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Abstract: 22 
 23 
Here we systematically studied the reproducibility of DEGs in previously published Alzheimer’s Disease 24 
(AD), Parkinson’s Disease (PD), and COVID-19 scRNA-seq studies. We found that while transcriptional 25 
scores created from differentially expressed genes (DEGs) in individual PD and COVID-19 datasets had 26 
moderate predictive power for the case control status of other datasets (mean AUC=0.77 and 0.75, 27 
respectively), genes from individual AD datasets had poor predictive power (mean AUC=0.68). We 28 
developed a non-parametric meta-analysis method, SumRank, based on reproducibility of relative 29 
differential expression ranks across datasets. The meta-analysis genes had improved predictive power 30 
(AUCs of 0.88, 0.91, and 0.78, respectively). By multiple other metrics, specificity and sensitivity of 31 
these genes were substantially higher than those discovered by dataset merging and inverse variance 32 
weighted p-value aggregation methods. The DEGs revealed known and novel biological pathways, and 33 
we validate the BCAT1 gene as down-regulated in oligodendrocytes in an AD mouse model. Our analyses 34 
show that for heterogeneous diseases, DEGs of individual studies often have low reproducibility, but 35 
combining information across multiple datasets promotes the rigorous discovery of reproducible DEGs.  36 
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Introduction 37 

As single cell RNA-sequencing (scRNA-seq) technologies mature to process clinical samples, an 38 
increasing number of studies are profiling tissue from a multitude of disease states to identify cell type 39 
specific transcriptional alterations associated with pathophysiology and general development. scRNA-seq 40 
case-control studies have generated data on a multitude of neuropsychiatric diseases, such as multiple 41 
sclerosis1-3 , schizophrenia (SCZ)4-6, major depressive disorder7, autism8,9, Parkinson’s disease (PD)10-15, 42 
alcohol use disorder16,17, Rett Syndrome18, vascular dementia19, and Huntington’s disease20-23, though all 43 
with relatively few individuals per study and often not in the same brain region. For Alzheimer’s Disease 44 
(AD) and COVID-19, however, scRNA-seq studies now have sample sizes in the hundreds24-27. These 45 
studies have uncovered known and novel biological pathways perturbed in these conditions that represent 46 
potential therapeutic targets. 47 
 48 

Nevertheless, there has been concern for possible false positive results in these studies28, and thus 49 
the statistical methodology required to perform case-control studies across multiple cell types remains an 50 
area of active interest29. Initial studies implemented case-control analyses by performing differential-51 
expression testing on individual cells. This approach treats each cell as an independent replicate, which 52 
fails to account for correlations across cells from the same individual and can lead to a large false-positive 53 
bias. Subsequent studies have dealt with these issues by using mixed models with individuals as a fixed or 54 
random effect26 or alternative regression models previously developed for bulk RNA-seq30 that can be 55 
used after pseudobulking clusters of single cells. Many of these methods can adequately control false 56 
positive rate and yet are sufficiently powered in analyses of simulated differentially expressed genes 57 
(DEGs). Nevertheless, there still has been substantial worry about potential false positives in DEG results 58 
due to technical artifacts or simply biological variation present in only small numbers of individuals 59 
(particularly for studies with smaller sample sizes). This issue is likely of particular relevance for many 60 
neuropsychiatric diseases due to the high transcriptomic heterogeneity of the brain at baseline31 and 61 
GWAS evidence for etiological diversity in many of these diseases32.  62 

 63 
 The field of human genetics, particularly genome-wide association studies (GWAS), can provide 64 
a model for the single-cell field in its high reproducibility33 and well-established meta-analysis methods 65 
for combining information across multiple datasets34,35. The typical GWAS meta-analysis usually applies 66 
an inverse variance weighting to aggregate the effect sizes and standard errors derived from each study to 67 
obtain final effect sizes and p-values for each genetic locus36. It is standard for new studies to have a 68 
separate test dataset to assess the reproducibility of significant genes found in the general analysis, testing 69 
for effect size and at least ensuring the same direction of effect in the test dataset. Now that many large-70 
scale case-control scRNA-seq studies have been undertaken for several diseases, the field is in a strong 71 
position to develop standardized meta-analysis methods that combine information across multiple datasets 72 
with the goal of finding genes with transcriptional expression (and later other epigenetic loci) robustly 73 
associated with disease. 74 
 75 
 In this study we provide a systematic approach in this direction by first examining the 76 
reproducibility of 17 AD, 6 PD studies, 3 SCZ single-nucleus RNA-seq (snRNA-seq) studies and, as a 77 
positive control comparison due to its known strong transcriptional response, 16 single cell RNA-78 
sequencing (scRNA-seq) COVID-19 studies. We find by several measures that a large fraction of the 79 
genes found to be differentially expressed in single AD and SCZ datasets do not reproduce in other AD 80 
and SCZ datasets, while genes found in PD and COVID-19 datasets have moderate reproducibility. To 81 
address this challenge, we introduce a new procedure for large-scale meta-analysis of scRNA-seq called 82 
SumRank that prioritizes the identification of DEGs that exhibit reproducible signals across multiple 83 
datasets and demonstrate that this approach substantially outperforms existing meta-analysis techniques in 84 
sensitivity and specificity of discovered DEGs. We demonstrate that SumRank identifies DEGs with high 85 
predictive power, reveals known and new biology, and can be adapted to identify sex-specific DEGs for 86 
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neurodegenerative disease. We use a mouse model of AD to validate a gene of particular interest and 87 
demonstrate for the first time that BCAT1 is down-regulated specifically in oligodendrocytes, pointing to 88 
diminished branched chain amino acid metabolism in this cell type. Finally, we assess factors that 89 
influence the reproducibility of an individual study’s results as a prospective guide for experimental 90 
design. Our work demonstrates the importance and potential for large-scale meta-analyses to draw robust 91 
biological conclusions, especially for neuropsychiatric disorders.  92 
 93 
  94 
Results 95 
 96 
Reproducibility of DEGs in individual datasets is poor in AD and SCZ and moderate in PD and COVID-97 
19 98 
 We first compiled data from 17 snRNA-seq studies of AD prefrontal cortex (Supplementary Data 99 
File 1). We performed standard quality control measures on each dataset (Methods) and then determined 100 
cell types by mapping them to an established snRNA-seq reference of human cortical tissue (motor 101 
cortex) from the Allen Brain Atlas37 using the Azimuth toolkit38, which returns consistent cell type 102 
annotations for all datasets at multiple levels of resolution (Figure 1). We then performed pseudobulk 103 
analyses for broad cell types, obtaining transcriptome-wide gene expression means or aggregate sums for 104 
each gene within each of the 7 cell types within each individual (aggregate sums were used for DESeq230 105 
analyses while means were used for all other analyses). We used these values to identify celltype-specific 106 
DEGs for AD vs. control samples in downstream analyses. Leveraging pseudobulk values removes the 107 
inherent lack of independence that characterizes multiple cells from the same individual, which would 108 
otherwise lead to substantial false positives for standard single-cell differential expression workflows. We 109 
also performed the same pipeline for 6 snRNA-seq studies of PD midbrain, determining cell types by 110 
mapping to the highest quality dataset (because there is no midbrain Azimuth atlas), and 3 snRNA-seq 111 
studies of SCZ prefrontal cortex. As a control experiment for a disease phenotype with a well-described 112 
and strong transcriptional response, we repeated this process for 16 scRNA-seq studies from PBMC 113 
samples from COVID-19 patients and healthy controls (Supplementary Data File 1 contains information 114 
about all datasets).  115 
  116 
 117 
 118 
 119 
 120 
 121 
 122 
 123 
 124 
 125 
 126 
 127 
Figure 1. Schematic of the procedure for obtaining differentially expressed genes. A) Schematic of mapping 128 
cells to determine cell types, pseudobulking, and obtaining cell type specific differential expression (some cell types 129 
are removed for clarity). Orange represents AD individuals or cells, and blue represents controls. The first two sets 130 
of dots represent cells while the third set of dots represent individuals (the sum or mean expression across all cells in 131 
a particular cell type for that individual). B) Example of a gene, LINGO1, previously highlighted as up-regulated in 132 
oligodendrocytes that was shown to not be up-regulated in most datasets. Values above the line (intercept=0, 133 
slope=1) are up-regulated, while values below the line are down-regulated. Error bars are standard deviations in all 134 
plots. Violin plots of the expression of LINGO1 in each individual across all datasets is shown in Supplementary 135 
Figure 1. 136 
 137 
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We evaluated the reproducibility of DEGs between diseased and control samples by calculating 138 
DEGs based on pseudobulked values for each cell type and utilized the DESeq230 package for DEG 139 
detection using a q-value based FDR cutoff of 0.05, because DESeq2 with pseudo-bulking has been 140 
shown to have good performance in terms of specificity and sensitivity relative to other methods39. 141 
Strikingly, when using this criterion over 85% of the AD DEGs we detected in one individual dataset 142 
failed to reproduce in any of the 16 others (Supplementary Table 1). Few genes (<0.1%) were 143 
consistently identified as DEGs in more than three of the 17 AD studies, and none were reproduced in 144 
over six studies. While we observed improved reproducibility in PD and COVID-19 datasets, we still 145 
failed to observe a single gene that was independently detected as exhibiting consistent cell type-specific 146 
differential expression in more than 4 of the 6 PD, 10 of 16 COVID-19, or 1 of the 3 SCZ studies 147 
(Supplementary Tables 2-4; note: the SCZ low overlap here was driven by having extremely few DEGs 148 
with this criteria, see Supplementary Note). 149 

 150 
We frequently observed that genes that were identified as DEGs in multiple studies tended to 151 

rank highly even in studies where they failed to pass the required threshold. For example, when we 152 
instead looked at the reproducibility of the top 200 genes for each cell type (ranked by p-values), some 153 
genes were found in up to 9 of 17 AD, 6 of the 6 PD, 11 of 16 COVID-19, and 3 of the 3 SCZ datasets 154 
(Supplementary Tables 5-8). This suggests that at least some of the variability in DEG identification is 155 
driven by a lack of statistical power for any individual study. This further highlights the limitation of 156 
depending solely on one study to reliably identify DEGs that will reproduce in other studies, especially in 157 
intricate diseases such as AD. Illustrating this, we examined the gene LINGO1, a negative regulator of 158 
myelination previously spotlighted as a crucial oligodendrocyte DEG in a recent AD review40. While we 159 
reproduced this finding in a few individual datasets, our broader analysis suggests that LINGO1 was not 160 
consistently up-regulated in oligodendrocytes in the majority of datasets and was even down-regulated in 161 
several studies (Figure 1 and Supplementary Figure 1), highlighting challenges associated with 162 
identifying bona-fide and reproducible DEGs. 163 

 164 
We also tested reproducibility by assessing the ability of the DEG sets from individual studies to 165 

differentiate between cases and controls in other studies. To standardize cross-dataset comparisons, we 166 
identified the same number of top-ranked DEGs (ranked by p-value without requiring an explicit FDR 167 
cutoff) and derived a transcriptional disease score for each cell type in each individual. We obtained these 168 
by leveraging the UCell score41—a method that determines the relative rank of genes compared to others 169 
in a dataset. Our findings revealed that the DEGs identified by any individual AD dataset were not highly 170 
effective in predicting case-control status in other AD datasets (mean AUC of 0.68) or SCZ datasets 171 
(mean AUC of 0.55), though we observed improved power for PD and COVID-19 studies (mean AUCs 172 
of 0.77 and 0.75, respectively) (Extended Data Tables 1-3, Table 1, Supplementary Table 9). Using a 173 
fixed FDR cutoff as an alternative for deriving transcriptional disease scores generally led to even poorer 174 
results (Supplementary Tables 10-12). However, we observed that DEGs identified by the 3 AD studies 175 
with a large number of individuals (>150 cases and controls each) exhibited superior predictive 176 
performance in alternative datasets (AUCs of 0.75 to 0.80) (Extended Data Table 1). 177 

 178 
We wanted to evaluate reproducibility on a per gene level rather than at only a combined gene set 179 

level, so we also tested the ability of individual DEGs to classify disease status for all samples across all 180 
studies. While the expected classification power for a single gene is expected to be low, we reasoned that 181 
the relative ranking of the genes could serve as an informative metric for evaluating different DEG sets. 182 
We therefore developed a single-gene metric of classification power (‘Relative Classification Accuracy’), 183 
which was the normalized AUC of an individual gene for predicting case-control status (see Methods for 184 
more details), and ranked the genes by this metric, naming the ranked list ‘RCA Gene List’. We identified 185 
the top 10% of genes in the RCA Gene List (1,520, 1,780, 1,107, and 1,742 for AD, PD, COVID-19, and 186 
SCZ, respectively), reasoning that bona fide DEGs should generally fall within this set. However, when 187 
returning to the sets of DEGs identified by individual datasets, we observed poor overlap within this list 188 
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(mean of 34%, 57%, 58%, and 37% for AD, PD, COVID-19, and SCZ). Even when examining the three 189 
largest AD datasets, we still observed poor performance for individual genes (37-51% in the top 10% of 190 
the RCA Gene List). Taken together, we conclude that analysis of individual datasets often fails to 191 
identify DEGs between cases and controls that reproduce in additional studies, and that this problem is 192 
exacerbated for diseases with more subtle or more heterogeneous transcriptional phenotypes such as AD. 193 
We therefore sought to explore approaches for meta-analysis that would leverage datasets from multiple 194 
studies to identify robust DEGs.  195 

 196 
Disease Gene Set Type Mean AUC when using 

DEGs as a Group to 
Predict Diagnoses of 

Left-Out Datasets 

Specificity: 
Percentage of 

DEGs in Top 10% 
of RCA Gene List 

Mean Relative 
Classification 
Accuracy of 

Individual DEGs 

Mean absolute log2fc of 
individual genes between 
cases and controls in each 

dataset 
AD Mean of Individual Datasets 0.67 34 43.4 0.15 
AD SumRank 0.78 73 64.4 0.33 
AD Merge 0.78 41 55.6 0.32 
AD Inverse Variance 0.74 21 43.6 0.20 
COVID-19 Mean of Individual Datasets 0.75 58 40.4 0.37 
COVID-19 SumRank 0.91 78 58.6 0.79 
COVID-19 Merge 0.90 72 57.0 0.97 
COVID-19 Inverse Variance 0.88 42 46.5 0.72 
PD Mean of Individual Datasets 0.77 57 53.0 0.31 
PD SumRank 0.88 87 71.0 0.52 
PD Merge 0.84 68 63.2 0.63 
PD Inverse Variance 0.85 57 57.6 0.41 
SCZ Mean of Individual Datasets 0.55 37* 44.3* 0.24 
SCZ SumRank 0.62 51* 53.4* 0.35 
SCZ Merge 0.52 23* 43.8* 0.26 
SCZ Inverse Variance 0.56 21* 38.4* 0.29 

 197 
Table 1. Comparisons of individual datasets and different meta-analysis methods in their predictive 198 
performances. For all analyses here the DEG lists included the same number of top genes (based on the number of 199 
SumRank genes with -log10(p-value) at a cutoff identified in the main text). RCA Gene List is the list of genes 200 
ranked by their individual ability to distinguish cases from controls in all datasets (see text and Methods for more 201 
details). Relative Classification Accuracy is the mean AUC of individual genes in their ability to distinguish 202 
diagnosis status in each dataset, normalized within each disease. Mean absolute log2fc were from comparisons of 203 
cases and controls in each dataset. * indicates that the RCA Gene List is likely less reliable in SCZ due to the low 204 
number of datasets. 205 
 206 
A non-parametric meta-analysis uncovers DEGs with strong reproducibility across datasets 207 
 We tested two standard meta-analysis strategies. As one approach, we merged pseudobulk 208 
profiles together from all datasets and then conducted a differential expression analysis using DESeq2 209 
while including the dataset ID as a batch covariate. As an alternative approach, we incorporated an 210 
inverse variance meta-analysis, a conventional approach for amalgamating GWAS summary statistics. 211 
For this, we fused the effect sizes and standard errors from each dataset’s DESeq2 results using 212 
metagen42. We used both approaches to calculate consensus DEG sets.  213 
 214 
 We found that the DEG sets identified by the merge and inverse variance strategies outperformed 215 
the DEG sets identified from individual dataset analyses. As an example, both methods correctly failed to 216 
identify significant differential expression for LINGO1. More broadly, the DEG gene sets had improved 217 
predictions of case control status in omitted datasets with mean AUCs of 0.78 and 0.74, respectively, for 218 
AD and similar improvements for PD and COVID-19. Yet, even with enhanced AUCs, numerous genes 219 
identified by the meta-analyses showcased limited specificity, with less than 42% ranking within the top 220 
10% of the RCA Gene list for AD (Table 1; Figure 2). When examining the reason for this low 221 
specificity, we found an inherent weakness with these approaches: if a gene was highly significant in a 222 
small minority of datasets it would often pass significance thresholds after meta-analysis, even if no 223 
signal was observed in the remainder of the studies. We conclude that meta-analysis can improve the 224 
robustness of DEG identification, but existing methods remain prone to false positive identification. 225 
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Figure 2. Schematic and results of the SumRank method. A) Cartoon of the SumRank method: scoring each 259 
gene based on the sum of their ranks across all datasets (see text and Methods for more details). B) Example of a 260 
gene (NAALADL1) putatively up-regulated in AD oligodendrocytes based on the Merge method that is likely a false 261 
positive (very low expression and high variance). C) Example of a gene (SNX33) putatively up-regulated in AD 262 
oligodendrocytes based on the Inverse Variance method that is likely a false positive. D) Example of a gene 263 
(RASGRP3) up-regulated in AD microglia based on all methods. E) Example of a gene (CAT) down-regulated in 264 
AD glutamatergic excitatory neurons based on the SumRank method that was not discovered by the Merge or 265 
Inverse Variance methods. Values above the line (intercept=0, slope=1) are up-regulated, while values below the 266 
line are down-regulated. Error bars are standard deviations in all plots. Violin plots of the expression of RASGRP3 267 
in each individual across all datasets are shown in Supplementary Figure 2. 268 
 269 

