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Abstract: Lipid metabolism disorder (LMD) is a public health issue. Spirulina platensis is a widely
used natural weight-reducing agent and Spirulina platensis is a kind of protein source. In the
present study, we aimed to evaluate the effect of Spirulina platensis protease hydrolyzate (SPPH)
on the lipid metabolism and gut microbiota in high-fat diet (HFD)-fed rats. Our study showed
that SPPH decreased the levels of triglyceride (TG), total cholesterol (TC), low-density-lipoprotein
cholesterol (LDL-c), alanine transaminase (ALT), and aspartate transaminase (AST), but increased
the level of high-density-lipoprotein cholesterol (HDL-c) in serum and liver. Moreover, SPPH had a
hypolipidemic effect as indicated by the down-regulation of sterol regulatory element-binding
transcription factor-1c (SREBP-1c), acetyl CoA carboxylase (ACC), SREBP-1c, and peroxisome
proliferator-activated receptor-γ (PPARγ) and the up-regulation of adenosine 5’-monophosphate
(AMP)-activated protein kinase (AMPK) and peroxisome proliferator-activated receptorα (PPARα) at
the mRNA level in liver. SPPH treatment enriched the abundance of beneficial bacteria. In conclusion,
our study showed that SPPH might be produce glucose metabolic benefits in rats with diet-induced
LMD. The mechanisms underlying the beneficial effects of SPPH on the metabolism remain to be
further investigated. Collectively, the above-mentioned findings illustrate that Spirulina platensis
peptides have the potential to ameliorate lipid metabolic disorders, and our data provides evidence
that SPPH might be used as an adjuvant therapy and functional food in obese and diabetic individuals.

Keywords: Spirulina platensis protease hydrolyzate; peptides; lipid metabolism disorder; gene
expression; gut microbiota

1. Introduction

The improvement in living standards worldwide and the increasing intake of poor quality
food, at least from the nutritional point of view, have resulted in an increasing frequency of lipid
metabolism disorder (LMD) [1]. LMD is a risk factor for obesity, hyperlipidemia, hyperglycemia,
hypertension, fatty liver, cardiopathy, clinical syndrome, and other metabolic syndromes. It is also
one of the most threatening public health problems in the world [2]. According to the statistics of the
World Health Organization, the above-mentioned diseases are responsible for more than 18 million
deaths annually. LMD is characterized by high levels of triglyceride (TG), total cholesterol (TC),
and low-density-lipoprotein cholesterol (LDL-c), coupled with low levels of high-density-lipoprotein
cholesterol (HDL-c) [3]. Dysregulation of lipid metabolism in the liver induces abnormal accumulation
of lipids and the subsequent formation of lipid droplets, known as hepatosteatosis. Adipose tissue,
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an endocrine organ that secretes a number of adipokines known to mediate lipid metabolism,
inflammation, and insulin sensitivity, is also critical in metabolic control [4]. Due to the medical
importance of LMD, considerable research has been devoted to develop appropriate treatments.
Although several drugs have been approved by the US Food and Drug Administration to treat obesity,
their efficacy is often low and side effects are common [5,6]. Therefore, it is urgently necessary to
develop a well-tolerated treatment with minimal side effects for obesity.

Recently, hydrolysate from several plants has been reported to have LMD-preventing effects.
These plants include lucid ganoderma [7,8]. Several active anti-obesity ingredients present in plants
have also been identified, such as Kefir peptides from lucid ganoderma and peptide 2 from Grifola
frondosa. Many soy peptides have been identified to lower cholesterol and triglycerides, which can
suppress fat synthesis and storage in different experimental systems [9]. These plant extracts and
natural compounds have considerable potential to be further developed into effective therapies for
LMD [10].

Spirulina platensis, belonging to the family Oscillatoriaceae [11], grows naturally in alkaline
lakes [12], and it is a special formula consisting of active constituents, including minerals, vitamins
and proteins, beta-carotene, tocopherols, and phenolic acids, exhibiting high anti-inflammatory
and antioxidant activities [13,14], especially essential amino acids [15,16]. Therefore, it is used
as a food supplement for human and feed additives for many animal species as well as
birds and fishes. Moreover, Spirulina platensis and its highly active ingredient (C-phycocyanin)
exhibits anti-inflammatory, immunomodulatory, hepatoprotective, nephroprotective, neuroprotective,
antidiabetic, antigenotoxic, anti-hypertensive, and anticancer activities [17–20]. More recently, Spirulina
platensis has received increasing attention due to their potential biological activities, including
ACE-inhibitory, antioxidant, and LMD-preventing properties [21]. However, the effects of Spirulina
platensis protease hydrolyzate (SPPH) on dysregulated lipid metabolism in liver and adipose tissue of
diet-induced obesity have not yet been fully elucidated.

