at approximately the same

age in adulthood; and (ii) if Ca2+ dysregulation is a major factor

in cognitive decline then Ca2+ biomarkers should precede or

Fig. 2 Ryanodine reduces the slow 
afterhyperpolarization (AHP) in an age-dependent 
manner. (A) Representative example of the 
blocking effect of 20 µM ryanodine on the AHP 
of a 23-month-old rat CA1 neuron. (B) Age 
dependence of slow AHP (sAHP) amplitude, before 
and following ryanodine application. (C) Age 
dependence of slow AHP duration, pre- and 
postryanodine. (D) Age dependence of medium 
AHP (mAHP) amplitude, pre- and postryanodine. 
(E) Age-dependence measures of spike-frequency 
accommodation, pre- and postryanodine. * 
indicates a significant difference from the 
4-month-old group (P < 0.05). Note that aging 
changes in sAHP markers emerge at 12 months 
of age (preryanodine group), and ryanodine 
completely eliminates the aging effects (B and C), 
indicating a selective blockade of the aging-related 
increase in Ca2+-induced Ca2+ release (CICR). The 
initial mAHP is not modulated by CICR (A) and its 
age dependence was not altered by ryanodine (D). 
Action potential accommodation changes 
generally followed the sAHP pattern, but the aging 
effect at 12 months was not significant in this 
subset of cells (mean ± SEM) (from Gant et al. 
copyright 2006 with permission from the Society 
for Neuroscience).
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coincide with the earliest age of cognitive impairment, which

in some studies of rats has been as early as 12-months old

(approximately mid-life). To test these predictions and the

involvement of CICR on the emergence of Ca2+-related biomarkers,

we recently conducted an extensive age course study combining

electrophysiological and Ca2+ imaging techniques in hippocampal

slices from male rats. Animals at five age points were used to

identify the age of onset for three Ca2+-mediated markers of

aging, the sAHP, spike accommodation, and the synaptically

activated Ca2+ transient. A subset of hippocampal slices received

a high dose of ryanodine to block the contribution of CICR to

the overall Ca2+ response. In this study, we also employed the least

invasive procedures available (sharp intracellular electrodes

instead of patch clamping electrodes, nondissociated slices) to

minimize interactions of preparation trauma and age.

Results were consistent with the above predictions. That is,

ryanodine essentially eliminated aging differences in the three

markers (e.g. the sAHP, Fig. 2), and the three biomarkers were

first detectable simultaneously and at 12 months of age (Fig. 2),

an age range early enough to account for cognitive decline. The

ryanodine-sensitive component of the Ca2+ response (i.e. CICR)

during a 20-s train of synaptic spikes appears to be minimal in

young neurons compared to aged neurons and, notably, CICR

contributed most to the [Ca2+]i elevation during the first few

seconds of the train (Fig. 3). This rapid ‘booster’ action of CICR

on Ca2+ responses is consistent with its strong effect on the AHP

(Fig. 2) (Gant et al., 2006).

Thus, results of this large study provide considerable support

for the proposition that in the hippocampus, an aging-related

increase in CICR is necessary, from the onset, for the development

of aging changes in several Ca2+-related processes. Moreover,

the findings may help to resolve some of the contradictions in

the literature by elucidating the conditions under which the con-

tributions of CICR are most prominent. However, one apparent

paradox is that similar kinds of evidence support a critical role

for L-VGCCs in aging-related Ca2+ dysregulation (Thibault et al.,
1998; Disterhoft et al., 2004). Nevertheless, these two lines of

evidence are not necessarily contradictory, given that L-VGCCs

and RyRs appear to operate in series in many cell types. In this

view, then, Ca2+ influx via L-VGCCs may be the preferred

source for triggering elevated CICR in aging. Together, the data

suggest that aging changes in both types of channel may be

part of the same pathway of dysregulation, in turn, suggesting

the utility of expanding this version of the Ca2+ hypothesis to

incorporate the results on Ca2+ release from intracellular stores

(Fig. 4).

Conclusions and a new model of Ca2+ 
dysregulation in hippocampal aging

The work summarized above points to the following basic

conclusions:

1 Extensive evidence supporting the hypothesis that Ca2+ dys-

regulation contributes in part to brain aging and AD that has

accumulated for more than 20 years, some of it implicating a

larger Ca2+-dependent AHP and increased activity of L-type Ca2+

Fig. 3 Ryanodine-sensitive component of the [Ca2+]i rise during repetitive 
synaptic stimulation. Ca2+-induced Ca2+ release (CICR) contribution to the 
[Ca2+]i rise was determined by subtracting [Ca2+]i measures following ryanodine 
from those before ryanodine application (∆[Ca2+]i), in neurons from 4- and 
23-month-old animals during 20-s trains of 7 Hz suprathreshold synaptic 
stimulation. Values shown represent only the (CICR) component of the Ca2+ 
response that was blocked by ryanodine. Note that the ryanodine-sensitive 
component of [Ca2+]i is significantly greater in aged rat neurons and contributes 
to the Ca2+ response primarily during the first 5 s of stimulation. * indicates 
a significant difference from the 4-month-old group (P < 0.05). (mean ± SEM).

Fig. 4 Schematic model of alterations in L-type voltage-gated Ca2+ channels 
(L-VGCC) and Ca2+-induced Ca2+ release (CICR) that drive other Ca2+-related 
hippocampal biomarkers of aging. With aging, increased L-VGCC activity and 
enhanced CICR operate in series, amplifying the impact of Ca2+ influx on 
multiple Ca2+-dependent functions. The thickness of arrows schematically 
represents the activity of Ca2+ flux or signaling pathways in aged rat neurons 
(B) relative to young (A). These pathways are increased at several stages 
despite equivalent spike amplitudes and durations. Dashed arrows indicate 
a possible direct parallel contribution of L-VGCCs to [Ca2+]i (From Gant et al. 
copyright 2006 with permission from the Society for Neuroscience).
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channels in the functional and cognitive decline seen with normal

aging in mammals.

2 Elevated Ca2+ release from RyRs appears to contribute import-

antly to cell death and vulnerability in several models of toxicity,

which may have relevance to aging-associated ischemic events

or other degenerative conditions.

3 Some types of AD mutations (e.g. presenilins), but not all,

appear to alter RyR expression. Under some conditions, (e.g. IP3

stimulation and consequent CICR), this can result in elevated

intracellular Ca2+ release and greater hyperpolarization of

cortical neurons from transgenic mice of all ages. Surprisingly,

however, in the triple transgenic AD model, the aging-related

increase in spike train-induced AHP did not differ from the aging

change in the AHP seen in wild-type mice.

4 The observed contributions of altered CICR to Ca2+ dysregu-

lation in neurons during normal aging have been somewhat

inconsistent, apparently depending, in part, on cell type and

preparation, regional localization and possibly species. However,

our recent studies in hippocampal slices from rats of increasing

age (five age points) indicate that elevated CICR, beginning at

about 12 months of age, may be an important underlying factor

in the emergence of multiple Ca2+-related biomarkers of brain

aging in rats.

5 The apparent strong evidence linking both L-VGCCs and

RyRs to dysregulated hippocampal Ca2+ homeostasis during

aging, rather than being contradictory, may instead suggest an

expanded model of the Ca2+ dysregulation pathway in brain

aging and, perhaps in AD (as shown in Fig. 4). In this new

model, L-VGCCs and RyRs operate in series and aging changes

in both (or either) contribute to the aberrant amplification of

Ca2+ transients.
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