To address the issue of genes found with low reproducibility across datasets we developed a 270 
novel, non-parametric meta-analysis method, which we call SumRank, that explicitly prioritizes 271 
reproducibility across multiple studies yet does not impose strict statistical cutoffs for any individual 272 
study (Figure 2). This method takes the results of dataset-specific DE analysis, calculates ranks (p-value 273 
based) for each gene in each dataset, and sums these ranks together across datasets. The resulting sum 274 
reflects a statistic that prioritizes genes that consistently exhibit evidence of differential expression across 275 
datasets. Given that requiring strong signals across all datasets can be overly strict—especially with large 276 
dataset numbers—we adjusted the SumRank statistic to consider only the ranks from a percentage of 277 
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datasets. We set this percentage to 100% for meta-analyses based on fewer numbers of studies (PD and 278 
SCZ). For larger meta-analyses, we set this percentage based on cross-validation (65% and 55%, for PD 279 
and SCZ, respectively), but found that our results remained consistent regardless of the exact threshold 280 
selected (Supplementary Data File 2). While the theoretical distribution of the SumRank statistic follows 281 
the Irwin-Hall distribution (see Methods), using only a subset of datasets causes deviations from this 282 
distribution. To address this, we empirically modeled the distribution by performing 10,000 random 283 
permutations of case-control status. This allowed us to apply the identical differential expression and 284 
meta-analysis process to create a null distribution of SumRank statistics, which we used to compute 285 
empirical p-values. 286 

  287 
When we applied a Benjamini-Hochberg FDR cutoff of 0.05, we obtained 521 genes (394 up- 288 

and 127 down-regulated across 7 cell-types) as significant in AD, 1,597 genes in PD (1,540 up- and 57 289 
down-regulated across 8 cell-types) and 1,638 genes (1,432 up- and 206 down-regulated across 8 cell-290 
types) in COVID-19, but 0 genes in SCZ (Supplementary Data Files 3-5). With this cutoff some cell types 291 
had no DEGs, so we looked for uniform -log10(p-value) cutoffs that led to gene sets that maximized the 292 
ability to predict case-control status in left out datasets. We found that for AD a -log10(p-value) cutoff of 293 
3.65 produced 814 genes (502 up- and 312 down-regulated) with an AUC of 0.78, for PD a cutoff of 3.35 294 
produced 1,527 genes (1,232 up- and 295 down-regulated) with an AUC of 0.88, for COVID-19 a cutoff 295 
of 3.90 produced 937 genes (730 up- and 207 down-regulated) with an AUC of 0.91, and for SCZ a cutoff 296 
of 3.40 produced 98 genes (50 up- and 48 down-regulated) with an AUC of 0.62, all higher AUCs than 297 
those from individual datasets or either of the previously tested meta-analysis procedures. Most 298 
encouragingly, we found that more than 73% of the AD DEGs fell within the top 10% of the RCA gene 299 
list, suggesting high specificity for individually identified genes. For standardization, we used the same 300 
number of genes from the SumRank meta-analyses (814, 1,527, 937, and 98) for all other analyses 301 
reported in this paper. When thresholds based on corrected p-values of the meta-analysis outputs were 302 
used (either through Bonferroni or q-value based FDR), it was not possible to find uniform p-value 303 
cutoffs that allowed reasonable comparisons between the meta-analysis methods (in Extended Data 304 
Figure 1 we show plots with the q-value based FDR thresholds for AD). 305 

 306 
To assess whether clinical covariates affected reproducibility, we performed both DESeq2 and a 307 

logistic regression while regressing out all relevant covariates available for each dataset (sex, age, PMI, 308 
RIN, education level, ethnicity, language, age at death, batch, fixation interval, nCount_RNA, and 309 
nFeature_RNA). We did not observe any improvement in reproducibility with these analyses 310 
(Supplementary Table 13), suggesting that the datasets were generally well-controlled experiments with 311 
no systematic biases between cases and controls. We also performed analyses at an increased cell 312 
resolution, looking at more fine-grained subsets of the cortical neurons. We found 1,611 significant 313 
(FDR<0.05) DEGs (155 up-regulated and 1,456 down-regulated) across the 14 neural cell types and 1,408 314 
at a -log10p-value cutoff of 3.65 (330 up-regulated and 1078 down-regulated; Supplementary Data File 315 
2). The genes found at the broader neuron types were found repeatedly across the more specific types 316 
(e.g. ADAMTS2, SCGN, HES4, CIRBP, PDE10A, VGF), but the genes only found in the higher resolution 317 
types could represent true cell-type specific DEGs. However, when we used the more specific DEGs 318 
together with the glial genes we obtained slightly decreased reproducibility (AUC=0.77 for AD and 0.59 319 
for SCZ). We believe this is potentially due to the predictive signal now being diluted across more cell 320 
types (increased model parameters), less accurate cell-type mapping, or increasing missingness in the 321 
datasets at the higher cell resolution. We thus continued our subsequent analyses at the broader cell 322 
resolution. 323 
 324 

To more carefully benchmark SumRank against alternative methods for meta-analysis, we 325 
compared the AD DEG gene sets for each method. We first focused on the 81 genes found across all three 326 
methods (SumRank, merge, Inverse Variance), reasoning that this represented a gold-standard DEG set 327 
(example in Figure 2D and Supplementary Figure 2). Consistent with this, we found that these genes 328 
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tended to exhibit high Relative Classification Accuracy (Figure 3). They also exhibited medium-high 329 
levels of expression (suggesting that they could be accurately quantified in individual datasets), and high 330 
mean absolute log2(fold-change) in comparisons of case vs control status in each dataset. We next 331 
examined genes that were identified by only a subset of methods. For example, we examined the genes 332 
that were identified by either the merge or inverse-variance methods (or both), but not by the SumRank 333 
method. In contrast to our gold-standard gene set, these genes exhibited low RCA and reduced log2(fold-334 
change) (Figure 3). They also tended to be lowly expressed. Taken together, these results suggest that 335 
many of these genes likely represent false positives, and that the SumRank method correctly failed to 336 
identify them as DEGs. In contrast, the genes identified by SumRank (either exclusively or with one of 337 
the other meta-analysis methods) closely resembled the gold standard gene set. We conclude that the 338 
SumRank method exhibits superior performance by avoiding both false-positives and false-negatives, 339 
excluding genes that do not reproduce across multiple datasets but also sensitively identifying genes 340 
whose aggregate signal across multiple datasets is reliably supportive of differential expression between 341 
cases and controls. 342 
 343 

 344 
   345 
 346 
 347 
 348 
 349 
 350 
 351 
 352 
 353 
 354 
 355 
 356 
 357 
 358 
 359 
 360 
 361 
 362 
 363 
 364 
 365 
 366 
 367 
 368 
 369 
 370 
 371 
 372 
 373 
 374 
 375 
 376 
 377 
 378 
 379 
 380 
 381 
 382 

Mean Expression of Genes in 
Cases and Controls 

0.76 0.74 0.72 0.10 1.09 0.20 0.44 

Relative Classification Accuracy  73.3 60.5 68.2 39.4 62.0 36.4 44.5 
Percentage of Genes in Top 10% 
of Individual Gene AUC List 

85.2 66.7 74.3 20.0 71.8 9.5 24.5 

Mean abs(log2fc) of individual 
genes in comparisons of cases 
vs. controls in each dataset 

0.57 0.32 0.44 0.21 0.23 0.14 0.19 
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Figure 3. Sensitivity and Specificity of SumRank meta-analysis is better than merge and inverse variance 383 
methods. A) UpSet R plot43 showing intersection of AD genes discovered between the meta-analysis methods, the 384 
mean expression of the genes, relative classification accuracy (the normalized mean AUC of the individual genes in 385 
ability to predict diagnoses in all datasets), percentage of genes in top 10% of RCA Gene List, and mean abs(log2fc) 386 
from comparisons of cases vs. controls in each dataset. Color coding is based on the relative quality of the value, 387 
with green indicating the best values, orange indicating moderate, and red indicating poor. Comparisons of meta-388 
analysis methods in their B) specificity, as measured by the percentage of their genes that intersect with the RCA 389 
Gene List (at different thresholds) with the same number of genes used in all meta-analyses (based on the 814 390 
SumRank genes with -log10(p-value)>3.65), C) sensitivity, as measured by the percentage of the top 50 RCA Gene 391 
List genes found amongst the meta-analysis DEGs at different thresholds, and D) Relative Classification Accuracy, 392 
the mean AUC of individual genes in their ability to distinguish diagnosis status in each dataset (in this case 393 
averaged over all genes in the gene set). On the x-axes of B-D, the number of genes are spread evenly across up and 394 
down-regulated and all the different cell types. Similar plots for COVID-19 are shown in Extended Data Figure 6. 395 

 396 
Examining the AD SumRank gene sets, we found that microglia, oligodendrocytes, GABA-ergic 397 

neurons, and astrocytes exhibited a greater number of up-regulated genes compared to down-regulated 398 
ones. In contrast, glutamatergic neurons demonstrated more down-regulated genes than up-regulated, 399 
consistent with earlier findings44,45 (Figure 4, Extended Data Figures 2-3, and Supplementary Figure 6). 400 
For AD, we detected the highest number of up-regulated genes in astrocytes. In contrast, for PD the 401 
highest number of up-regulated genes were in oligodendrocytes. For all diseases, over 75% of the DEGs 402 
were restricted to a single cell-type (Supplementary Figure 6). When examining the correlations of -log(p-403 
value)s for each cell type, we observed that cell types with greater similarities showed higher correlation 404 
(Supplementary Figure 7). Furthermore, using the SumRank genes, we identified some predictive 405 
capacity for disease specificity (Braak score) within AD patients (r=0.32) when compared to separate 406 
datasets (mean r=0.12) (Supplementary Data File 3). However, we found no predictive ability related to 407 
COVID-19 severity (r=0.03) (Supplementary Data File 5). This was anticipated, as the severity of 408 
COVID-19 has minimal relation to transcriptional response46. 409 
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 410 
 411 
Figure 4. Manhattan plots of differentially expressed genes in AD, COVID-19, and PD. Significance threshold 412 
is in red with 0.05 FDR cutoff (Benjamini-Hochberg). In orange is a -log10(p-value) cutoff that maximizes AUC 413 
(3.65 for AD, 3.90 for COVID-19, 3.35 for PD; not shown if it is higher than the FDR cutoff red line). The x-axis 414 
are genes arranged in alphabetical order. Additional similar plots (including with SCZ) are found in Extended Data 415 
Figures 2-7 and Supplementary Figure 3-4. Supplementary Data Files 3-6 show all genes with their p-values. 416 

 417 
 418 
 419 

Interferon genes
A) COVID-19 Genes: Up-regulated in CD4 T Cells B) COVID-19 Genes: Down-regulated in CD8 T Cells

Ribosomal genes

C) AD Genes: Up-regulated in Microglia D) AD Genes: Up-regulated in Glutamatergic Excitatory Neurons

E) PD Genes: Up-regulated in Oligodendrocytes F) PD Genes: Down-regulated in Microglia
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Determining factors affecting reproducibility across diseases and datasets 420 
The SumRank approach outperformed other methods in the context of PD and COVID-19, as 421 

shown in Table 1 and Supplementary Figure 8. However, the margin of superiority was not as 422 
pronounced, likely due to the baseline increased reproducibility of PD and COVID-19 relative to AD. We 423 
thus sought to identify the factors underlying the differences in reproducibility between diseases. We 424 
restricted all AD datasets such that cases were only those with Braak scores of 5 or 6 and controls were 425 
only those with Braak scores of 0-2 to determine if patient selection was a major factor to reproducibility. 426 
The AUC with these selection criteria was 0.82, which, though higher than without these criteria, still was 427 
much lower than that of PD and COVID-19. Given Braak scores are an imperfect measure of disease 428 
severity (since some individuals without dementia can have high Braak scores), it is possible that other 429 
metrics could decrease patient heterogeneity and increase DEG reproducibility, but alternatively, this 430 
might point to a general principle that AD might have more biological heterogeneity than PD and 431 
COVID-19, with potentially more factors contributing to the final phenotype clinically diagnosed as AD. 432 
Most strikingly, SCZ had a substantially lower reproducibility than all other diseases (Supplementary 433 
Note), which could represent substantial heterogeneity in the brains of patient’s with SCZ4 due to inherent 434 
biology or different life experiences (e.g. more heterogeneous drug/medication use).  435 

 436 
We next examined transcriptional effect size to assess its role in reproducibility (Supplementary 437 

Figure 9). We found a significant (p=0.0001) positive correlation (Pearson’s r=0.72) between effect size 438 
(abs(log2(fold-change))) and reproducibility (average AUC for ability to predict case-control status in all 439 
datasets) for up-regulated genes, meaning that genes with more differentiation between cases and controls 440 
are discovered more regularly across datasets (though for unclear reasons we find no significant relation 441 
(r=0.04, p=0.86) for down-regulated genes). Consistent with this, PD and COVID-19, the most 442 
reproducible diseases, elicited the strongest transcriptional response, with mean abs(log2(fold-change))s 443 
of 0.93 (0.97 for up-regulated genes and 0.77 for down-regulated genes) and 0.86 (0.92 for up-regulated 444 
genes and 0.39 for down-regulated genes), respectively. In contrast, AD genes had a mean abs(log2(fold-445 
change)) of 0.49 (0.55 for up-regulated genes and 0.40 for down-regulated ones) and SCZ genes had a 446 
mean abs(log2(fold-change)) of 0.25 (0.16 for up-regulated genes and 0.35 for down-regulated ones). We 447 
examined the relationship of variance (normalized to effect size by dividing by log2fc) to reproducibility 448 
and found a small inverse correlation (r=-0.40; p=0.07) between variance/log2fc and average AUC for 449 
up-regulated genes (with down-regulated genes r=-0.03, p=0.89), providing suggestive evidence that 450 
reproducibility potentially increases with decreased variance.  451 

 452 
We then attempted to identify experimental design factors that increased the performance and 453 

reproducibility of DEGs within the same disease. We down-sampled the individuals in the Fujita, 454 
MathysCell, and Hoffman datasets to see how varying sample numbers influenced reproducibility 455 
measures. We did not discover any clear saturation point, suggesting that reproducibility might continue 456 
to increase with even more individuals (Supplementary Figure 7). This is consistent with our observation 457 
that for AD datasets there is a positive correlation of Relative Classification Accuracy with sample size 458 
(r=0.65, p=0.005; Extended Data Table 1). In contrast, when we down-sampled the Stephenson COVID-459 
19 dataset, reproducibility began to saturate at 70 individuals, and for the other COVID-19 datasets, 460 
sample sizes of only 7 cases and controls each had similar reproducibility as those with larger sample 461 
sizes (Extended Data Table 4). During this analysis we performed multiple random iterations of the same 462 
number of samples and observed that even at 160 samples (80 cases and 80 controls), there was 463 
substantial variability in reproducibility, showing the large impact of biological variability to 464 
reproducibility (Supplementary Figure 10). We also subsampled all AD datasets with sufficient sample 465 
size to 6 cases and 6 controls each and show that reproducibility is highly variable even at the same 466 
sample number (Supplementary Table 14). We then down-sampled the cell numbers of the AD datasets to 467 
assess its effect on reproducibility and found that reproducibility began to saturate around 0.05 to 0.1 468 
(Supplementary Figure 11). This suggests that particularly when doing analyses involving pseudo-bulking 469 
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of broader cell types, single-cell experiments should generally prioritize sequencing more individuals 470 
rather than more cells per individual.  471 