At the molecular level, the major transcription factors, such as PPARγ, SREBP-1c, and AMPK, have
been implicated in the regulation of obesity. Previous studies have shown that the down-regulation of
lipogenic proteins and up-regulation of lipolytic proteins mitigates obesity and dyslipidemia in a high
calorie diet-induced rodent model [22,23]. PPAR family plays an essential role in lipid metabolism
and is mainly expressed in adipose tissue, liver, and skeletal muscle, mediating obesity/anti-obesity
signaling events. PPARα regulates the metabolism of lipids, carbohydrates, and amino acids, and
it can be activated by ligands [24]. AMPK plays a significant role in lipogenesis and fatty acid
oxidation through inactivation of ACC and carnitine palmitolytransferase-1 [25]. SREBP-1c is an
important transcriptional factor involved in regulation of key enzymes of lipogenesis, including ACC
and FAS. Targeting lipid metabolism has been considered as a potential and alternative strategy to
combat obesity [26]. Several studies have shown that gut microbiota plays an important role in the
effect of hyperlipidemia. The disturbance of compositions of gut microbiota (the ratio of Firmicutes
to Bacteroidetes and endotoxin levels) can affect the gut barrier function and hepatic cholesterol
metabolism by several pathways [27–29]. Microbial species are associated with changes in blood lipids.
The abundance of particular bacterial genera is negatively correlated with the body mass index and
TG, but positively correlated with the HDL-c level. It is widely accepted that drugs can make changes
in the gut microbiota, leading to an impact on the body’s state.

In the present study, we investigated whether SPPH has an effect on diet-induced obesity. We also
measured body weight, serum index, liver index, the expressions of genes involved in adipogenesis,
and the compositions of gut microbiota.
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2. Results

2.1. Characterization of Potent Major Compounds

The peptide sequences of SPPH were identified (Table S1). Our study showed that 217 peptide
sequences were found from SPPH. Peaks were observed at different retention times ranging from
1.96 min to 9.93 min [30]. Representative chromatograms and MS/MS spectra of high and low
abundance peptides are shown (Figures S1–S6).

2.2. Effect of SPPH on Body Weight and Serum Lipids of HFD-fed Rats

Table 1 shows the changes in the body weight of the rats during the 8-week experimental period.
The average initial body weight was 223.52 ± 6.15 g, 224.28 ± 6.58 g, and 227.08 ± 9.84 g for NFD
(normal fat diet), HFD (high-fat diet), and SPPH (Spirulina platensis protease hydrolyzate) groups,
respectively. After a 4-week experimental period, the body weight of the HFD group was significantly
increased compared with the NFD group (Table 1). Moreover, there was a statistically significant
difference between the SPPH and HFD groups (p < 0.01). After 8 weeks, the average final body weight
was 374.58 ± 16.20 g, 412.05 ± 19.21 g, and 354.09 ± 13.11 g for the NFD, HFD, and SPPH groups,
respectively. The average body weight of the NFD, HFD, and SPPH groups was increased by 163.14 ±
14.82 g, 215.36 ± 23.70 g, and 169.83 ± 42.68 g, respectively. SPPH (150 mg/kg) significantly (p < 0.01)
reduced the body weight after 8 weeks of oral administration compared with the HFD group, while
there was no significant difference between the SPPH group and NFD group.

Table 1. Changes in the body weight of rats in the different groups during the experimental period.

Time
Weight (g)

NFD HFD SPPH

0 Weeks 223.52 ± 6.15 224.28 ± 6.58 227.08 ± 9.84
4 Weeks 382.69 ± 31.65 * 418.53 ± 18.48 # 363.02 ± 42.65 **
8 Weeks 374.58 ± 16.20 ** 412.05 ± 19.21 ## 354.09 ± 13.11 **

Weight gain 163.14 ± 14.82 ** 215.36 ± 23.70 ## 169.83 ± 42.68 **

Note: NFD, normal fat diet; HFD, high-fat diet; SPPH, Spirulina platensis protease hydrolyzate. NFD group, rats fed
with NFD and gavaged with 150 mg/(kg·day) normal saline. HFD group, rats fed with HFD and gavaged with
150 mg/(kg·day) normal saline. SPPH group, rats fed with HFD and gavaged with 150 mg/(kg·day) Spirulina platensis
protease hydrolyzate. Data are expressed as mean ± SD (n = 8). # p < 0.05, ## p < 0.01 vs. the NFD group; * p < 0.05,
** p < 0.01 vs. the HFD group.

At week 0, there was no significant difference in blood lipid levels among the groups. After
4 weeks, the levels of serum TC, TG, and LDL-c were significantly decreased in the SPPH group
compared with the HFD group (p < 0.01) (Figure 1A,B,D). The HDL-c level in the SPPH group was
significantly increased compared with the HFD group (p < 0.01) (Figure 1C). After 8 weeks, similar
findings were observed, showing that the levels of serum TC, TG, and LDL-c were significantly
decreased in the SPPH compared with the HFD group (p < 0.01) (Figure 1A,B,D). However, the HDL-c
level in the SPPH group was significantly higher compared with the HFD group after 8 weeks of SPPH
treatment (p < 0.01) (Figure 1C). The results showed that the SPPH treatment at a dose of 150 mg/kg
significantly affected the serum lipid profile.

2.3. Effect of SPPH on Liver Function and Hepatic Steatosis

To examine the effect of SPPH on biochemical changes, we determined the levels of TG, TC,
HDL-c, LDL-c, AST, and ALT in the liver. HFD significantly increased the levels of hepatic TG, TC,
LDL-c, AST, and ALT. After 4 weeks, the SPPH treatment group showed markedly reduced levels of
TG, TC, LDL-c, AST, and ALT in the liver (Figure 2A,B,D–F). In addition, after 8 weeks, the hepatic
HDL-c level in the SPPH group was decreased (p < 0.01) compared with the NFD group, while it was
increased by approximately 50% compared with the HFD group (Figure 2C). These results could be
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attributed to the ability of SPPH to effectively suppress accumulation of hepatic TG, TC, and LDL-c in
HFD-fed rats. Moreover, the levels of AST and ALT in the HFD group were significantly increased
compared with the NFD group, indicating that the rat model of liver dysfunction was successfully
established. However, SPPH treatment significantly reduced these two parameters (p < 0.01), indicating
that SPPH could effectively improve liver function.Int. J. Mol. Sci. 2018, 19, x FOR PEER REVIEW    4  of  18 
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Figure 1. Serum lipid levels of rats in each group during the experimental period. TG (A), TC (B),
HDL-c (C), LDL-c (D). Note: NFD, normal fat diet group; HFD, high-fat diet group; SPPH, HFD-fed
rats treated with SPPH; NFD group, rats fed with NFD and gavaged with 150 mg/(kg·day) normal
saline. HFD group, rats fed with HFD and gavaged with 150 mg/(kg·day) normal saline. SPPH group,
rats fed with HFD and gavaged with 150 mg/(kg·day) Spirulina platensis protease hydrolyzate. # p <
0.05, ## p < 0.01 vs. the NFD group; * p < 0.05, ** p < 0.01 vs. the HFD group.

H&E staining showed the effect of SPPH on HFD-induced lipid accumulation in the liver (Figure 3).
The liver color of the NFD group was red with a smooth surface, and the liver volume was moderate,
accompanied with normal tissue elasticity. Rats in the HFD group had a white and pink liver, as well
as a tense capsule with swelling tissue. Compared with the HFD group, the liver in the SPPH group
had a rosy color in varying degrees and a greater tissue elasticity. The histopathological examination
of the NFD group showed normal cell architecture, the liver cells had polygonal edges with clear
cell borders, and the nucleus was round and clear, which was located in the centre of the cell with
abundant cytoplasm. However, the HFD control group showed significant morphological changes with
greater hepatic lipid accumulation and fatty degeneration, and some cell nuclei apparently exhibited
a typical fatty degeneration. Most of the cells in the SPPH group were restored to the normal levels,
liver cell cords were arranged normally, and the overall cell degeneration was significantly improved.
The results showed that SPPH treatment had a better preventive effect.
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Figure 2. Hepatic lipid levels of rats in each group during the experimental period. TG (A), TC (B),
HDL-c (C), LDL-c (D), AST (E), ALT (F). Note: TG, triglyceride; TC, total cholesterol; HDL-c,
high-density-lipoprotein cholesterol; LDL-c, low-density-lipoprotein cholesterol. Data are expressed as
mean ± SD (n = 8). Data are expressed as mean ± SD (n = 8). # p < 0.05, ## p < 0.01 vs. the NFD group;
* p < 0.05, ** p < 0.01 vs. the HFD group.
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2.4. Effect of SPPH on the Expressions of Genes Involved in Lipid and Glucose Metabolism at the mRNA Level

To reveal the molecular mechanism underlying the effects of SPPH treatment, we analyzed the
expressions of genes involved in lipid homeostasis in the liver (Figure 4). We assessed hepatic levels
of lipogenesis-related genes (SREBP-1c and PPARγ), as well as fatty acid metabolism-related genes
(PPARα and ACC) in HFD-fed rats. Our data showed that the expression of SREBP-1c was significantly
decreased in the SPPH group compared with the HFD group. Of these genes, SREBP-1c and PPARγ
were the most significantly decreased ones in the SPPH group (p < 0.01) compared with the HFD group.
The expressions of PPARα and ACC, the genes involved in fatty acid β-oxidation, were significantly
decreased in the SPPH group compared with the HFD group (p < 0.01), which was similar to that
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observed in NFD-fed rats. Taken together, these results demonstrated that SPPH inhibited fatty acid
synthesis and activated fatty acid β-oxidation in the livers of HFD-fed rats.
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2.5. SPPH Modulates Gut Microbiota of HFD-Fed Rats

To investigate whether the gut microbiota profile was altered by SPPH treatment, we assessed the
dominant microbiota population in the NFD, HFD, and SPPH groups (Figure 5). As expected, at the
genus level, the alteration of gut microbiota composition by HFD feeding was significant (p < 0.0001).
The gut microbiota population of the SPPH group was also significantly different from the HFD group
(p < 0.05). In this study, Lachnospiraceae, Bacteroides, Lactobacillus, Alistipes, and Ruminococcaceae were
dominant genera presented in different groups. Through 8 weeks of SPPH treatment, the relative
abundances of Porphyromonadaceae, Lachnospiraceae, Prevotella, Ruminococcaceae, Bacteroides, Blautia,
Desulfovibrionaceae, Alloprevotella, and Porphyromonadaceae were significantly changed, and Ruminococcus
was the most prominently increased one after SPPH treatment at the genus level. Moreover,
the abundances of Allobaculum, Firmicutes, Clostridium_XlVa, and Lachnospiracea were decreased in
the SPPH group compared with the HFD group. In addition, the lower B/F ratio in the HFD group
was increased by SPPH treatment. These results suggested that HFD feeding could dysregulate gut
microbiota distribution, while SPPH treatment could partially restore the microbiota distribution to
the level of the NFD group.