 472 
In addition to sample size, we noted that different studies used different phenotyping criteria to 473 

categorize diseased and control individuals. For example, the Hoffman study26 carefully selected AD 474 
individuals as those fulfilling a combination of neuropathological and clinical criteria. In contrast, the 475 
Fujita and MathysCell studies47,48 intentionally encompassed a broader range of intermediate phenotypes 476 
amongst their cases, likely reducing DEG detection power even with increased sample number. As a 477 
result, we found that the Hoffman dataset displayed the highest AUC of all individual AD datasets, driven 478 
not only by a large number of individuals, but also likely by the pronounced phenotypic contrasts that 479 
separate cases and controls.  480 

 481 
We down-sampled AD datasets starting from either the most or least reproducible and found that 482 

adding datasets with even low reproducibility continues to increase or maintain the same overall 483 
reproducibility of the meta-analysis DEGs, and even down to 3 datasets, the reproducibility of the meta-484 
analysis DEGs are higher than those of the individual datasets (Supplementary Tables 15-16) and higher 485 
than the reproducibility of the 3 SCZ datasets. Consistent with this, when we only analyzed the 11 AD 486 
datasets with at least 10 cases each the meta-analysis DEGs were not more reproducible than when all 17 487 
datasets were analyzed (Supplementary Table 13). We lastly performed a linear regression analysis of 488 
Braak Score on gene expression (while regressing out relevant covariates) to determine if reproducibility 489 
would improve with consideration of disease severity. Unfortunately, this did not improve reproducibility 490 
(Supplementary Table 13), potentially due to Braak scores being an imperfect correlate of disease 491 
severity. 492 
 493 
DEGs found in meta-analyses reveal known and novel biology 494 

We explored the biological pathways associated with the genes identified in our meta-analyses, 495 
initially utilizing gene ontology (GO) via ClusterProfiler49. In the context of COVID-19, there was an up-496 
regulation of many interferon genes in CD4 and CD8 T cells, dendritic cells, monocytes, and natural killer 497 
cells (Figure 4 and Extended Data Figure 6). This was mirrored in the GO pathways which highlighted 498 
processes like "response to virus", interferon response, and other related biological pathways 499 
(Supplementary Data File 7). We used gene sets generated from a new stimulation-based Perturb-seq 500 
experiment that provided more specific pathways than those generated by gene ontologies50 and found that 501 
the interferon-beta pathway in particular was up-regulated in COVID-19 cell types more than the interferon-502 
gamma, TNF-alpha, or TGF-beta1 pathways (Supplementary Data File 8). Natural killer cells displayed up-503 
regulated pathways linked to nuclear division and chromosome segregation, stemming from the activation 504 
of cell cycle genes during cell proliferation (Extended Data Figure 6; Supplementary Data File 7). B cells 505 
showcased elevated endoplasmic reticulum, protein folding, and protein modification pathways, which can 506 
be tied to the antibody production process. Across other cell types, there was a noticeable down-regulation 507 
of many ribosomal genes, captured under the "cytoplasmic translation" pathway, potentially as a measure 508 
to thwart viral RNA translation (Extended Data Figure 7). 509 

 510 
For PD, the biological pathways up-regulated were protein localization to the nucleus or 511 

mitochondria in oligodendrocytes and oligodendrocyte precursor cells and protein folding in 512 
oligodendrocytes, oligodendrocyte precursor cells, endothelial cells, and astrocytes (Supplementary Data 513 
File 7; Extended Data Figures 4-5), consistent with the known mechanism of Parkinson’s disease as the 514 
misfolding of alpha-synuclein, leading to aggregation of Lewy bodies and the subsequent destruction of 515 
dopaminergic neurons51. Interestingly, one of the top down-regulated genes in microglia in PD was PAK6 516 
(Figure 4), which is being targeted for PD therapeutics due to its role in phosphorylating LRRK2, a gene 517 
found to be mutated in sporadic and inherited PD that causes activation of microglia in the substantia nigra 518 
and subsequent death of dopaminergic neurons52. 519 
 520 
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For AD, the biological pathways were much less clear. In microglia, cytokine production and 521 
immune response pathways were up-regulated, and in endothelial cells, negative regulation of growth was 522 
up-regulated (Supplementary Data File 7). In astrocytes, amino acid catabolism was downregulated, and in 523 
glutamatergic neurons steroid processes were down-regulated. These pathways, however, were not 524 
consistent and were mixed with many other pathways of unclear relevance. The lack of clear ontology 525 
enrichments across multiple types in AD (as opposed to COVID-19 or PD) suggests that the underlying 526 
molecular causes of AD are likely to be complex and multi-factorial, and associated genes may not all be 527 
driven by a small set of underlying pathways that can be easily uncovered.  528 

 529 
Nonetheless, the SumRank meta-analyses still pointed to many genes with very clear 530 

reproducibility across a large majority of datasets that had not previously been highlighted by other AD 531 
papers in a cell type specific manner. For example, PDE10A was down-regulated in excitatory and 532 
inhibitory neurons (Supplementary Data File 3). PDE inhibitors have long been proposed for AD53, and 533 
PDE10A inhibitors have shown some improvement in AD symptoms54. We also observed downregulation 534 
of HES4 in inhibitory and excitatory neurons, HES5 in oligodendrocyte precursor cells, VGF in inhibitory 535 
and excitatory neurons, and microglia, and VEGFA in oligodendrocyte precursor cells, all of which are 536 
involved in neuron55-57 and endothelial growth58. Similarly, SPP1, a gene associated with synapse loss59, 537 
was up-regulated in endothelial cells and glutamatergic neurons, while ADAMTS2, a gene that breaks 538 
down extracellular matrix in the brain60, was up-regulated in glutamatergic neurons. Together, this 539 
suggests that AD pathophysiology might involve inhibition of growth pathways, and therapeutics aimed 540 
at increasing these factors might be useful51. The importance of G protein mediated signaling and amino 541 
acid and nucleotide metabolism dysregulation in AD was demonstrated by the fact that RASGRP3 and 542 
DPYD were up-regulated in microglia and SLC38A2 was upregulated in oligodendrocytes, while 543 
ARRDC3 was down-regulated in astrocytes and BCAT1 was down-regulated in oligodendrocytes. Lastly, 544 
we observed that the CAT gene was down-regulated specifically in glutamatergic excitatory neurons (in 545 
the SumRank analyses but not in the merge or inverse variance analyses; Figure 2E). Catalase activity had 546 
previously been shown to be decreased in AD due to amyloid-beta61, and a catalase derivative has been 547 
proposed as a possible therapeutic for AD to decrease oxidative stress from free radicals62. These analyses 548 
suggest that CAT is specifically down-regulated in glutamatergic excitatory neurons and not GABAergic 549 
inhibitory neurons or other cell types, consistent with the observation that excitatory neurons have 550 
increased oxidative stress and die at higher rates in AD. 551 

 552 
Our approach of focusing on reproducible genes and predicting phenotypes in leave one out 553 

analyses provides some internal validation for our genes, but we wanted to compare to an independent 554 
system of AD. We thus performed experimental validation of one of the SumRank DEGs using the 555 
5xFAD mouse line, which is a well-known model of late-onset AD63 that overexpresses a mutant human 556 
amyloid-beta precursor protein, harbors multiple AD-associated mutations in human presenilin 1, and has 557 
been shown to have many phenotypic similarities to humans with AD, including amyloidosis and 558 
behavioral impairment. We looked to test a gene that was significant in the SumRank but not merge or 559 
inverse variance methods and that had potential therapeutic relevance but with no prior known cell type 560 
specific data. We thus chose the BCAT1 gene, which we found only by SumRank (not merge or inverse 561 
variance) to be down-regulated in AD oligodendrocytes and is a cytosolic amino acid transaminase in 562 
both humans and mice. We performed multiplexed immunohistochemistry (IHC) staining on slices of the 563 
medial prefrontal cortex for BCAT1 and measured the degree of staining in CC1 SOX10 double-positive, 564 
mature oligodendrocytes. We found that the 5xFAD mice had significantly lower BCAT1 expression in 565 
oligodendrocytes (Figure 5), demonstrating for the first time in both humans and mice that BCAT1 has 566 
oligodendrocyte-specific decreased expression in AD and pointing to oligodendrocyte-specific 567 
manipulation of branched chain amino acid metabolism as a potential therapeutic for AD64.  568 
 569 
 570 
 571 
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 608 
Figure 5. Experimental validation of a meta-Analysis AD DEG in a mouse model. A) Schematic of experiment 609 
measuring cell-type specific expression in the medial prefrontal cortex of 5xFAD mice from 8-10 months old. B) 610 
Expression of BCAT1 in oligodendrocytes in human postmortem snRNA-seq datasets. Values above the line 611 
(intercept=0, slope=1) are up-regulated, while values below the line are down-regulated. Error bars are standard 612 
deviations in all plots. C) Protein expression of BCAT1 in oligodendrocytes of 5xFAD and WT mice obtained by 613 
quantifying the mean fluorescent intensity (MFI) expressed as fold change (FC) over WT animals (n=7 WT, 11 614 
5xFAD mice). Data represented as mean ± s.e.m. Results are significant at p=0.0026 (students two-tailed unpaired t-615 
test). D) Representative multiplexed immunohistochemistry (IHC) staining of cortical slices from a 5xFAD mouse 616 
of BCAT1 and 2 oligodendrocyte specific markers (SOX10 and CC1) along with the merged image (Scale bar=50µM 617 
large images, 10 µM insets).  618 
 619 
 We assessed the intersection of the 708 unique AD DEGs at the 3.65 -log10(p-value) cutoff with 620 
genes found in the largest AD GWASs65-67 and found 9 unique genes out of the 105 genes in GWAS to be 621 
shared (Supplementary Table 10; p=1.3e-4, Fisher’s exact test). When we looked at the intersection with 622 
AD whole-exome studies68-70, 4 of the 28 genes were shared (p=1.1e-4, Fisher’s exact test). Of the 1187 623 
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unique PD DEGs at the 3.35 -log10(p-value) cutoff, there were 6 unique genes out of the 72 genes in PD 624 
GWAS71 shared (p=2.0e-05). Despite this indicating a statistically significant enrichment, it still 625 
represents a relatively minor overlap, suggesting that the genetic variants underlying predisposition to AD 626 
are often not the same as the genes whose expression are altered downstream of individuals with multiple 627 
years of AD (though with the caveat that some of the genes chosen to represent the GWAS variants might 628 
not be accurate given the connection of genetic variant to genes is often not clear). Lastly, we looked at 629 
the overlap of AD and PD genes and found 116 shared up-regulated genes and 15 shared down-regulated 630 
genes (Supplementary Data File 6). It is possible that some of these shared genes represent a common 631 
neurodegenerative biological pathway, but no significant GO enrichment was found. 632 
 633 
Adaptation of non-parametric meta-analysis method uncovers sex-specific DEGs 634 
 The female sex-bias in AD72 motivated us to search for genes with sex-specific expression such 635 
that they were only up-regulated in one of the sexes. We performed two types of analyses to assess for 636 
sex-specific expression (Figure 6). In our first analysis we used DESeq2’s interaction term 637 
(SEX:Diagnosis) to look for genes with significant interaction between Sex and Diagnosis within each 638 
dataset. We then used the SumRank method, adding up the p-value ranks of the genes across each dataset, 639 
considering only the top 65% of datasets (to be consistent with the general analyses), and using 640 
permutations (permuting sex) to calibrate the p-values. This analysis will find all genes with significant 641 
differences in case vs. control gene expression between the sexes, but it could also find genes with 642 
decreased expression in one sex and unchanged expression in the other sex. 643 
 644 

In order to focus on genes that have up-regulated expression in one sex but are unchanged in the 645 
other, we devised another method that works by summing up four different scores to create a composite 646 
score. We performed differential expression and SumRank meta-analyses in DESeq2 to obtain p-values 647 
for scores between males and females in only cases and in only controls as well as cases vs controls in 648 
only males and in only females. Female specific scores were calculated as the sum of the -log10(p-values) 649 
of the cases vs. controls in females with the -log10(p-values) of the females vs. males in cases subtracted 650 
by the -log10(p-values) of the cases vs. controls in males and the -log10(p-values) of the females vs. 651 
males in controls. Male specific scores were calculated analogously, and we calibrated all p-values 652 
empirically with permutations. 653 

 654 
At q-value or Benjamini-Hochberg based FDR cutoffs of 0.05 no genes were significant with 655 

both methods, so we loosened our thresholds. We looked for genes that had -log10(p-values) above 3.65 656 
(the threshold chosen for the general analyses) in the Composite Score approach and were in the top 15 657 
genes (0.1%) in the Sex Interaction approach. This led to the discovery of several female-specific genes, 658 
SLITRK5 in oligodendrocyte precursor cells, ZFP36L1 and DUSP1 in astrocytes, DAPK2, APOE, and 659 
OR4N2 in GABA inhibitory neurons, and two male-specific genes, MYC and IL16 in glutamatergic 660 
excitatory neurons (Figure 6, Supplementary Figure 9, Supplementary Data File 8). Of these only 661 
ZFP36L1 and SLITRK5 were significant in the composite method at an FDR 0.05 cutoff. ZFP36L1 is a 662 
3’UTR binding protein that influences transcriptional regulation and has been found to be a differentially 663 
expressed gene that is a candidate biomarker for AD73-75. Interestingly, the APOE risk factor is known 664 
have a stronger association with females relative to males76. We also applied this method to COVID-19 665 
and found CLU in dendritic cells and monocytes, MT1E in other_T cells and G0S2 in CD4 T cells as 666 
male-specific expressed and CAMK1 in dendritic cells as female-specific expressed (Supplementary Data 667 
File 8). 668 

 669 
The lack of clearly significant genes in any of the SumRank sex-specific analyses is likely due to 670 

insufficient power, because these analyses require at least twice as many individuals as the case-control 671 
analyses given the extra consideration of sex. In addition, it is also probable that the sex-specific effect 672 
sizes are much smaller than the effect sizes differentiating cases vs. controls more generally, so overall 673 
these results underscore the need for more data to better delineate these effects. We note that when we 674 
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used the merge method with DESeq2 sex interaction, we found several genes that were significant at 675 
Bonferroni corrected p-value thresholds of 0.05 (Supplementary Data File 8), but these genes were not 676 
significant and ranked extremely low in the SumRank methods due to only being significant in one or a 677 
few datasets (Supplementary Figure 13), showing again the importance of reproducibility in these 678 
analyses (nevertheless, CLU, G0S2 MT1E, and CAMK1 all had q-value FDR<0.1 in their respective cell 679 
types for the merge sex interaction method). 680 
 681 

 682 
Figure 6. Schematic of the two methods used for assessing sex-specific expressed genes. The Sex Interaction 683 
method uses the SumRank meta-analysis on the p-values of the Sex:Diagnosis term from DESeq2, while the 684 
Composite Score method takes the composite of 4 different SumRank scores (shown here for female specific scores; 685 
the male specific score is defined analogously). On the bottom left is a schematic of an example female-specific 686 
expressed gene. The Manhattan plots highlight the ZFP36L1 gene. The ratios of mean expression of cases over 687 
mean expression of controls of ZFP36L1 in females (y-axis) and males (x-axis) are plotted in the bottom right. 688 
Values above the line (intercept=0, slope=1) are up-regulated in females more than males, while values below the 689 
line are up-regulated in males more than females. Error bars are standard deviations. Plots of the expression of 690 
ZFP36L1 in individuals within each dataset are in Supplementary Figure 12. 691 
  692 
 693 
Discussion and Conclusion 694 