2.6. Correlations of Biochemical Data and Key Phylotypes of Caecal Microbiota

To explore the interactive features between the lipid metabolism-associated parameters and gut
microbiota during the HFD-induced obesity development, correlation analysis was performed to
examine the possible connection between the abundance of gut bacteria and host metabolic parameters
(Figure 6). The microbes (such as Turicibacter, Romboutsia, Phascolarctobacterium, Erysipelotrichaceae,
Firmicutes, and Clostridium XVIII) that were significantly enriched in the HFD group were positively
correlated with the levels of serum TG, TC, and LDL-c, but negatively correlated with the serum
HDL-c level.
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Figure 5. Changes in the bacterial composition of rat intestinal contents according to different genera.
Composition of gut microbiota at the genus level.

The relative abundances of Porphyromonadaceae and Desuifovibrionaceae were positively correlated
with the serum HDL-c level, while Turicibacter was negatively correlated with the serum HDL-c
level. The relative abundances of Coprococcus, Erysipelotrichaceae, Blautia, Allobaculum, Bifidobacterium,
Romboutsia, and Phascolarctobacterium were positively correlated with the serum LDL-C level, and the
relative abundances of Barnesiella, Oscillibacter, and Paraprevotella were significantly negatively
correlated with the serum LDL-c level. Meanwhile, the serum TC level was positively correlated
with the relative abundances of Olsenella, Bifidobacterium, Romboutsia, and Phascolarctobacterium,
but negatively correlated with Barnesiella, Oscillibacter, and Paraprevotella. Interestingly, body weight
was positively correlated with Olsenella, Allobaculum, Bifidobacterium, and Phascolarcto, but negatively
correlated with Oscillibacter and Paraprevotella. Moreover, the serum TG level was positively
correlated with Romboutsia and Phascolarcto, but negatively correlated with Barnesiella and Paraprevotella,
suggesting that these bacteria constituted an important factor in the beneficial effect of SPPH.
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Figure 6. Statistical Spearman’s correlations between the caecal microbiota of significant differences
and lipid metabolic parameters in SPPH, HFD, and NFD groups. The intensity of the color
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MetS-associated parameters.

3. Discussion

As important components of metabolic syndrome, obesity and hyperlipidemia are present in
the majority of patients with cardiovascular and cerebrovascular diseases, resulting in high mortality
rates [31]. The prevalence of obesity in recent decades can be largely attributed to changes in food
habits and increased sedentary life style. Despite the rapidly growing recognition of hepatic steatosis,
therapy or prevention of the disease remains less available [32]. In view of the very limited availability
of FDA approved anti-obesity drugs and considering their side effects, it is quite necessary to find
novel and effective natural product-based drugs to combat obesity.

Among different targets to treat obesity, the ones that can interfere with the process of lipid
mobilization are fundamental [33–35]. Previous studies have shown that TC, TG, HDL-c, and LDL-c
are strongly correlated with the prevalence and incidence of metabolic syndrome and cardiovascular
diseases [36,37]. The serum LDL-C and TG levels are considered key risk indicators for atherosclerotic
cardiovascular disease [38]. An evidence-based study has also shown that lowering the serum LDL-C
and TG levels can effectively ameliorate the risk of vascular disease and reduce the incidence of
acute coronary events [39]. AST and ALT are investigated as markers of liver damage, regarding the
changes in lipid of HFD-fed rodents [40]. Measurement of liver damage caused by fat accumulation is
important for diagnosis of non-alcoholic fatty liver disease (NAFLD). Obesity causes altered function
of adipocytes, leading to expanded adipocyte mass and increased release of FFAs in the blood. Excess
accumulation of TG in the liver results in significant and more abundant lipid accumulation [41,42].
In our experiment, we established an animal model of HFD-induced obesity, which is considered to be
a good model as it has been reported to bear close resemblance to human obesity [43]. Consistent with
a previous study, we showed that HFD resulted in significantly increased body weight, elevated levels
of TC, TG, LDL-C, AST, and ALT, and decreased HDL-c level in serum and liver. Moreover, there were
fat accumulation and massive accumulation of lipid droplets in the liver. However, the weight-losing
effect of SPPH treatment was significant on HFD-fed rats, which might be associated with enhanced
energy metabolism [44]. These results provided new insights into the anti-obesity effect of SPPH.
In addition, SPPH treatment resulted in decreased levels of TC, TG, HDL-c, and LDL-c in serum and
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liver compared with the HFD group, which were similar to the levels of the ND group. Meanwhile,
SPPH treatment also resulted in a significant decrease in hepatocyte steatosis, lipid droplets, and
hepatic lipid accumulation. We showed a significantly increased number and size of fatty hepatocytes
upon HFD administration, while such changes returned to the normal levels in the SPPH group [45].
SPPH have anti-obesity and hepatoprotective capacities [46]. Previous studies have shown that body
weight is reduced by extracts of a few plant species, including leafs of Murraya koenigii and resin of
Commiphora mukul, in HFD-fed rats [47–50]. These results demonstrated SPPH could be used as an
effective agent in ameliorating the HFD-induced effects.