Here we assessed the reproducibility of DEGs across many AD, PD, SCZ and COVID-19 695 
datasets. We find that DEGs from single AD and SCZ datasets generally have poor reproducibility and 696 
thus cannot predict case control status in other AD or SCZ datasets, though predictive power is improved 697 
with increased numbers of individuals in the study. In contrast, even small individual PD and COVID-19 698 
studies have moderate predictive power for case control status in other datasets. This study provides 699 
strong evidence that for diseases of high heterogeneity like AD and SCZ, the DEGs of case-control 700 
datasets of relatively small sample sizes (fewer than 100 total individuals), even when derived in a 701 
statistically rigorous manner, have a low likelihood of being reproduced in many other datasets and thus 702 
are more likely to be dataset specific artifacts rather than reliable indicators of disease pathology. In 703 
contrast, acute diseases or those with more uniform responses, such as PD and COVID-19, produce DEGs 704 
with moderate reproducibility across studies. 705 

 706 
This presents a paradox in that for diseases with heterogeneous gene expression and low 707 

reproducibility, likely including most neuropsychiatric diseases, it is more important to ensure that genes 708 
are found reproducibly across multiple studies to avoid false positives. Motivated by this, we provide here 709 
a path towards GWAS level of reproducibility through the development of a novel meta-analysis method 710 

Sex Interaction Method:
DESeq2: RNA Counts ~ Sex + Diagnosis + Sex:Diagnosis

Composite Score Method:

p-values of Sex:Diagnosis term

SumRank meta-analysis
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(SumRank) that prioritizes reproducibility across datasets. We show that SumRank outperforms merging 711 
of datasets with batch correction (the standard scRNA-seq method) and combining effect sizes with 712 
inverse variance weighting (the standard GWAS method). The DEGs found by SumRank have improved 713 
specificity as measured by ability to predict case-control status in left out datasets and demonstrate that 714 
many previously highlighted genes thought to be differentially expressed in AD do not show differential 715 
expression across many datasets. The inverse variance method, though successfully utilized in GWAS, 716 
performs poorly for meta-analysis of scRNA-seq data due to dataset specific artifacts that are carried 717 
through, such that some genes with very low p-values in a small number of datasets are considered 718 
significant even though they are not differentially expressed in most datasets. This effect is much more 719 
pronounced in single cell studies relative to GWAS due to the lower stability of RNA expression relative 720 
to DNA, leading to greater propensity for very poorly calibrated p-values. The merge method generally 721 
works much better than the inverse variance method (likely due to DESeq2’s ability to have a dataset 722 
covariate correction), but still performs more poorly than the SumRank method for the same carried over 723 
artifact issue. Moreover, the merge method is much slower than the other methods as the merge process 724 
can take several hours, particularly for the large datasets. 725 

 726 
With the SumRank method, we were able to discover previously known and novel COVID-19 727 

biology, such as division of NK cells and down-regulation of ribosomal genes. We also found up-728 
regulation of protein folding and protein localization to the nucleus and mitochondria in oligodendrocytes, 729 
potentially as part of the alpha-synuclein pathway in PD. For AD, we find some plausible AD biological 730 
pathways, including up-regulation of microglia inflammation and down-regulation of amino acid 731 
catabolism, but, more importantly, find genes with clear reproducibility across a large majority of studies 732 
that had previously not been highlighted in snRNA-seq publications, and we validate the BCAT1 gene as 733 
down-regulated in oligodendrocytes in AD of human and mice. We emphasize that for a biologically 734 
complex disease like AD or SCZ, it is possible the pathways might not be clear solely from the lists of 735 
DEGs, even if the lists are reliable. Integration with other biological modalities, such as ATAC-seq or 736 
ChIP-Seq likely will improve insight, and it will be important for all modalities to demonstrate 737 
reproducibility to produce more reliable biological inferences. 738 

 739 
 Single-cell transcriptomic case-control studies have, to date, involved limited numbers of 740 
individuals for studies outside of AD and COVID-19, and for many neuropsychiatric disorders it likely 741 
will take many years to reach the same cohort sizes and number of studies as in AD and COVID-19. It is 742 
thus critical to apply the lessons learned from AD, PD, COVID-19, and SCZ to diseases with increasing 743 
numbers of individuals sequenced. Our results suggest that when designing scRNA-seq case-control 744 
studies, it is more important to sequence a larger number of individuals rather than more cells once there 745 
are over ~40 cells per cell type of interest (when pseudo-bulking). Investigators could also consider 746 
looking at extremes of phenotypes to increase power. Most importantly, it is critical for all studies, 747 
particularly small ones (fewer than 50 cases and controls each, based on observations from this study), to 748 
demonstrate clear reproducibility in the DEGs discovered and show that (ideally for each individual gene) 749 
this reproducibility exceeds the reproducibility expected by chance.  750 
 751 
 We lastly highlight limitations of the SumRank method and single-cell meta-analysis methods in 752 
general, which will be important to overcome in the future to produce GWAS-quality meta-analyses. For 753 
the SumRank method in particular, the largest limitation is the lack of weighting, which can cause 754 
substantial power limitations. We were not able to come up with a reliable method for weighting the 755 
studies, because, for example, although there was a general correlation of predictability of DEGs (AUC) 756 
with number of individuals, the relationship was not uniform as some larger studies had poorer predictive 757 
power for reasons such as more heterogeneous phenotyping or poorer sequencing quality (e.g. multi-ome 758 
data in the Su COVID-19 dataset), so weighting by number of individuals, number of cells, or sequencing 759 
depth could lead to substantial biases. Other limitations are generic to all single-cell meta-analysis 760 
methods. For example, there is currently no method to account for possible relatedness amongst the 761 
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individuals either within or across datasets, unlike GWAS meta-analyses, which are now able to condition 762 
out relatedness without fully removing related individuals77. Accounting for relatedness is likely more 763 
difficult for RNA and other modalities relative to DNA, but future meta-analyses could potentially 764 
account for this by either having genotyping of all patients or looking for increased correlation in 765 
expression above the background. Similarly, population structure (e.g. individuals of a certain ethnic 766 
background being enriched in cases) could lead to spurious associations and must be accounted for in 767 
future analyses. 768 
 769 
 Refinement of GWAS methodologies, including addressing many of these issues, took over a 770 
decade78. Meta-analyses of single cell data face many challenges beyond those of genetic data, such as a 771 
greater propensity for dataset specific artifacts (due to the relative instability of RNA and potential for 772 
gene expression changes during technical processes), expression differences across tissues and tissue 773 
regions (increasing the noise when combining datasets), differences in life environments between cases 774 
and controls (e.g. medication use), and less clear principles for how genetic relatedness affects gene 775 
expression between individuals. On the other hand, the average effect sizes of RNA are usually much 776 
higher than genetic effect sizes, which are brought down due to natural selection, as evidenced by the 777 
mean effect size of individual DEGs for AD in this study being 1.40 relative to 1.05 for AD GWAS65. 778 
This means it is likely that lower sample sizes will be required for single cell case control analyses 779 
relative to GWAS. Nevertheless, it will be important to apply any applicable lessons from GWAS to 780 
single cell case control analyses, including the applications of GWAS results. For example, once there are 781 
an adequate number of studies of other neuropsychiatric traits, we believe the SumRank method can be 782 
adapted to perform cross-disorder analyses, which will aid in revealing shared biology between disorders, 783 
similar to cross-trait GWAS analyses79. Overall, this study is intended to take a strong step in bringing 784 
single cell case control studies to GWAS levels of reproducibility, which we hope will clarify the cell 785 
type specific biological changes involved in different conditions, ultimately leading to more reliable drug 786 
targets to reverse disease pathophysiology80.  787 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 16, 2024. ; https://doi.org/10.1101/2024.10.15.618577doi: bioRxiv preprint 

https://doi.org/10.1101/2024.10.15.618577
http://creativecommons.org/licenses/by-nc-nd/4.0/


 19 

Acknowledgments 788 
We thank all members of the Satija lab and members of the CEGS Center for Integrated Cellular Analysis 789 
in New York city for helpful discussions and constructive criticism. We thank Li-Huei Tsai and Ravikiran 790 
Raju for providing data from Barker et al., 2021. We thank Brad Ruzicka and Shahin Mohammadi for 791 
providing their code for the analyses of Ruzicka et al. 2024 and answering questions about their 792 
publication. This work was supported by the Chan Zuckerberg Initiative (EOSS-0000000082 and HCA-793 
A-1704-01895 to R.S.) and the NIH (RM1HG011014-02, 1OT2OD026673- 01, DP2HG009623-01, 794 
R01HD096770 and R35NS097404 to R.S., NIH-NINDS R01NS122316 and R21NS121786 to E.K., and 795 
NIH-NIMH T32MH019524 to D.A.). 796 
 797 
Data availability: 798 
All data are publicly available online (see Supplementary Data File 1 and Methods for details). 799 
 800 
Code availability: 801 
Code for all new analyses in this paper, including runnable software for the SumRank method, are 802 
available in a Github repository: https://github.com/nathan-nakatsuka/scRNA_Reproducibility. 803 
 804 
Ethics declarations: 805 
Competing interests: In the past 3 years, R.S. has received compensation from Bristol-Myers Squibb, 806 
ImmunAI, Resolve Biosciences, Nanostring, 10x Genomics, Neptune Bio, and the NYC Pandemic 807 
Response Lab. R.S. is a co-founder and equity holder of Neptune Bio. The other authors declare that they 808 
have no competing interests. 809 
 810 
 811 
 812 
 813 
 814 
 815 
 816 
 817 
 818 
 819 
 820 
 821 
 822 
 823 
 824 
 825 
 826 
 827 
 828 
 829 
 830 
 831 
 832 
 833 
 834 
 835 
 836 
 837 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 16, 2024. ; https://doi.org/10.1101/2024.10.15.618577doi: bioRxiv preprint 

https://doi.org/10.1101/2024.10.15.618577
http://creativecommons.org/licenses/by-nc-nd/4.0/


 20 

Online Methods 838 
Datasets 839 

Count matrices were downloaded from GEO for GSE129308 (Otero-Garcia et al.81), GSE147528 840 
(Leng et al.82), GSE140511 (Zhou et al.83), GSE138852 (Grubman et al.84), GSE174367 (Morabito et 841 
al.85), GSE157927 (Lau et al.86), GSE163577 (Yang et al.87), GSE183068 (Sayed et al.88), GSE148822 842 
(Gerrits et al.89), GSE160936 (Smith et al.90), GSE167494 (Sadick et al.91), GSE157783 (Smajic et al.10), 843 
GSE184950 (Wang et al.15), GSE193688 (Adams et al.14), GSE243639 (Martirosyan et al.12), and 844 
GSE148434 (Lee et al.13). Other matrices were downloaded from Synapse (Mathys et al., 201944, Mathys 845 
et al., 202348, Hoffman et al.26, Fujita et al.24, Ruzicka et al.4), CellxGene (Gabitto et al.45), Zenodo 846 
(Batiuk et al. 20225: https://zenodo.org/records/6921620), NEMO (Ling et al.6), the Broad Institute Single 847 
Cell Portal (SCP1768: Kamath et al.11), or from the authors directly (Barker et al.92). Relevant meta-data 848 
were also retrieved from the corresponding publications. COVID-19 datasets were obtained from Tian et 849 
al.93.  850 
 851 
Quality Control and Data Processing 852 

Count matrices were first converted to Seurat objects using the Seurat V4 pipeline. Mitochondrial 853 
percentage, nCount_RNA, and nFeature_RNA were assessed for each dataset, and cells with outlier 854 
values were removed from the dataset (Supplementary Data File 1). Subsequently, SCTransform v2 was 855 
performed for normalization and variance stabilization of the data, then PCA was run with 30 PCs 856 
maintained, and UMAP was run on the PCA reduced dataset with dims 1:30 selected. Cell types were 857 
then determined by mapping to the class and subclass groupings of the Azimuth motor cortex for AD and 858 
SCZ datasets and the Azimuth PBMC reference for COVID-19 datasets using 1:30 dimensions, and 859 
refDR reduction, with all other settings left at default. Mapping to the Azimuth reference ensures that 860 
even if the mapping is not perfect, there likely will be no bias since the mapping quality should be similar 861 
for the cases and controls within each dataset. For PD datasets the cells were mapped to the Kamath et 862 
al.11 PD dataset due to lack of other reliable midbrain references. 863 
 864 
Differential Expression 865 

Each dataset was pseudobulked by obtaining either the aggregate sum of all counts (for DESeq2 866 
analyses) or the mean value (for all other analyses) for each cell type at the Azimuth class or subclass 867 
level for each individual in each dataset. Differential expression was done by comparing cases to controls 868 
within each cell type and using multiple different methods. For our general analyses DESeq230 was used 869 
to compare cases to controls with logfc.threshold and min.pct set to 0 to ensure that all genes were 870 
included (pseudocount.use was set at 1 due to the need for round count numbers for DESeq2). No 871 
normalization is needed prior to DESeq2 analyses, because DESeq2 performs internal normalization 872 
through its median of ratios method to account for sequencing depth and RNA composition. 873 
Mitochondrial genes were removed from all results and the final gene set was chosen as the intersection 874 
of all of the datasets for the particular disease leading to 15,201 genes for AD, 11,067 genes for COVID-875 
19, 17,823 genes for PD, and 17,420 genes for SCZ. To test down-regulation, differential expression was 876 
done between controls relative to cases with the same downstream process repeated as for the up-877 
regulated genes. Violin plots were made in Seurat using the VlnPlot command after subsetting to the cell 878 
type and gene of interest. DESeq2 was also used in separate differential expression analyses while 879 
regressing out relevant clinical covariates (any of the following if they were present in the dataset’s 880 
metadata: sex, age, PMI, RIN, education level, ethnicity, language, age at death, batch, fixation interval, 881 
nCount_RNA, and nFeature_RNA) using design=~Diagnosis+ClinicalCovariate. Differential expression 882 
was also done using logistic regression with the “FindMarkers” function in Seurat V4 with test.use=“LR” 883 
and latent.vars set to the clinical covariates. Linear regression was performed in R, fitting a model of 884 
Braak score on gene expression and clinical covariates using the “lm” function in base R. 885 

To test the ability of each gene to predict case-control status in each dataset (as a separate 886 
analysis from the general differential expression analyses above), we used logistic regression models of 887 
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case-control status with and without each gene as implemented in the “FindMarkers” function in Seurat 888 
V4 with test.use=“LR”, pseudocount.use=0.01, logfc.threshold=0, min.pct=0 (with all other settings at 889 
default) and obtained the log2fc and p-values for each gene separately for each cell type and each dataset. 890 
We then took the mean of each gene’s abs(log2fc) and signed -log10(p-values) (negative for genes with 891 
negative log2fc values) in all datasets to obtain each gene’s average ability to predict case-control status 892 
across all datasets (separately for each cell type). 893 