We investigated the expressions of several genes related to fatty acid transport (PPARα and
ACC) and lipid metabolism, including lipogenesis (SREBP-1c and PPARγ) and β-oxidation (AMPK),
to explore the possible mechanism of SPPH in decreasing accumulation of liver lipids. Several
studies have demonstrated that SREBP-1c, a major transcription factor involved in hepatic lipogenesis,
plays an important role, leading to increased fatty acid synthesis as a result of the induction of
ACC [51,52]. One study has reported that the expression of SREBP-1c is positively correlated with
the degree of hepatic steatosis in NAFLD patients [53]. Results of the current study showed that
the expression of SREBP-1c was significantly lower in the liver of the NFD group compared with
the HFD-fed rats. Consistent with a previous study, SPPH treatment effectively inhibited such
increased expression of SREBP-1c. The expression of SREBP-1c transcriptional target ACC was
strongly correlated with the SREBP-1c expression, suggesting that suppression of ACC contributed to
a reduction in lipid accumulation in fatty liver [51,52]. SPPH treatment decreased the HFD-induced
high expression of ACC. Taken together, these results demonstrated that SPPH down-regulated the
expressions of lipogenesis-related genes in HFD-induced fatty liver. Of particular importance, PPARα
is a ligand-activated transcription factor, and its activation induces the expressions of several genes
involved in fatty acid oxidation at the mRNA level to reduce the circulating lipid levels [54]. Meanwhile,
the activation of intestinal fatty acid oxidation by PPARα agonist bezafibrate suppresses postprandial
lipidaemia in rats [46], and PPARα reduces the plasma TG and TC levels. Our current results showed
that PPARα expression was significantly lower in the HFD group compared with the NFD group, while
it was increased by SPPH treatment. A recent report has indicated that PPARα also modulates the
expressions of lipogenic genes in liver, such as ACC, which are closely related to fatty acid synthesis
and oxidation in hepatic steatosis in HFD-fed animals [55]. Liver adipose tissues are associated with the
pathogenesis of metabolic syndrome [56]. Collectively, our results showed a significantly smaller liver
lipid droplet area in the SPPH group, accompanied by an increased expression of PPARα and decreased
expressions of SREBP-1c and ACC. Fat cell formation or adipogenesis is a differentiation process, by
which undifferentiated preadipocytes are converted in to fully differentiated adipocytes [57]. Adipose
tissue is a dynamic organ, the mass of which changes during a lifetime in response to metabolic
requirements of the animal, thus playing an important role in energy balance. Particularly, SREBP-1c,
one of the pro-adipogenic transcription factors, induces the PPARγ expression and regulates the
expressions of AMPK [58–60]. However, we clearly showed that administration of SPPH considerably
affected SREBPs. SREBPs are another family of transcription factors, but they are majorly involved in
the regulation of lipid homeostasis by activating the expressions of genes required for the synthesis
and uptake of cholesterol, fatty acid, and triglycerides. Previous studies have suggested that AMPK
plays a role in the physiological regulation of fatty acid and glucose metabolism as well as in the
regulation of appetite [61]. In our study, we found that AMPK was down-regulated in the HFD
group. However, such alterations in the HFD-fed group were considerably reversed by the SPPH
treatment. These results suggested that SPPH could decrease body weight and fat mass through
down-regulation of SREBP-1c and PPARγ, which in turn resulted in inhibited expressions of lipogenic
enzymes. Furthermore, we proved the anti-obesity activity of SPPH as evidenced from the reduced
size of adipocytes in the SPPH group. Previous studies have demonstrated the anti-diabetic and
anti-hyperlipidemic activities of elllagic acid, betulinic acid, and arjunolic acid from different plant
sources [62,63].
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Gut microbiota can directly affect blood cholesterol levels with its effects on the development
of atherosclerosis, and several studies have proved the effects of an HFD on gut microbiota [64,65].
We compared the faecal and caecal microbiota of rats in three different groups to elucidate the
precise underlying mechanism of improved hyperlipidaemia by SPPH. SPPH treatment increased the
abundances of Peptococcaceae, Prevotella, Alistipes, Porphyromonadaceae, Barnesiella, and Parasutterella.
Prevotella and Alistipes showed a negative correlation with the levels of serum TG, TC, and LDL-c,
while they were positively correlated with the serum HDL-c level. The enterotype-like clusters
driven by Alistipes and Prevotella (P-type) microbiota are characterized by a more conserved bacterial
community [66]. The latest study has shown that there is a positive correlation between bile acid
and Prevotella. Prevotella regulates lipid levels by altering the bile acid metabolism to change the
blood lipid levels [67]. Our findings were consistent with a previous study. The abundances of
Alistipes and Prevotella were increased by SPPH treatment. On the other hand, we know that the
genus, Barnesiella, a family of Porphyromonadaceae, is part of the gut microbiota. In addition to the
family, porphyrinaceae, the Bacteroidetes include the families, Bacteroidaceae and Prevotellaceae. Moreover,
Barnesiella spp. regulates the composition of microbiota and optimizes host survival [68]. Besides,
Alloprevotella and Ruminococcus were also enriched by SPPH treatment. These bacteria are short-chain
fatty acid (SCFA) producers and negatively correlated with NAFLD and LMD [69]. Anaerobic bacteria
are colonized in the cecum and colon, and they can ferment the non-digestible carbohydrate into
SCFAs, such as propionate and butyrate. The SCFAs can be directly absorbed by the intestine and
regulate the energy metabolism and insulin sensitivity of peripheral tissues via G protein-coupled
receptors [70]. In addition, our findings showed that SPPH decreased the proportion of Firmicutes
and increased the proportion of Bacteroidetes in caecal contents. These results were in accordance with
the theory that the proportion of body fat is positively correlated with the abundance of Firmicutes
in the gut microbiota in humans and mice. Besides, changes in body weight and serum LDL-c levels
were positively correlated with Firmicutes. There were increased proportions of Porphyromonadaceae,
which has been previously associated with NAFLD, atherosclerosis, and diabetes [71]. In addition
to the increase in health-promoting bacteria, a loss of HFD-enriched microbes (Clostridium XVIII)
was also observed in the SPPH-triggered alleviation of hyperlipidaemia. Turicibacter, belonging to the
phylum, Firmicutes, may have a negative effect on gut health and the metabolic parameters in serum,
such as TC and TG. Previous studies have shown that the abundance of Clostridium XVIII is increased
in individuals with gastrointestinal disorders and dysfunctions, and such increased abundance of
Clostridium may be induced by obesity-related metabolic disorders or pro-inflammatory responses [72].
However, the relationship between Clostridium XVIII and lipid metabolism remains largely unexplored.
Therefore, our data directly proved that the HFD could cause colonic pathology and inflammation in
HFD-fed rats, which might be associated with a proportional increase in Clostridium XVIII. In summary,
we provided convincing evidence for the potential use of SPPH in hyperlipidemia and demonstrated
that potent modulation of the intestinal microbiota during attenuation of metabolic disease was
associated with its beneficial effects. Figure S7 illustrates the mechanism by which SPPH reduced
blood lipid levels. SPPH had the potential to ameliorate LMD, in part through modulating specific gut
microbiota and regulating the expressions of the genes involved in lipid and cholesterol metabolism at
the mRNA level. Therefore, SPPH might be beneficial for anti-hyperlipidemia, leading to the reduced
risk of LMD.

4. Materials and Methods

4.1. Chemicals and Materials

In the present study, the air-dried and clean Spirulina platensis powder with a protein content of
60% was obtained from King Dnarmsa Spirulina Co., Ltd. (Fuqing, China). Protamex was purchased
from Suo Laibao Biotechnology Co., Ltd. (Beijing, China).
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4.2. Preparation of SPPH

Spirulina platensis powder and 95% ethanol (1:10, Wpowder:Vethanol) were mixed at 45 ◦C for 0.5 h,
the macerate was filtered through Whatman filter paper No 3, then the supernatant was discarded in
order to remove soluble substances in organic reagents, and the solid material was dried [73]. The dried
solid material was soaked in 55% ethanol at a ratio of 1:10 (w/v) at 45 ◦C for 0.5 h, the macerate was
filtered through Whatman filter paper No 3, the supernatant was then discarded in order to remove
soluble substances in organic reagents, and the solid material was dried. The dried solid material was
soaked in distilled water at a ratio of 1:10 (w/v) at 45 ◦C for 0.5 h, the macerate was filtered through
Whatman filter paper No 3, the supernatant was then discarded in order to remove soluble substances
in water, and the solid material was dried. The dried solid material was soaked in distilled water at
a ratio of 1:10 (w/v), and the pH was adjusted to 7.5 prior to the addition of protamex (E:S = 1:50)
(Enzyme: Substrate=1:50 (m/m)) and maintained at pH 7.5 and 45 ◦C. After 1 h, the hydrolyzed solution
was bathed in boiling water for 10 min to inactivate the enzyme [74]. The supernatant was passed
through a 100-µm mesh in order to remove solids in suspension. Subsequently, the supernatant was
concentrated at 6000 g and 4 ◦C for 30 min in order to remove undigested proteins and inactivate
the enzyme. Finally, the supernatant of SPPH containing the target Spirulina platensis peptides was
collected and stored at −20 ◦C prior to further analysis. The obtained dry substance was named
as SPPH. Meanwhile, Spirulina platensis peptides were prepared under the conditions as follows.
The peptide in the sample was dissolved, followed by a desalting procedure. First, 300 µL of 50 mM
ammonium bicarbonate was added to SPPH, the mixture was shaken and centrifuged at 12,000 g for
10 min, and the supernatant was transferred to a new EP tube. Then, 300 µL of 50 mM ammonium
bicarbonate was added to the sample, the peptide was reconstituted once, and the supernatants were
combined for two times. Second, 1 mL of 50% acetonitrile was added to the Bond Elut C18 desalting
column and allowed to flow slowly through the desalting column. The desalting column was washed
four times by adding 2% acetonitrile (0.1% formic acid) to a desalting column. The sample was made
up to 1 mL with 2% acetonitrile (0.1% formic acid) and loaded onto a desalting column. The desalting
column was washed four times with 2% acetonitrile (0.1% formic acid). The sample was eluted by
adding 700 µL of 60% acetonitrile (0.1% formic acid) to the desalting column, and the eluate was
collected. The sample after centrifugation and concentration was re-dissolved in the RPLC mobile
phase A (0.1% formic acid, 2% acetonitrile/water) and bottled for online HPLC-MS/MS analysis [74].