To test the Ruzicka et al. differential expression pipeline, we converted the provided ACTIONet 894 
rds object into a singlecellexperiment object and separated the dataset into the McLean and MtSinai 895 
cohorts. We then created pseudobulk profiles with the mean of log-transformed counts within each 896 
individual and cell type. We filtered out the SZ3, SZ15, SZ24, SZ29, and SZ33 individuals and cells with 897 
capture rate less than 0.05 as done by Ruzicka et al. We then removed effect of batch and HTO variables 898 
using the removeBatchEffect function in limma94 version 3.46.0, while incorporating age (split in half 899 
into older age and younger age), sex, postmortem interval, and the log transform of average number of 900 
UMIs per cell. We then used muscat version 1.18.0 to perform differential expression with the limma-901 
trend model using muscat default filtering for genes and min_cells=10. 902 
 903 
SumRank Meta-Analysis: 904 
 The genes of all datasets were ranked by their signed -log10(p-values), with genes having 905 
negative log2(fold-change)s being set to negative so that down-regulated genes would be at the bottom 906 
and up-regulated genes at the top. The ranks of each gene for each dataset were then normalized by first 907 
subtracting one from them and then dividing by one less than the total number of genes (so that the 908 
highest ranked gene was 0 and the lowest ranked gene was 1). To improve power, by removing the 909 
influence of datasets that might have poor scores for artifactual reasons, only the ranks of the top datasets 910 
were considered for each gene. The number of datasets chosen for consideration was based on the ability 911 
of its resulting gene set to most accurately predict case-control status in left-out datasets (measured by 912 
AUC; see below), with the additional specification that at least half of the datasets be used. We then took 913 
the sum of the normalized ranks of the top datasets for each gene. If the sum was greater than the number 914 
of datasets divided by two, we set the value to the number of datasets divided by two (to ensure that genes 915 
that were consistently not differentially expressed would not be considered significant). 916 
 The Irwin-Hall distribution is the theoretical null distribution for the SumRank statistic, because it 917 
assumes that the genes in each study are uniformly distributed and each study is independent of the other, 918 
and the Irwin-Hall distribution is the sum of independent, uniformly distributed random variables. We 919 
thus initially obtain p-values for each gene using an Irwin Hall distribution (two-sided) as implemented in 920 
the unifed version 1.1.695 package, dirwin.hall function, with number of datasets as the number of 921 
uniform distributions specified. However, given we chose only a subset of datasets for each gene, the 922 
distribution will deviate from Irwin-Hall, so we subsequently calibrated the p-values by permutations (see 923 
below). 924 
  925 
Merge Meta-Analysis 926 
 After quality control, the Seurat objects for each dataset were first subsetted to the relevant cell 927 
type and then merged. The count matrices for the merged objects had 1 added to them (for a pseudocount) 928 
and were then converted to DESeq data set types with the DESeqDataSetFromMatrix command with 929 
design = ~Diagnosis+Dataset, to provide some accounting for dataset specific batch effects. DESeq2 930 
differential expression was then performed, and results were extracted (p-values and log2 fold-changes 931 
for each gene). 932 
 933 
Inverse Variance Meta-Analysis 934 
 Differential expression effect sizes (log2 fold-change) and standard errors for each gene and each 935 
dataset were obtained from the DESeq2 output as described above. These summary statistics were then 936 
put into the metagen function from the meta version 6.5.0 R package42 to obtain combined effect sizes 937 
across the datasets with sm = “OR” (to specify odds ratio was used), fixed=FALSE, random=TRUE (to 938 
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specify using a random effects model, given the expected heterogeneity in the datasets), 939 
method.tau=“REML” (restricted maximum likelihood method to obtain the estimator from inverse 940 
variance weighting), hakn=TRUE (Hartung and Knapp statistic adjustment), 941 
control=list(stepadj=0.1,maxiter=10000). The effect sizes were obtained from TE.random and the p-942 
values obtained from pval.random (two-sided). When we attempted to improve the inverse variance 943 
method by only taking a certain percentage of top datasets, we found that this did not increase the AUC, 944 
so we retained all datasets for this analysis. 945 
 946 
Permutations for obtaining empirical p-values: 947 
 To calibrate p-values for case-control differential expression, permutations of case and control 948 
status were performed either 1,000 or 10,000 times by sampling without replacement from the diagnosis 949 
labels of each individual (1,000 times for the sex analyses and 10,000 times for the general case-control 950 
analyses). We chose 10,000 permutations for the case-control analyses, since this allows us to obtain p-951 
values <1e-8, which is 1/(10,000*15,000), where 15,000 is the approximate number of genes tested 952 
(1,000 permutations allows us to obtain p-values<1e-7; since no gene reached near that p-value for the 953 
sex-specific analyses, we believed that 1,000 permutations would be sufficient). The relevant analysis 954 
procedures were then done in the standard way (as specified above) to obtain negative log p-values for 955 
each gene. The null distribution for the real data was then taken to be the full list of all negative log10 p-956 
values across all permutations and all genes (i.e. the length of the list was the number of permutations 957 
times the number of genes). P-values for the real data were then calculated as the proportion of times the 958 
values (negative log10 p-values) of the null distribution list were higher than the value of the gene for the 959 
real data. 960 
 For the analyses of sex differences the permutations were done the same way except permuting 961 
the sexes within the controls and cases separately (and no permutations of diagnosis status). The sex 962 
specific analyses (see below) were then conducted in the same manner and empirical p-values for the real 963 
data were obtained with the same method as for the case-control differential expression.  964 
 965 
Leave One Out Analyses 966 
 The accuracy of genes obtained from each analysis was assessed by the ability of the genes to 967 
predict case-control or disease severity in left out datasets. For each analysis where this approach was 968 
conducted, the analysis was conducted with all datasets except one that was left out (alternating so that 969 
analyses were done with each dataset left out). The resulting gene sets were then used to create a 970 
“transcriptional score” for each individual specific to each cell type using the AddModuleScore_UCell 971 
from the UCell package (v1.3)41 with maxRank set to 16000 to ensure that all genes were used for the 972 
analyses. Scores of 0 were set to NA. UCell scores were normalized such that for each cell type, the 973 
minimum of the scores was subtracted from each score, and the results were then divided by the range of 974 
the scores for that cell type (maximum score minus minimum). Missing scores were then set to the mean 975 
of the scores of that cell type. When the gene set included multiple genes, a composite transcriptional 976 
score was created for each individual as the sum of the UCell scores across each cell type for up-regulated 977 
genes minus the sum of the UCell scores across each cell type for down-regulated genes (note: endothelial 978 
cells in Alzheimer’s disease datasets were not used due to incomplete coverage on all datasets for this cell 979 
type and the observation that including it decreased AUC). 980 

A logistic regression model was created from the UCell scores of each individual and their 981 
diagnosis statuses using all datasets except the left out dataset. This model was then tested on the UCell 982 
scores and diagnosis statuses of the left out dataset with AUC determined from “auc” function of the 983 
pROC R package version 1.18.496. To determine the ability of the genes to predict disease severity, a 984 
linear regression model was created from the UCell scores of each individual and their disease severities 985 
(Braak scores for Alzheimer’s disease, on a scale of 0 to 6, and a scale from 0 to 3 for COVID-19, with 1 986 
indicating mild, 2 indicating moderate, 3 indicating severe based on clinical status of the patients). For the 987 
disease severity calculations only disease cases were used to prevent confounding from ability to predict 988 
general case vs. control status. For COVID-19 analyses, only datasets that had all cell types were used. 989 
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For AD analyses, the Barker dataset was not used for disease severity calculations, because this dataset 990 
specifically focused on individuals with high Braak scores (some of whom had normal cognition and 991 
some of whom had impaired cognition). 992 

We used the matrix of UCell scores for each individual across all datasets and all cell types and 993 
performed a heatmap using R with the settings symm=T and all other settings set to default. RCA Gene 994 
Lists were obtained specific for each cell type by using each individual gene to create a UCell score for 995 
each dataset and then following the same process as above. We separated the genes into up- and down-996 
regulated sets based on whether the mean expression of the gene was higher in cases relative to controls 997 
or vice versa in all datasets. We then ranked each list by their mean AUC in predicting case-control status 998 
of the individuals in each dataset. These lists were called “RCA Gene List” throughout the paper. Relative 999 
Classification Accuracy was defined as the AUCs from the RCA Gene List, normalized by subtracting the 1000 
minimum value for the particular disease and dividing by the range of AUCs for that disease. 1001 
 Hoffman, Fujita, MathysCell, and Stephenson dataset individual down-samplings were performed 1002 
by taking a random sample (with replacement) of cases and controls 20 times for each number of cases 1003 
and controls and repeating the standard individual dataset analyses as described above. Cell number 1004 
down-sampling was performed by randomly taking different proportions (0.001, 0.005, 0.001, 0.05, 0.1, 1005 
0.5) of cells from each dataset and then performing differential expression and SumRank meta-analyses 1006 
as described above. AD datasets were also down-sampled one at a time either from the most reproducible 1007 
(as measured by gene set AUC) or the least reproducible. SumRank meta-analysis was then performed 1008 
with these down-sampled sets of datasets with 65% of datasets chosen unless this number was less than 7 1009 
in which case either 7 datasets were chosen or all datasets were chosen (if this was less than 7). 1010 
 1011 
Sex specific analyses 1012 
 Two methods were used to determine sex-specific differential expression. In the first method, 1013 
differential expression was performed for each dataset with DESeq2 using the counts matrix of the data 1014 
subsetted to cell type using design = ~Sex+Diagnosis+Sex:Diagnosis. The interaction term 1015 
(SexF.DiagnosisAD) effect sizes and p-values were then obtained. The signed -log10(p-values) for each 1016 
dataset were then combined using the SumRank meta-analysis method described above with p-values 1017 
calibrated empirically using permutations as described above. 1018 
 In the second method, four different scores were combined to create a composite score. 1019 
Differential expression was performed in DESeq2 between males and females in only cases and in only 1020 
controls as well as cases vs controls in only males and in only females. SumRank meta-analyses were 1021 
then performed for each of these individual analysis types to obtain -log10(p-values). For female 1022 
specificity the composite score was calculated as the sum of the -log10(p-values) of the cases vs. controls 1023 
in females with the -log10(p-values) of the females vs. males in cases subtracted by the -log10(p-values) 1024 
of the cases vs. controls in males and the -log10(p-values) of the females vs. males in controls. For male 1025 
specificity the composite score was calculated as the sum of the -log10(p-values) of the cases vs. controls 1026 
in males with the -log10(p-values) of the males vs. females in cases subtracted by the -log10(p-values) of 1027 
the cases vs. controls in females and the -log10(p-values) of the males vs. females in controls. These p-1028 
values were then calibrated empirically with permutations as described above. We looked for genes that 1029 
had -log10(p-values)>3.65 in one of the analyses and were in the top 15 (0.1%) of genes in the other 1030 
analysis. 1031 
 For several of the COVID-19 datasets, some of the sex statuses of the individuals were not listed, 1032 
so these were obtained by creating a composite RNA score of Y chromosome genes (NLGN4Y, 1033 
LINC00278, TTTY14, TMSB4Y, EIF1AY, USP9Y, KDM5D, ZFY, UTY, DDX3Y, and RPS4Y1), which 1034 
were able to differentiate sexes in the dataset well (total expression of these genes greater than 10 was 1035 
defined as genetic male). 1036 
 The ratio of mean expression of cases over mean expression of controls for females and males 1037 
were calculated for plotting. The standard deviations for these were calculated by the error propagation 1038 
formula as 𝑅𝑎𝑡𝑖𝑜 ∗ 	√(* !"($)

&'()($)
+
*
+ * !"(+)

&'()(+)
+
*
), where Ratio is mean(A)/mean(B), and A is the 1039 
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expression in cases, while B is the expression in controls. Standard deviations were calculated separately 1040 
for males and females and both were plotted. 1041 
 1042 
Human Genetic Comparisons 1043 
 Significant genes from Genome Wide Association Studies (GWAS) of Alzheimer’s Disease65-67 1044 
and Parkinson’s Disease71 were inferred as the genes most proximal to the genome-wide significant 1045 
genetic variants from the studies or those prioritized through various metrics by the study authors. 1046 
Significant genes from AD whole-exome association studies68-70 were inferred as the genes with exons 1047 
harboring the significant genetic variant. We assessed statistical significance of overlap of the meta-1048 
analysis genes with human genetic genes by Fisher’s exact test (two-sided) as implemented in R 1049 
(fisher.test function). 1050 
 1051 
Gene Ontology Analyses 1052 
 Cluster Profiler 4.049 was used to find biological pathways with statistically significant 1053 
enrichment from the meta-analysis gene sets. The organism was set to human (org.Hs.eg.db), ont 1054 
(subontology) was set to BP (biological process), and pvaluecutoff was set to 0.05. The up- and down-1055 
regulated gene sets were analyzed with these settings, with the rest of the settings at default. 1056 
 COVID-19 pathways were also analyzed by comparing the overlap of the up-regulated genes in 1057 
each cell type to the gene sets derived from a database generated by Perturb-Seq experiments in which 6 1058 
cell lines were stimulated with different perturbations (interferon-beta, interferon-gamma, transforming 1059 
growth factor beta 1, and tumor necrosis factor-alpha) and then had expression of individual genes 1060 
knocked down with CRISPR guides to assess the effect of each gene on the perturbation response. This 1061 
provided more specific gene sets for these pathways than could be obtained by standard gene ontology50. 1062 
The specific pathways were coded as IFNG_REMOVE_IFNB; IFNB_REMOVE_IFNG; 1063 
IFNG_REMOVE_TNFA; TNFA_REMOVE_IFNG; IFNB_REMOVE_TNFA; TNFA_REMOVE_IFNB; 1064 
TNFA_REMOVE_TGFB1; TGFB1_REMOVE_TNFA, where each gene set was the genes involved in 1065 
the specific perturbation pathway that were not involved in other pathways. The overlap of the meta-1066 
analysis up-regulated genes with the top 100 genes from each pathway was examined to determine more 1067 
specifically the pathways involved in COVID-19 in each cell type, where the dominant pathway was 1068 
determined as the pathway with the highest overlap after removing the genes from other pathways with 1069 
high overlap. 1070 
 1071 
Mice 1072 

Mice were bred in-house or obtained from the Jackson Laboratory (JAX). Mice were housed in a 1073 
12-h light–dark cycle in a temperature-controlled and humidity-controlled environment with water and 1074 
food provided ad libitum. Both males and females were used in this study. The following mouse strain 1075 
was used: B6.Cg-Tg(APPSwFlLon,PSEN1*M146L*L286V)6799Vas/Mmjax (5xFAD; JAX 034848). 1076 
For analysis of BCAT1 staining in oligodendrocytes, 8-10 month old mice were used. Animals were 1077 
housed at New York University (NYU) Medical Center Animal Facility under specific pathogen–free 1078 
conditions. All procedures were approved by the NYU School of Medicine Institutional Animal Care and 1079 
Use Committee and complied with approved ethical regulations. 1080 
 1081 
Tissue Collection and Processing  1082 

Mice were perfused with cold 1xPBS followed by 4%PFA. Brains were removed, post fixed 1083 
overnight, cryopreserved in 30% sucrose, and cryo-embedded in OCT. 40 µM coronal cryosections were 1084 
generated between bregma 1.335-.745. For staining at least two sections containing mPFC were used for 1085 
multiplexed IHC.  1086 
 1087 
Immunohistochemistry (IHC), imaging, and quantification 1088 

Coronal brain slices were rinsed 3x in PBS for 10 min each prior to antigen retrieval. For antigen 1089 
retrieval slides were emersed in .1M citrate buffer, microwaved until boiling, and incubated for 15 1090 
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minutes at 99°C in a water bath. Afterwards slides were returned to room temperature, rinsed 2x 10 min 1091 
in PBS and blocked in 10% normal donkey serum (Jackson ImmunoResearch AB_2337258), 1% BSA, 1092 
.25%tritonX100, with Mouse on Mouse IG blocking reagent (Vector Labs BMK-2202) in 1xPBS for 2hrs 1093 
at room temperature. Sections were then stained with the following primary antibodies; Mouse anti CC1 1094 
(1:200, Sigma OP80), Goat anti SOX10 (1:200, R&D Systems AF2864-SP), and Rabbit anti BCAT1 1095 
(1:200, Proteintech 13640-1-AP) overnight in blocking solution with Mouse on Mouse protein 1096 
concentrate instead of IG blocking reagent (Vector Labs BMK-2202) at 4°C. The next day sections were 1097 
then washed 3x with PBST and incubated for 2hrs at RT with the following secondary antibodies all at 1098 
1:500; Alexa488 Donkey anti goat (Jackson ImmunoResearch 705-545-003), Alexa568 Donkey anti 1099 
Mouse (Invitrogen A-31571), Alexa647 Donkey anti Rabbit (Jackson ImmunoResearch 711-605-152) in 1100 
blocking solution with Mouse on Mouse protein concentrate (Vector Labs BMK-2202). Sections were 1101 
then washed 3x with PBST and mounted with Fluoromount-G Mounting Medium, with DAPI (Invitrogen 1102 
00-4959-52). Z-stack tiled images of the mPFC were acquired using a LSM 800 Confocal microscope 1103 
(Zeiss) using a 40x oil immersion objective (Na 1.3). Quantitative analysis was conducted on at least 2 1104 
slices per animal using the Fiji package for ImageJ software by a researcher blind to the experimental 1105 
groups. After applying a median filter (2 pixel radius) to the BCAT1 channel, SOX10+ CC1+ double 1106 
positive oligodendrocyte cytoplasms were drawn by hand with the polygon tool. BCAT1 mean fluorescent 1107 
intensity was quantified per cell, normalized over BCAT1 background staining, and averaged per animal. 1108 
Data was expressed as FC over WT samples normalized for each batch of staining.   1109 
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Extended Data 1110 
 1111 

 1112 
Extended Data Table 1. Reproducibility of individual AD datasets by several metrics. For all analyses here the 1113 
DEG lists included the same number of top genes (based on the 814 SumRank genes with -log10(p-value)>3.65). 1114 
The mean number of DEGs per cell type is calculated from a q-value based FDR threshold of 0.05 after filtering out 1115 
genes with logfc<0.25 and less than 10% detection in both cases and controls (reproducibility metrics with these 1116 
DEGs are shown in Supplementary Table 10). Individual Gene AUC List is the list of genes ranked by their 1117 
individual ability to distinguish cases from controls in all datasets. Relative Classification Accuracy is the 1118 
normalized AUC of individual genes in their ability to distinguish diagnosis status in each dataset. Signed -log10(p-1119 
value)s were from comparisons of logistic regression models on disease status with and without each gene (see 1120 
Methods for more details). 1121 
 1122 
 1123 