4.3. HPLC-MS/MS Analysis of SPPH

The liquid phase was an ultra-fast liquid chromatograph Nexera XR (Shimadzu Corporation,
Japan). The analytical column was a Waters BEH C18 column (1.7 µm, 2.1 × 50 mm) (Macherey-Nagel,
Düren, Germany). The mobile phase consisted of binary mixture of 0.1% (v/v) formic acid (solvent
A) and acetonitrile (solvent B). The flow rate was set at 0.3 mL/min. Elution gradient was as follows:
0–1 min: 5% B, 1–7 min: 5–60% B, 7–8 min: 60–80% B, 8–10 min: 5% B. The column temperature
was set at 35 ◦C. The injection volume was 10 µL. TripleTOF 5600 system (AB SCIEX) equipped
with a positive electrospray ionization source (ESI) was used. The MS parameters were set as
follows: Spray voltage of 5600 V, air curtain pressure of 35 PSI, atomization pressure of 55 PSI,
auxiliary gas of 50 PSI, ion source temperature of 500 ◦C, and solvent voltage of 100 V. The mass
spectrometry scanning mode was the information-dependent acquisition mode (IDA Information
Dependent Analysis). The first-level TOF-MS scanning ranged from 300–1500 m/z, the cumulative
time was 250 ms, and the maximum charge (2+ to 5+) was 35 for each IDA cycle and a secondary map
with a single-second count greater than 160 cps. The cumulative time for each secondary map was
60 ms, and the secondary mass spectrum scanning ranged from 100–500 m/z. Each cycle time was
fixed at 2.5 s. The collision chamber energy setting was applied to all precursor ion collision-induced
dissociation (CID), and the collision energy was automatically optimized. The dynamic exclusion
was set to 6 s. The original wiff map file collected by mass spectrometry was processed and searched
by PEAKS Studio 8 software (Bioinformatic Solutions Inc., Waterloo, ON, Canada). The databases
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were Spirulina platensis protein databases under Uniprot. The search parameters were set as follows:
Cysteine alkylation to iodoacetamide modification, trypsin digestion, primary mass spectrometry mass
tolerance was 20 ppm, secondary mass spectrometry was 0.1 Da, and peptide score (−10 lgP) greater
than or equal to 20 was considered reliable.

4.4. Animals and Experimental Design

Thirsty healthy male Wistar rats aged 4 weeks were taken from Shandong Laboratory Animal
Center of Shandong Academy (Shandong, China). All animal experiments procedures received
care according to institutional guidelines, and all of the experiments were approved by the Fuzhou
General Hospital Institutional Animal Care and Use committee. (IACUC approval no. CGU11-119).
The animals were housed in a temperature-controlled room at 25% and 60% relative humidity with ad
libitum access to food and distilled water and maintained on a reverse 12 h light/dark cycle during
the experimental period. After 1 week of the acclimation period, rats were randomly divided into
the following three groups stochasticly, normal fat diet (NFD) group (rats fed NFD, n = 8), high-fat
diet (HFD) group (rats fed HFD, n = 8), and SPPH group (HFD-fed rats treated with SPPH, n = 8),
by using a method described previously [75] Rats in the NFD group were given a basal diet (13.5%
energy from fat; Lab Diet 5001; Laboratory Rodent Diet), and rats in the HFD and SPPH groups were
given HFD (67% normal diet, 20% sugar, 10% lard, and 3% cholesterol). NFD and HFD groups were
fed basal diet and HFD with 2 mL 0.9% saline orally, respectively, while the SPPH group was fed HFD
with 2 mL SPPH extract (150 mg/kg·day) orally through gavage at the same time in the morning.
The compositions of the experimental diets were based on the AIN-93 semisynthetic diet (American
Institute of Nutrition, 1993, 1994).

4.5. Serum Samples Preparation

After 8 weeks of the experiment period, the rats were sacrificed following a 12 h fast and were
anesthetized by intraperitoneal injection using ketamine hydrochloride, blood was collected from the
heart, and the sample was transferred to a centrifuge tube. Serum was separated at 12,000 g for 10 min
at 4 ◦C and was then stored at −80 ◦C until analysed.

4.6. Liver Homogenate Preparation

Liver was dissected, weighed, and cut into several sections, washed in saline solution (0.1 g of liver
tissue was mixed with 0.9 mL of saline), dried, and immediately frozen and stored at −80 ◦C livers,
after snap-freezing in liquid nitrogen. After centrifugation at 8000 g for 15 min at 4 ◦C, the supernatant
was taken for analysis.