 1124 
Extended Data Table 2. Reproducibility of individual PD datasets by several metrics. For all analyses here the 1125 
DEG lists included the same number of top genes (based on the 1,527 SumRank genes with -log10(p-value)>3.35). 1126 
The mean number of DEGs per cell type is calculated from a q-value based FDR threshold of 0.05 after filtering out 1127 
genes with logfc<0.25 and less than 10% detection in both cases and controls (reproducibility metrics with these 1128 
DEGs are shown in Supplementary Table 11). Individual Gene AUC List is the list of genes ranked by their 1129 
individual ability to distinguish cases from controls in all datasets. Relative Classification Accuracy is the 1130 
normalized AUC of individual genes in their ability to distinguish diagnosis status in each dataset. Signed -log10(p-1131 
value)s were from comparisons of logistic regression models on disease status with and without each gene (see 1132 
Methods for more details).  1133 
 1134 
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 1135 
Extended Data Table 3. Reproducibility of individual COVID-19 datasets by several metrics. For all analyses 1136 
here the DEG lists included the same number of top genes (based on the 937 SumRank genes with -log10(p-1137 
value)>3.90). The mean number of DEGs per cell type is calculated from a q-value based FDR threshold of 0.05 1138 
after filtering out genes with logfc<0.25 and less than 10% detection in both cases and controls (reproducibility 1139 
metrics with these DEGs are shown in Supplementary Table 12). Individual Gene AUC List is the list of genes 1140 
ranked by their individual ability to distinguish cases from controls in all datasets. Relative Classification Accuracy 1141 
is the normalized AUC of individual genes in their ability to distinguish diagnosis status in each dataset. Signed -1142 
log10(p-value)s were from comparisons of logistic regression models on disease status with and without each gene 1143 
(see Methods for more details). The datasets with NA for mean AUC have insufficient cells for at least one of the 1144 
major cell types leading to inability to create reliable UCell scores for those datasets.  1145 
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Extended Data Figure 1. UpSet R plots43 of AD and COVID-19 genes discovered with different meta-analysis 1204 
methods. A) Plot of AD genes discovered based on a q-value based FDR cutoff of 0.05 used in all meta-analyses. 1205 
B) Plot of COVID-19 genes discovered between the meta-analysis methods using the same number of genes for all 1206 
meta-analyses (based on the 937 SumRank genes with -log10(p-value)>3.90). The plots show the intersection of 1207 
genes discovered between the meta-analysis methods and the mean expression of the genes, relative classification 1208 
accuracy (the normalized mean AUC of the individual genes in ability to predict diagnoses in all datasets), 1209 
percentage of genes in top 10% of RCA Gene List, and mean abs(log2fc) of individual genes in comparisons of 1210 
cases vs. controls in each dataset. Results are taken across all cell types. Color coding is based on the relative quality 1211 
of the value, with green indicating the best values, orange indicating moderate, and red indicating poor. 1212 
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Extended Data Figure 2. Manhattan plots of up-regulated genes in AD. Microglia and glutamatergic excitatory 1257 
neurons are shown in Figure 4. Significance threshold is in red with 0.05 FDR cutoff (Benjamini-Hochberg). In 1258 
orange is a -log10(p-value) cutoff that maximizes AUC (3.65 for AD; not shown if it is higher than the FDR cutoff 1259 
red line). The x-axis are genes arranged in alphabetical order. Supplementary Data File 3 provides all genes with 1260 
their p-values. 1261 
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Extended Data Figure 3. Manhattan plots of down-regulated genes in AD. Significance threshold is in red with 1321 
0.05 FDR cutoff (Benjamini-Hochberg). In orange is a -log10(p-value) cutoff that maximizes AUC (3.65 for AD; 1322 
not shown if it is higher than the FDR cutoff red line). The x-axis are genes arranged in alphabetical order. 1323 
Supplementary Data File 3 provides all genes with their p-values. 1324 
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Extended Data Figure 4. Manhattan plots of up-regulated genes in PD. Oligodendrocytes are shown in Figure 4. 1371 
Significance threshold is in red with 0.05 FDR cutoff (Benjamini-Hochberg). In orange is a -log10(p-value) cutoff 1372 
that maximizes AUC (3.35 for PD; not shown if it is higher than the FDR cutoff red line). The x-axis are genes 1373 
arranged in alphabetical order. Supplementary Data File 4 provides all genes with their p-values. 1374 
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Extended Data Figure 5. Manhattan plots of down-regulated genes in PD. Microglia are shown in Figure 4. 1423 
Significance threshold is in red with 0.05 FDR cutoff (Benjamini-Hochberg). In orange is a -log10(p-value) cutoff 1424 
that maximizes AUC (3.35 for PD; not shown if it is higher than the FDR cutoff red line). The x-axis are genes 1425 
arranged in alphabetical order. Supplementary Data File 4 provides all genes with their p-values. 1426 
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Extended Data Figure 6. Manhattan plots of up-regulated genes in COVID-19. CD4 T cells are shown in Figure 1473 
4. Significance threshold is in red with 0.05 FDR cutoff (Benjamini-Hochberg). In orange is a -log10(p-value) cutoff 1474 
that maximizes AUC (3.90 for COVID-19; not shown if it is higher than the FDR cutoff red line). The x-axis are 1475 
genes arranged in alphabetical order. Supplementary Data File 5 provides all genes with their p-values. 1476 
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Extended Data Figure 7. Manhattan plots of down-regulated genes in COVID-19. CD8 T cells are shown in 1521 
Figure 4. Significance threshold is in red with 0.05 FDR cutoff (Benjamini-Hochberg). In orange is a -log10(p-1522 
value) cutoff that maximizes AUC (3.90 for COVID-19; not shown if it is higher than the FDR cutoff red line). The 1523 
x-axis are genes arranged in alphabetical order. Supplementary Data File 5 provides all genes with their p-values. 1524 
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Supplementary Information 1533 
 1534 
 1535 
Legends for Supplementary Data Files 1536 
 1537 
Supplementary Data File 1 1538 
Meta-data about all datasets used in this study. 1539 
 1540 
Supplementary Data File 2 1541 
AUCs from SumRank meta-analyses in AD, PD, SCZ and COVID-19 with different percentage 1542 
thresholds and p-value cutoffs. 1543 
 1544 
Supplementary Data File 3 1545 
Output of AD meta-analyses, including p-values and effect sizes for all genes across all cell types and 1546 
correlation of scores with disease severity. 1547 
 1548 
Supplementary Data File 4 1549 
Output of PD meta-analyses, including p-values and effect sizes for all genes across all cell types and 1550 
correlation of scores with disease severity. 1551 
 1552 
Supplementary Data File 5 1553 
Output of COVID-19 meta-analyses, including p-values and effect sizes for all genes across all cell types 1554 
and correlation of scores with disease severity. 1555 
 1556 
Supplementary Data File 6 1557 
Output of SCZ meta-analyses, including p-values and effect sizes for all genes across all cell types and 1558 
correlation of scores with disease severity. 1559 
 1560 
Supplementary Data File 7 1561 
Output of gene ontology (GO) pathways for AD, PD, SCZ and COVID-19 and shared DEGs between AD 1562 
and PD. 1563 
 1564 
Supplementary Data File 8 1565 
Overlap of COVID-19 DEGs with gene sets generated by a Perturb-Seq experiment. 1566 
 1567 
Supplementary Data File 9 1568 
Output of AD and COVID-19 sex-difference meta-analyses, including p-values for all genes across all 1569 
cell types. 1570 
 1571 
 1572 
 1573 
 1574 
 1575 
 1576 
 1577 
 1578 
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Supplementary Note: 1579 
We observed a discrepancy between our results of differential expression in individual datasets 1580 

and those of Ruzicka et al.4. In particular, they used a modified version of the muscat97 workflow and 1581 
reported 6,056 DEGs in the McLean cohort and 2,666 DEGs in the Mt Sinai cohort across 25 cell types, 1582 
while our analysis using DESeq2 and a q-value based lfdr cutoff of 0.05 only produced 14 DEGs across 7 1583 
cell types when using their dataset and combining the two cohorts. To understand this discrepancy, we 1584 
first split the Ruzicka datasets into the McLean and MtSinai cohorts and performed the same analyses. 1585 
This produced only 79 DEGs for the McLean cohort and 1 DEG for the Mt Sinai cohort. We then 1586 
performed the analysis using Azimuth higher resolution cell types (19 cell types) and obtained 345 DEGs 1587 
for the McLean cohort and 1 DEG for the Mt Sinai cohort. When we used the 25 Ruzicka cell type labels, 1588 
we obtained 611 DEGs for the McLean cohort and 0 DEGs for the Mt Sinai cohort, showing that cell type 1589 
labels are not the primary driver of the differences. 1590 

We then compared our differential expression pipelines. We followed the methods of Ruzicka et 1591 
al. and used the limma-trend94 method in muscat for differential expression after pseudobulking using the 1592 
mean of log-transformed counts with the Ruzicka cell labels, removing SZ3, SZ15, SZ24, SZ29, and 1593 
SZ33, and using limma::removeBatchEffect to account for age, sex, PMI, and umi count, as done in their 1594 
manuscript. We obtained 5,456 DEGs for the McLean cohort and 2,848 DEGs for the Mt Sinai cohort at a 1595 
q-value based lfdr<0.05, approximately the same as the Ruzicka study (with 90.3% of these DEGs being 1596 
shared with the Ruzicka DEGs), showing that we could approximately reproduce their results. We then 1597 
used the same Ruzicka muscat pipeline but used summation of counts for pseudobulking and DESeq2 for 1598 
differential expression. We obtained 2,474 DEGs for the McLean cohort and 5 DEGs for the MtSinai 1599 
cohort, more similar to the numbers of our pipeline (which also uses summation of raw counts and 1600 
DESeq2). When we used the mean of counts (rather than log-transformed counts) with limma-trend, we 1601 
obtained 362 DEGs for the McLean cohort and 163 DEGs for the MtSinai cohort, though with evidence 1602 
for poorer fits (increased numbers of genes filtered out).  1603 

We then ran the data through the recommended muscat tutorial 1604 
(https://www.bioconductor.org/packages/devel/bioc/vignettes/muscat/inst/doc/analysis.html), which uses 1605 
summation of raw counts for pseudobulk and differential expression with the default settings (i.e. logistic 1606 
regression). When removeBatchEffect is not used to regress out covariates, we obtained 994 DEGs for the 1607 
McLean cohort and 9 DEGs for the MtSinai cohort based on q-value based lfdr<0.05 (16 and 0 DEGs are 1608 
obtained with adjusted p-value<0.05/25, correcting for number of cell-types tested). When we used 1609 
limma::removeBatchEffect as above to correct the counts matrix we obtained 1,240 DEGs for the 1610 
McLean cohort and 1 DEG for the MtSinai cohort. When we used the mean of raw counts for pseudobulk, 1611 
we obtained 9 DEGs for the McLean cohort and 0 DEGs for the MtSinai cohort, and when we used mean 1612 
of logcounts for psuedobulk, we obtained 0 DEGs for the McLean cohort and 0 DEGs for the MtSinai 1613 
cohort. In conclusion, we found that our method for DEG calling in individual datasets was more 1614 
conservative than the Ruzicka method and that parameter choice had a substantial effect on the number of 1615 
DEGs in these individual dataset analyses with the Ruzicka method of using limma-trend with 1616 
pseudobulk of log-transformed counts producing substantially more DEGs than other methods but still 1617 
with low relative reproducibility across datasets (see below). It will be important for future studies to 1618 
evaluate the relative merits and disadvantages of both differential expression approaches.  1619 

Most importantly, however, we emphasize that the differences in calling DEGs in individual 1620 
datasets do not affect any of the key conclusions in our study. The SumRank method evaluates relative 1621 
ranks across datasets without using any threshold cutoffs (i.e. the entire set of genes are used), and our 1622 
reproducibility assessments used equal numbers of genes per dataset. Our conclusions about SCZ’s 1623 
relative lower reproducibility compared to other diseases were based on using the same pipeline in each 1624 
disease. We chose the number of meta-analysis DEGs to maximize reproducibility (i.e. adding more 1625 
DEGs did not increase AUC). When we split up the Ruzicka dataset into the 2 different cohorts and ran 1626 
our analyses treating them as different datasets, the meta-analysis maximum AUC did not increase (max 1627 
AUC of 0.59 using genes at -log10(p-value) cutoff of 3.5 vs 0.62 with them combined as one dataset), 1628 
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and the individual Ruzicka datasets only have marginally increased AUCs (Ruzicka_MtSinai=0.52, 1629 
Ruzicka_McLean=0.55, Batiuk=0.58, Ling=0.63). When using the separated Ruzicka cohorts with 1630 
Azimuth higher resolution cell types, the meta-analysis AUC does not increase (0.58). When using 1631 
Ruzicka cell type labels and our DESeq2 pipeline for differential expression then choosing the top 1632 
ranking genes as DEGs, we found that the maximum AUC of MtSinai cohort for predicting McLean 1633 
phenotypes was 0.68 and 0.61 of McLean cohort for predicting MtSinai phenotypes (here we tried 1634 
different numbers of DEGs and found the max AUC at 20 up- and 20 down-regulated genes for each cell 1635 
type), still much below those of AD  datasets with similar sample sizes. When we used the DEGs from 1636 
the Ruzicka manuscript, the AUC of Mt Sinai cohort for predicting McLean phenotypes was 0.59, and the 1637 
AUC of the McLean cohort for predicting MtSinai phenotypes was 0.63. We thus believe the results still 1638 
support SCZ as a disease with lower reproducibility of differential expression than AD, PD, and COVID-1639 
19, a finding consistent with Figure 6 of Ruzicka et al.  1640 
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Supplementary Figures: 1641 

 1642 
Supplementary Table 1. Reproducibility of genes in AD datasets using DESeq2 q-value adjusted p-values to 1643 
define DEGs (FDR<0.05). Genes with logfc<0.25 and less than 10% detection in both cases and controls were 1644 
filtered out. 1645 
 1646 

 1647 
Supplementary Table 2. Reproducibility of genes in PD datasets using DESeq2 q-value adjusted p-values to 1648 
define DEGs (FDR<0.05). Genes with logfc<0.25 and less than 10% detection in both cases and controls were 1649 
filtered out. 1650 
 1651 

 1652 
Supplementary Table 3. Reproducibility of genes in COVID-19 datasets using DESeq2 q-value adjusted p-1653 
values to define DEGs (FDR<0.05). Genes with logfc<0.25 and less than 10% detection in both cases and controls 1654 
were filtered out. 1655 
 1656 
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 1657 
Supplementary Table 4. Reproducibility of genes in SCZ datasets using DESeq2 q-value adjusted p-values to 1658 
define DEGs (FDR<0.05). Genes with logfc<0.25 and less than 10% detection in both cases and controls were 1659 
filtered out. 1660 
 1661 
 1662 

 1663 
Supplementary Table 5. Reproducibility of genes in AD datasets using the top 200 genes of each dataset. 1664 
Genes are ranked by p-value to define DEGs and genes with logfc<0.25 and less than 10% detection in both cases 1665 
and controls were filtered out. 1666 
 1667 

 1668 
Supplementary Table 6. Reproducibility of genes in PD datasets using the top 200 genes of each dataset. 1669 
Genes are ranked by p-value to define DEGs and genes with logfc<0.25 and less than 10% detection in both cases 1670 
and controls were filtered out. 1671 
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 1673 
Supplementary Table 7. Reproducibility of genes in COVID-19 datasets using the top 200 genes of each 1674 
dataset. Genes are ranked by p-value to define DEGs and genes with logfc<0.25 and less than 10% detection in 1675 
both cases and controls were filtered out. 1676 
 1677 

 1678 
Supplementary Table 8. Reproducibility of genes in SCZ datasets using the top 200 genes of each dataset. 1679 
Genes are ranked by p-value to define DEGs and genes with logfc<0.25 and less than 10% detection in both cases 1680 
and controls were filtered out. 1681 
 1682 
 1683 
 1684 
 1685 

 1686 
Supplementary Table 9. Reproducibility of individual SCZ datasets by several metrics. For all analyses here 1687 
the DEG lists included the same number of top genes (based on the 98 SumRank genes with -log10(p-value)>3.40). 1688 
The mean number of DEGs per cell type is calculated from a q-value based FDR threshold of 0.05 after filtering out 1689 
genes with logfc<0.25 and less than 10% detection in both cases and controls (reproducibility metrics with these 1690 
DEGs are not shown due to the very small number of DEGs meeting this criteria). Individual Gene AUC List is the 1691 
list of genes ranked by their individual ability to distinguish cases from controls in all datasets. Relative 1692 
Classification Accuracy is the normalized AUC of individual genes in their ability to distinguish diagnosis status in 1693 
each dataset. Signed -log10(p-value)s were from comparisons of logistic regression models on disease status with 1694 
and without each gene (see Methods for more details). We note that the Individual Gene AUC List and Relative 1695 
Classification Accuracy are likely less accurate for SCZ than the other diseases due to the low number of datasets. 1696 
 1697 
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 1698 
Supplementary Figure 1. Violin plots of expression of the LINGO1 gene in AD datasets.  1699 
 1700 

 1701 
Supplementary Table 10. Reproducibility of individual AD datasets by several metrics with q-value based 1702 
DEGs. For all analyses here the DEG lists were determined by a q-value based FDR threshold of 0.05 after filtering 1703 
out genes with logfc<0.25 and less than 10% detection in both cases and controls. RCA Gene List is the list of genes 1704 
ranked by their individual ability to distinguish cases from controls in all datasets. Relative Classification Accuracy 1705 
is the normalized AUC of individual genes in their ability to distinguish diagnosis status in each dataset. Signed -1706 
log10(p-value)s were from comparisons of logistic regression models on disease status with and without each gene 1707 
(see Methods for more details). The datasets with NA have 0 DEGs at this threshold. 1708 
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 1709 
Supplementary Table 11. Reproducibility of individual PD datasets by several metrics with q-value based 1710 
DEGs. For all analyses here the DEG lists were determined by a q-value based FDR threshold of 0.05 after filtering 1711 
out genes with logfc<0.25 and less than 10% detection in both cases and controls. RCA Gene List is the list of genes 1712 
ranked by their individual ability to distinguish cases from controls in all datasets. Relative Classification Accuracy 1713 
is the normalized AUC of individual genes in their ability to distinguish diagnosis status in each dataset. Signed -1714 
log10(p-value)s were from comparisons of logistic regression models on disease status with and without each gene 1715 
(see Methods for more details). 1716 
 1717 

 1718 
Supplementary Table 12. Reproducibility of individual COVID-19 datasets by several metrics with q-value 1719 
based DEGs. For all analyses here the DEG lists were determined by a q-value based FDR threshold of 0.05 after 1720 
filtering out genes with logfc<0.25 and less than 10% detection in both cases and controls. RCA Gene List is the list 1721 
of genes ranked by their individual ability to distinguish cases from controls in all datasets. Relative Classification 1722 
Accuracy is the normalized AUC of individual genes in their ability to distinguish diagnosis status in each dataset. 1723 
Signed -log10(p-value)s were from comparisons of logistic regression models on disease status with and without 1724 
each gene (see Methods for more details). The datasets with NA for mean AUC have insufficient cells for at least 1725 
one of the major cell types leading to inability to create reliable UCell scores for those datasets.  1726 
 1727 
 1728 
 1729 
 1730 

Mean 
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of DEGs 
per Cell 

Type

Mean abs(log2fc) 
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log10(p-value)s 
of individual 

genes in logistic 
regressions of 
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Individual 

DEGs

Specificity: 
Percentage 
of DEGs in 
Top 10% of 
Individual 
Gene AUC 

List

Mean AUC 
when using 
DEGs as a 
Group to 
Predict 

Diagnoses of 
Other 

Datasets

Dataset

8840.41; 0.7646.0430.61Kamath
610.22; 0.3642.6450.72Wang
630.51; 0.8850.1430.81Lee
70.51; 1.0753.9530.82Martirosyan
780.45; 1.2363.5760.84Smajic
1210.32; 1.2562.4620.87Adams
2020.40; 0.9353.1540.78Average

Mean 
Number 
of DEGs 
per Cell 

Type

Mean 
Correlation 

Between 
Predicted and 
Actual Disease 

Severity of 
Left-Out 
Datasets

Mean abs(log2fc) 
and signed -

log10(p-value)s 
of individual 

genes in logistic 
regressions of 

diagnosis status 
in each dataset

Mean 
Relative 

Classification 
Accuracy of 
Individual 

DEGs

Specificity: 
Percentage 
of DEGs in 
Top 10% of 
Individual 
Gene AUC 

List

Mean AUC 
when using 
DEGs as a 
Group to 
Predict 

Diagnoses 
of Other 
Datasets

Dataset

4020.050.33; 0.6335.4300.50Su
1710-0.270.24; 0.4132.2210.72Schulteschrepping

57NA0.29; 0.5641.3420.55Yu
491-0.360.27; 0.6532.4300.72Zhu
4230.160.35; 0.7238.5280.72Liao
4050.020.26; 0.2636.5160.76Trump
1470.000.12; 0.4234.3350.69Wen
420.190.46; 0.8049.2470.77Lee

4360.210.40; 0.7243.3400.81Wilk
4820.150.30; 0.6037.2320.84Arunachalam
987-0.280.28; 0.4334.9260.85Combes
783-0.320.39; 0.5641.0330.82Stephenson
75NA0.20; 0.4235.2NANABacher

347NA0.15; 0.1428.2NANAChua
227NA0.00; 0.2315.1NANAKusnadi
344NA0.09; 0.2926.7NANAMeckiff
460-0.040.26; 0.4935.1320.73Average
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 1731 
Supplementary Figure 2. Violin plots of expression of the RASGRP3 gene in microglia of AD datasets.  1732 
 1733 

 1734 
Supplementary Table 13. Reproducibility metrics with different conditions. The following covariates were 1735 
regressed out if they were present in the metadata for the dataset: sex, age, PMI, RIN, education level, ethnicity, 1736 
language, age at death, batch, fixation interval, nCount_RNA, and nFeature_RNA. For all analyses here the DEG 1737 
lists included the same number of top genes (based on the 814 SumRank genes with -log10(p-value)>3.65). 1738 
Individual Gene AUC List is the list of genes ranked by their individual ability to distinguish cases from controls in 1739 
all datasets. Relative Classification Accuracy is the normalized AUC of individual genes in their ability to 1740 
distinguish diagnosis status in each dataset. Signed -log10(p-value)s were from comparisons of logistic regression 1741 
models on disease status with and without each gene (see Methods for more details). The Barker dataset was 1742 
removed from the linear regression analysis due to its focus on individuals with similar Braak scores but differing 1743 
cognitive impairment. 1744 

Mean Negative 
log10 p-value of 

individual genes in 
logistic regressions 
of diagnosis status 

in each dataset

Mean abs(log2fc) of 
individual genes in 

comparisons of 
cases vs. controls 

in each dataset

Mean Relative 
Classification 

Accuracy of 
Individual 

DEGs

Specificity: 
Percentage of 

DEGs in Top 
10% of RCA 

Gene List

Mean AUC when 
using DEGs as a 
Group to Predict 

Diagnoses of Left-
Out Datasets

Analysis Method

1.160.3364.4730.784Original: DESeq2 without 
regressing out covariates in 

all 21 datasets
1.170.3665.5700.771DESeq2 regressing out 

covariates in all 21 datasets
1.210.3164.3700.778DESeq2 without regressing 

out covariates in 11 
datasets of 10+ cases

1.160.3465.0660.793DESeq2 regressing out 
covariates in 11 datasets of 

10+ cases
1.230.2868.6780.761Logistic Regression 

regressing out covariates in 
all 21 datasets

1.210.2566.9760.759Linear Regression on Braak
Score regressing out 

covariates in all datasets 
(except Barker dataset) 
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 1745 
Supplementary Table 14. Reproducibility metrics when all AD datasets are subsetted to 6 cases and 6 controls 1746 
each (Leng_EC and YangCortex are not present due to not having sufficient sample size). For all analyses here the 1747 
DEG lists included the same number of top genes (based on the 814 SumRank genes with -log10(p-value)>3.65). 1748 
Individual Gene AUC List is the list of genes ranked by their individual ability to distinguish cases from controls in 1749 
all datasets. Relative Classification Accuracy is the normalized AUC of individual genes in their ability to 1750 
distinguish diagnosis status in each dataset. Signed -log10(p-value)s were from comparisons of logistic regression 1751 
models on disease status with and without each gene (see Methods for more details). 1752 
 1753 

 1754 
Supplementary Table 15. Reproducibility metrics of SumRank meta-analysis DEGs when AD datasets 1755 
successively added from datasets with lowest AUC to datasets with highest AUC. For all analyses here the DEG 1756 
lists included the same number of top genes (based on the 814 SumRank genes with -log10(p-value)>3.65). 1757 
Individual Gene AUC List is the list of genes ranked by their individual ability to distinguish cases from controls in 1758 
all datasets. Relative Classification Accuracy is the normalized AUC of individual genes in their ability to 1759 
distinguish diagnosis status in each dataset. Signed -log10(p-value)s were from comparisons of logistic regression 1760 
models on disease status with and without each gene (see Methods for more details). 1761 

Mean Negative log10 p-value 
of individual genes in logistic 

regressions of diagnosis 
status in each dataset

Mean abs(log2fc) of 
individual genes in 

comparisons of cases 
vs. controls in each 

dataset

Mean Relative 
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Accuracy of 
Individual DEGs

Specificity: 
Percentage of 

DEGs in Top 10% 
of RCA Gene List

Mean AUC when using 
DEGs as a Group to 

Predict Diagnoses of 
Left-Out Datasets

Dataset

0.050.0230.4200.70Mathys
0.250.1341.3360.64Grubman
0.280.1137.8280.71Lau
0.510.1551.9430.67Morabito
0.380.1346.2410.68Zhou
0.060.0231.3240.55OteroGarcia
0.310.1140.2290.60Gerrits_OTC
0.290.1338.5290.66Smith_EC
0.370.1343.1320.72Sadick
0.290.1045.9350.69Barker
0.350.1144.4350.65Sayed
-0.01-0.0223.8110.65Hoffman
-0.010.0024.0110.64Fujita
0.220.0836.2250.68MathysCell
0.430.1339.0320.86Gabitto

Mean Negative log10 p-value 
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regressions of diagnosis 
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individual genes in 

comparisons of cases 
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Individual DEGs

Specificity: 
Percentage of 

DEGs in Top 10% 
of RCA Gene List

Mean AUC when using 
DEGs as a Group to 

Predict Diagnoses of 
Left-Out Datasets

Number of 
Datasets 

(from worst 
performing 

to best)

0.300.1339.540.300.703
0.260.1236.980.260.674
0.220.1134.890.220.675
0.250.1336.690.250.736
0.280.1640.380.280.727
0.400.2147.620.400.758
0.470.2451.010.470.759
0.550.2554.550.550.7610
0.600.2856.930.600.7611
0.650.2959.050.650.7712
0.650.2958.710.650.7513
0.670.3159.810.670.7714
0.720.3362.800.720.7715
0.730.3363.890.730.7716
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 1762 
Supplementary Table 16. Reproducibility metrics of SumRank meta-analysis DEGs when AD datasets 1763 
successively added from datasets with highest AUC to datasets with lowest AUC. For all analyses here the DEG 1764 
lists included the same number of top genes (based on the 814 SumRank genes with -log10(p-value)>3.65). 1765 
Individual Gene AUC List is the list of genes ranked by their individual ability to distinguish cases from controls in 1766 
all datasets. Relative Classification Accuracy is the normalized AUC of individual genes in their ability to 1767 
distinguish diagnosis status in each dataset. Signed -log10(p-value)s were from comparisons of logistic regression 1768 
models on disease status with and without each gene (see Methods for more details). 1769 
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Mean Negative log10 p-value 
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regressions of diagnosis 
status in each dataset

Mean abs(log2fc) of 
individual genes in 
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Mean AUC when using 
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Predict Diagnoses of 
Left-Out Datasets

Number of 
Datasets 

(from best 
performing 

to worst)

0.570.2161.850.570.773
0.540.2358.840.540.774
0.580.2359.190.580.755
0.580.2459.460.580.756
0.590.2459.120.590.757
0.640.2761.500.640.778
0.640.2962.320.640.789
0.710.3064.820.710.7710
0.730.3065.730.730.7411
0.750.3166.370.750.7412
0.740.3165.480.740.7513
0.740.3164.990.740.7514
0.730.3364.770.730.7715
0.740.3364.910.740.7516
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Supplementary Figure 3. Manhattan plots of up-regulated genes in SCZ. Significance threshold is in red with 1842 
0.05 FDR cutoff (Benjamini-Hochberg). In orange is a -log10(p-value) cutoff that maximizes AUC (3.40 for SCZ). 1843 
The x-axis are genes arranged in alphabetical order. Supplementary Data File 6 provides all genes with their p-1844 
values. 1845 
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Supplementary Figure 4. Manhattan plots of down-regulated genes in SCZ. Significance threshold is in red 1894 
with 0.05 FDR cutoff (Benjamini-Hochberg). In orange is a -log10(p-value) cutoff that maximizes AUC (3.40 for 1895 
SCZ). The x-axis are genes arranged in alphabetical order. Supplementary Data File 6 provides all genes with their 1896 
p-values. 1897 
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Supplementary Figure 5. Number of up- and down-regulated genes in AD, PD, COVID-19, and SCZ. A-B) 1938 
Number of up- and down-regulated genes in AD with a cutoff of 0.05 from Benjamini-Hochberg corrected p-values 1939 
or a -log10(p-value)>3.65, respectively. C-D) Number of up- and down-regulated genes in PD with a cutoff of 0.05 1940 
from Benjamini-Hochberg corrected p-values or a -log10(p-value)>3.35, respectively. 1941 
E-F) Number of up- and down-regulated genes in COVID-19 with a cutoff of 0.05 from Benjamini-Hochberg 1942 
corrected p-values or a -log10(p-value)>3.90, respectively. G) Number of up- and down-regulated genes in SCZ 1943 
with a cutoff -log10(p-value)>3.40. At an FDR cutoff of 0.05 no DEGs are present for SCZ so no plot is shown. 1944 
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Supplementary Figure 6. Number of cell types each DEG is present in for AD, PD, COVID-19, and SCZ. A-1997 
B) Percentage of genes present in each number of cell types in AD with a cutoff of 0.05 from Benjamini-Hochberg 1998 
corrected p-values or a -log10(p-value)>3.65, respectively. C-D) Percentage of genes present in each number of cell 1999 
types in PD with a cutoff of 0.05 from Benjamini-Hochberg corrected p-values or a -log10(p-value)>3.35, 2000 
respectively. E-F) Percentage of genes present in each number of cell types in COVID-19 with a cutoff of 0.05 from 2001 
Benjamini-Hochberg corrected p-values or a -log10(p-value)>3.90, respectively. G) Percentage of genes present in 2002 
each number of cell types in SCZ with a cutoff -log10(p-value)>3.40. At an FDR cutoff of 0.05 no DEGs are present 2003 
for SCZ so no plot is shown. 2004 
 2005 

A B C 

D F E 

G 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 16, 2024. ; https://doi.org/10.1101/2024.10.15.618577doi: bioRxiv preprint 

https://doi.org/10.1101/2024.10.15.618577
http://creativecommons.org/licenses/by-nc-nd/4.0/


 50 

 2006 
 2007 

  2008 
 2009 
 2010 
 2011 
 2012 
 2013 
 2014 
 2015 
 2016 
 2017 
 2018 
 2019 
 2020 
Supplementary Figure 7. Heatmaps of correlations of UCell scores across cell types. A) Correlations in AD at 2021 
cell type level l2. B) Correlations in COVID-19 at cell type level l1. C) Correlations in COVID-19 UCell scores at 2022 
cell type level l2. 2023 
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Supplementary Figure 8. Comparisons of AD and COVID-19 gene sets discovered by different meta-analysis 2080 
methods. AD DEGs are compared based on their A) specificity, as measured by the percentage of their genes that 2081 
intersect with the RCA Gene List (at different thresholds), and B) specificity, as measured by the percentage of the 2082 
top 50 RCA Gene List genes found in the meta-analysis DEG list at different thresholds. Results are taken across all 2083 
cell types. The same analyses are shown for COVID-19 in C) and D). E) Relative Classification Accuracy, the mean 2084 
AUC of individual genes in their ability to distinguish diagnosis status in each dataset (averaged over all genes in the 2085 
gene set). The number of genes for A-E are spread evenly across up and down-regulated and all the different cell 2086 
types.  2087 
  2088 
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 2089 