4.7. Biochemical Assays of Serum and Liver Tissue

The level of TC, TG, HDL-c, and LDL-c in rats’ serum using the assay kits (Nanjing Jiancheng
Institute of Biotechnology, Nanjing, China) [76]. The level of TC, TG, HDL-c, LDL-c, ALT, and AST
were measured in liver tissue using the corresponding assay kit. (Nanjing Jiancheng Institute of
Biotechnology, Nanjing, China).

4.8. Liver Histopathological Analysis

The liver tissues were removed from each mice and samples were subsequently fixed in 4% 128
(v/v) paraformal dehyde/PBS then treated with ethanol solution. After that, all liver samples were
fixed in paraformal dehyde and embedded in paraffin for staining with hematoxylin and 129 eosin or
Oil red O, respectively. The slices were sectioned at 5 µm. The sections were observed for morphological
evaluation at high magnification under an optical microscope (Nikon Eclipse TE2000-U, Nikon, Tokyo,
Japan) [77,78].
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4.9. mRNA Preparation and Gene Expression

Total tissue and cellular RNA was prepared by using Sepasol Super-I (Nacalai Tesque) according
to the manufacturer’s instructions. cDNA was synthesized using PrimeScript™ RT reagent Kit
with gDNA Eraser (Takara, Japan). RT-qPCR of AMPK-α, SREBP-1c, HMG-CoA, PEPCK, ACC,
and control β-actin use the SYBR® Premix Ex Taq™ II (Takara, Japan) to Monitor Gene Expression
Levels. Following is a list of specific primers: AMPK-α, 5′-ATTTGCCCAGTTACCTCTTTCC-3′, R: 5′-
GCTTGGTTCATTATTCTCCGAT-3′; SREBP-1c, F: 5′-GCTGTTGGCATCCTGCTATC-3′, R: 5′-TAGC
TGGAAGTGACGGTGGT-3′); HMG-CR, F: 5′-AGTGGTGCGTCTTCCTCG-3′, R: 5′-CGAATCTGCTG
GTGCTAT-3′); PEPCK, F: 5′-GAAAGTTGAATGTGTGGGTGAT-3′, R: 5′-TTCTGGGTTGATGGCCC
TTA-3′; ACC, F: 5′-ACACTGGCTGGCTGGACAG-3′, R: 5′-CACACAACTCCCAACATGGTG-3′, and
control β-actin, F: 5′-ACGTCGACATCCGCAAAGACCTC-3′, R: 5′-TGATCTCCTTCTGCATCCGGT
CA-3′. Amplifications were performed using the AB7300 Real-Time PCR system (Waltham, USA).
The conditions were as follows: Initial activation at 95 ◦C for 30 s, followed by 40 cycles of denaturation
at 95 ◦C for 5 s, annealing at 60 ◦C for 31 s, and extension at 72 ◦C for 30 s. All data indicating mRNA
expression levels are presented as a ratio relative to a control in each experiment Using an RNA
extraction kit (Takara, Tokyo, Japan) to extract total RNA from the liver tissues, determination of the
relative levels of target mRNAs was performed using the 2−∆∆Ct method and normalization [79].

4.10. Dynamic Profile of Intestinal Microflora in Response to SPPH

Caecal contents samples were collected at 8 weeks from rats from different groups, using
a QIAamp-DNA stool mini kit (Qiagen, Hilden, Germany) to extract Metagenomic DNA from
caecal contents of rats. The V3-V4 hypervariable regions of 16S rRNA gene from caecal microbiota
were amplified using specific primers (F: 5′-CCTACGGRRBGCASCAGKVRVGAAT-3′ and R:
5′-GGACTACNVGGGTWTCTAATCC-3′) [80]. Sequencing was performed using a 2 × 300 paired-end
(PE) configuration. Analysis was performed by MiSeq control software. The initial classification
analysis was conducted on an Illumina’s Base Space cloud computing platform.

5. Bioinformatics Analysis

High-quality sequences were assigned to samples based on barcodes. In order to study the
diversity information of species composition, the valid sequences were denoised. Results were
generated by using Usearch (Version 7.1, http://drive5.com/uparse/) with 3% disagreement [81].

6. Statistical Analysis

The data for each group was expressed as mean ± standard deviation (SD). Statistical significance
was measured using one-way analysis of variance (ANOVA). Statistical significance is expressed by a
p-value less than 0.05. Relationships between gut microbiota composition and biochemical indicators
in serum were determined using the Spearman’s rank correlation method.

7. Conclusions

Taken together, SPPH was able to affect the lipid metabolism of HFD-fed Wistar rats. After 8
weeks of SPPH treatment, body weight was increased, the levels of TC, TG, LDL-c, AST, and ALT in
serum and liver were elevated, the liver steatosis was reduced, and the level of HDL-c was induced.
Moreover, SPPH reduced the incidence of liver lesions and improved hepatocyte abnormality. SPPH
supplementation directly affected lipid metabolism in the liver by influencing relational mRNA
expression and affecting the gut microbiome by HFD-induced lipid metabolism disorder in rats.
Collectively, we, for the first time, characterized a new potential therapeutic role of SPPH. However,
we should conduct an in-depth analysis of changes in gut microbiota, and its underlying molecular
mechanism upon SPPH supplementation should also be further assessed.
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