      2090 

     2091 
Supplementary Figure 9. Average reproducibility of genes vs effect size and variance within each cell type for 2092 
AD, PD, and COVID-19. The average AUC of significant DEGs in each cell type is plotted against their average 2093 
log2fc for A) up-regulated and B) down-regulated genes. The average AUC of significant DEGs in each cell type is 2094 
plotted against their average variance/log2fc for C) up-regulated and D) down-regulated genes AUCs for each DEG 2095 
are calculated based on their ability to predict case-control status in all datasets. 2096 
 2097 
 2098 
 2099 
 2100 
 2101 
 2102 
 2103 
 2104 
 2105 
 2106 

B A 

D C 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 16, 2024. ; https://doi.org/10.1101/2024.10.15.618577doi: bioRxiv preprint 

https://doi.org/10.1101/2024.10.15.618577
http://creativecommons.org/licenses/by-nc-nd/4.0/


 53 

 2107 
  2108 
 2109 
 2110 
 2111 
 2112 
 2113 
 2114 
 2115 
 2116 
 2117 
 2118 
 2119 
 2120 
 2121 
 2122 
 2123 
 2124 
 2125 
 2126 
 2127 
 2128 
 2129 
 2130 
 2131 
 2132 
 2133 
 2134 
 2135 
 2136 
 2137 
 2138 
 2139 
 2140 
 2141 
 2142 
 2143 
 2144 
 2145 
 2146 
 2147 
 2148 
 2149 
 2150 
 2151 
 2152 
 2153 
 2154 
 2155 
 2156 
 2157 
 2158 
 2159 
 2160 
 2161 
 2162 
Supplementary Figure 10. Reproducibility metrics after random down-sampling of large datasets. A) Relative 2163 
Classification Accuracy at different numbers of individuals in MathysCell dataset. 2164 
B-E) Average reproducibility metrics after down-sampling the MathysCell, Hoffman, Fujita, and Stephenson 2165 
datasets. Gene Set AUC is the mean AUC when using the set of DEGs to predict diagnoses of other datasets. 2166 
Relative Classification Accuracy is the normalized AUC of individual genes in their ability to distinguish diagnosis 2167 
status in each dataset. Mean abs(log2fc) were from comparisons of cases vs controls. For all analyses here the DEG 2168 
lists included the same number of top genes (based on the 814 SumRank genes with -log10(p-value)>3.65). For the 2169 
Stephenson dataset (E), the points represent cases and controls in the following combinations: ((5,5), (10,10), 2170 
(15,15), (20,20), (30,20), (40,20), (50,20), (70,20), and (80,20)). All points in B-E are plotted as the mean values 2171 
after 20 random iterations. 2172 
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 2177 
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 2178 
Supplementary Figure 11. Reproducibility metrics of SumRank AD DEGs after random down-sampling of 2179 
cells. Gene Set AUC is the mean AUC when using the set of DEGs to predict diagnoses of other datasets. Relative 2180 
Classification Accuracy is the normalized AUC of individual genes in their ability to distinguish diagnosis status in 2181 
each dataset. Mean abs(log2fc) were from comparisons of cases vs controls in each dataset. For all analyses here the 2182 
DEG lists included the same number of top genes (based on the 814 SumRank genes with -log10(p-value)>3.65). 2183 
The following down-sampling proportions were used: (0.001, 0.005, 0.001, 0.05, 0.1, 0.5). 2184 
 2185 
 2186 
 2187 
 2188 
 2189 
 2190 
 2191 
 2192 
 2193 
 2194 
 2195 
 2196 
 2197 
 2198 
 2199 
 2200 
 2201 
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Disease Gene Study 
Type 

Cell Type -log10(p-
value) 

Up- or Down-
Regulated 

AD ABCA7 WES Astrocytes 4.61 Up 
AD APOE WES Microglia 6.30 Up 
AD PILRA WES Microglia 3.80 Up 
AD TREM2 WES Microglia 4.43 Up 
AD CR1 GWAS Oligodendrocytes 3.67 Up 
AD ABCA7 GWAS Astrocytes 4.61 Up 
AD INPP5D GWAS Astrocytes 5.31 Up 
AD EGFR GWAS Oligodendrocyte 

Precursor Cell 
5.43 Up 

AD MAF GWAS Glutamatergic 
Excitatory 
Neurons 

4.45 Up 

AD APOE GWAS Microglia 6.30 Up 
AD GRN GWAS Microglia 4.50 Up 
AD SORT1 GWAS Microglia 5.20 Up 
AD TREM2 GWAS Microglia 4.43 Up 
PD ALG10 GWAS Oligodendrocytes 3.45 Down 
PD BIN3 GWAS Oligodendrocytes 3.63 Down 
PD CCT3 GWAS Oligodendrocytes 3.82 Down 
PD CCT3 GWAS Astrocytes 5.01 Down 
PD PIK3CA GWAS Astrocytes 3.88 Down 
PD CCT3 GWAS Oligodendrocyte 

Precursor Cell 
5.82 Down 

PD MAPT GWAS Oligodendrocyte 
Precursor Cell 

5.80 Down 

PD PIK3CA GWAS Oligodendrocyte 
Precursor Cell 

5.84 Down 

PD CCT3 GWAS Microglia 3.86 Down 
PD PIK3CA GWAS Microglia 3.96 Down 
PD SCARB2 GWAS Microglia 4.14 Down 

 2202 
Supplementary Table 17. Genes significant in SumRank meta-analysis that are also significant in human 2203 
genetic studies. The -log10(p-value)s listed here are from the SumRank meta-analysis. See Methods for more 2204 
details of specific human genetic studies used. 2205 
 2206 
 2207 
 2208 
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 2209 
Supplementary Figure 12. Expression of ZFP36L1 gene in males and females in astrocytes across different 2210 
datasets. Each point represents an individual. Analyses performed in DESeq2 (see Methods). M=male; F=female. 2211 
 2212 
 2213 
 2214 

 2215 
Supplementary Figure 13.  Male and female expression of TTC22 in different AD datasets. The ratios of mean 2216 
expression of cases over mean expression of controls in females (y-axis) and males (x-axis). Error bars are standard 2217 
deviations. Values above the line (intercept=0, slope=1) are up-regulated in females more than males, while values 2218 
below the line are up-regulated in males more than females. This TTC22 gene was the top gene with putative 2219 
female-specific expression based on the merge Sex Interaction method with p_val_Bonferroni<5e-13.  2220 
 2221 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 16, 2024. ; https://doi.org/10.1101/2024.10.15.618577doi: bioRxiv preprint 

https://doi.org/10.1101/2024.10.15.618577
http://creativecommons.org/licenses/by-nc-nd/4.0/


 57 

References 2222 
 2223 
1 Schirmer, L. et al. Neuronal vulnerability and multilineage diversity in multiple sclerosis. 2224 

Nature 573, 75-82 (2019).  2225 
2 Jäkel, S. et al. Altered human oligodendrocyte heterogeneity in multiple sclerosis. Nature 2226 

566, 543-547 (2019).  2227 
3 Kihara, Y. et al. Single-nucleus RNA-seq of normal-appearing brain regions in relapsing-2228 

remitting vs. secondary progressive multiple sclerosis: implications for the efficacy of 2229 
fingolimod. Frontiers in Cellular Neuroscience 16, 918041 (2022).  2230 

4 Ruzicka, W. B. et al. Single-cell multi-cohort dissection of the schizophrenia 2231 
transcriptome. Science 384, eadg5136 (2024).  2232 

5 Batiuk, M. Y. et al. Upper cortical layer–driven network impairment in schizophrenia. 2233 
Science Advances 8, eabn8367 (2022).  2234 

6 Ling, E. et al. A concerted neuron–astrocyte program declines in ageing and 2235 
schizophrenia. Nature 627, 604-611 (2024).  2236 

7 Nagy, C. et al. Single-nucleus transcriptomics of the prefrontal cortex in major 2237 
depressive disorder implicates oligodendrocyte precursor cells and excitatory neurons. 2238 
Nature neuroscience 23, 771-781 (2020).  2239 

8 Velmeshev, D. et al. Single-cell genomics identifies cell type–specific molecular changes 2240 
in autism. Science 364, 685-689 (2019).  2241 

9 Gandal, M. J. et al. Broad transcriptomic dysregulation occurs across the cerebral cortex 2242 
in ASD. Nature 611, 532-539 (2022).  2243 

10 Smajić, S. et al. Single-cell sequencing of human midbrain reveals glial activation and a 2244 
Parkinson-specific neuronal state. Brain 145, 964-978 (2022).  2245 

11 Kamath, T. et al. Single-cell genomic profiling of human dopamine neurons identifies a 2246 
population that selectively degenerates in Parkinson’s disease. Nature neuroscience 25, 2247 
588-595 (2022).  2248 

12 Martirosyan, A. et al. Unravelling cell type-specific responses to Parkinson’s Disease at 2249 
single cell resolution. Molecular neurodegeneration 19, 1-24 (2024).  2250 

13 Lee, A. J. et al. Characterization of altered molecular mechanisms in Parkinson’s disease 2251 
through cell type–resolved multiomics analyses. Science Advances 9, eabo2467 (2023).  2252 

14 Adams, L., Song, M. K., Yuen, S., Tanaka, Y. & Kim, Y.-S. A single-nuclei paired 2253 
multiomic analysis of the human midbrain reveals age-and Parkinson’s disease–2254 
associated glial changes. Nature Aging 4, 364-378 (2024).  2255 

15 Wang, Q. et al. Molecular profiling of human substantia nigra identifies diverse neuron 2256 
types associated with vulnerability in Parkinson’s disease. Science advances 10, eadi8287 2257 
(2024).  2258 

16 van den Oord, E. J., Xie, L. Y., Zhao, M., Aberg, K. A. & Clark, S. L. A single‐nucleus 2259 
transcriptomics study of alcohol use disorder in the nucleus accumbens. Addiction 2260 
biology 28, e13250 (2023).  2261 

17 Brenner, E. et al. Single cell transcriptome profiling of the human alcohol-dependent 2262 
brain. Human Molecular Genetics 29, 1144-1153 (2020).  2263 

18 Renthal, W. et al. Characterization of human mosaic Rett syndrome brain tissue by 2264 
single-nucleus RNA sequencing. Nature neuroscience 21, 1670-1679 (2018).  2265 

19 Mitroi, D. N., Tian, M., Kawaguchi, R., Lowry, W. E. & Carmichael, S. T. Single‐2266 
nucleus transcriptome analysis reveals disease‐and regeneration‐associated endothelial 2267 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 16, 2024. ; https://doi.org/10.1101/2024.10.15.618577doi: bioRxiv preprint 

https://doi.org/10.1101/2024.10.15.618577
http://creativecommons.org/licenses/by-nc-nd/4.0/


 58 

cells in white matter vascular dementia. Journal of Cellular and Molecular Medicine 26, 2268 
3183-3195 (2022).  2269 

20 Lee, H. et al. Cell type-specific transcriptomics reveals that mutant huntingtin leads to 2270 
mitochondrial RNA release and neuronal innate immune activation. Neuron 107, 891-2271 
908. e898 (2020).  2272 

21 Matsushima, A. et al. Transcriptional vulnerabilities of striatal neurons in human and 2273 
rodent models of Huntington’s disease. Nature Communications 14, 282 (2023).  2274 

22 Al-Dalahmah, O. et al. Single-nucleus RNA-seq identifies Huntington disease astrocyte 2275 
states. Acta neuropathologica communications 8, 1-21 (2020).  2276 

23 Lim, R. G. et al. Huntington disease oligodendrocyte maturation deficits revealed by 2277 
single-nucleus RNAseq are rescued by thiamine-biotin supplementation. Nature 2278 
Communications 13, 7791 (2022).  2279 

24 Fujita, M. et al. Cell subtype-specific effects of genetic variation in the Alzheimer’s 2280 
disease brain. Nature Genetics, 1-10 (2024).  2281 

25 Su, Y. et al. Multi-omics resolves a sharp disease-state shift between mild and moderate 2282 
COVID-19. Cell 183, 1479-1495. e1420 (2020).  2283 

26 Hoffman, G. E. et al. Efficient differential expression analysis of large-scale single cell 2284 
transcriptomics data using dreamlet. bioRxiv, 2023.2003. 2017.533005 (2023).  2285 

27 Stephenson, E. et al. Single-cell multi-omics analysis of the immune response in COVID-2286 
19. Nature medicine 27, 904-916 (2021).  2287 

28 Squair, J. W. et al. Confronting false discoveries in single-cell differential expression. 2288 
Nature communications 12, 1-15 (2021).  2289 

29 Murphy, A. E., Fancy, N. & Skene, N. Avoiding false discoveries in single-cell RNA-seq 2290 
by revisiting the first Alzheimer’s disease dataset. Elife 12, RP90214 (2023).  2291 

30 Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion 2292 
for RNA-seq data with DESeq2. Genome biology 15, 1-21 (2014).  2293 

31 Cembrowski, M. S. Single-cell transcriptomics as a framework and roadmap for 2294 
understanding the brain. Journal of neuroscience methods 326, 108353 (2019).  2295 

32 Wendt, F. R., Pathak, G. A., Tylee, D. S., Goswami, A. & Polimanti, R. Heterogeneity 2296 
and polygenicity in psychiatric disorders: a genome-wide perspective. Chronic Stress 4, 2297 
2470547020924844 (2020).  2298 

33 Marigorta, U. M., Rodríguez, J. A., Gibson, G. & Navarro, A. Replicability and 2299 
prediction: lessons and challenges from GWAS. Trends in Genetics 34, 504-517 (2018).  2300 

34 Willer, C. J., Li, Y. & Abecasis, G. R. METAL: fast and efficient meta-analysis of 2301 
genomewide association scans. Bioinformatics 26, 2190-2191 (2010).  2302 

35 Mägi, R. & Morris, A. P. GWAMA: software for genome-wide association meta-2303 
analysis. BMC bioinformatics 11, 1-6 (2010).  2304 

36 Evangelou, E. & Ioannidis, J. P. Meta-analysis methods for genome-wide association 2305 
studies and beyond. Nature Reviews Genetics 14, 379-389 (2013).  2306 

37 Bakken, T. E. et al. Comparative cellular analysis of motor cortex in human, marmoset 2307 
and mouse. Nature 598, 111-119 (2021).  2308 

38 Hao, Y. et al. Integrated analysis of multimodal single-cell data. Cell 184, 3573-3587. 2309 
e3529 (2021).  2310 

39 Junttila, S., Smolander, J. & Elo, L. L. Benchmarking methods for detecting differential 2311 
states between conditions from multi-subject single-cell RNA-seq data. Briefings in 2312 
bioinformatics 23, bbac286 (2022).  2313 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 16, 2024. ; https://doi.org/10.1101/2024.10.15.618577doi: bioRxiv preprint 

https://doi.org/10.1101/2024.10.15.618577
http://creativecommons.org/licenses/by-nc-nd/4.0/


 59 

40 Murdock, M. H. & Tsai, L.-H. Insights into Alzheimer’s disease from single-cell 2314 
genomic approaches. Nature Neuroscience, 1-15 (2023).  2315 

41 Andreatta, M. & Carmona, S. J. UCell: Robust and scalable single-cell gene signature 2316 
scoring. Computational and structural biotechnology journal 19, 3796-3798 (2021).  2317 

42 Schwarzer, G., Carpenter, J. R. & Rücker, G. Meta-analysis with R. Vol. 4784 (Springer, 2318 
2015). 2319 

43 Conway, J. R., Lex, A. & Gehlenborg, N. UpSetR: an R package for the visualization of 2320 
intersecting sets and their properties. Bioinformatics 33, 2938-2940 (2017).  2321 

44 Mathys, H. et al. Single-cell transcriptomic analysis of Alzheimer’s disease. Nature 570, 2322 
332-337 (2019).  2323 

45 Gabitto, M. I. et al. Integrated multimodal cell atlas of Alzheimer’s disease. bioRxiv, 2324 
2023.2005. 2008.539485 (2023).  2325 

46 Hao, Y. et al. Dictionary learning for integrative, multimodal and scalable single-cell 2326 
analysis. Nature Biotechnology, 1-12 (2023).  2327 

47 Fujita, M. et al. Cell-subtype specific effects of genetic variation in the aging and 2328 
Alzheimer cortex. bioRxiv, 2022.2011. 2007.515446 (2022).  2329 

48 Mathys, H. et al. Single-cell atlas reveals correlates of high cognitive function, dementia, 2330 
and resilience to Alzheimer’s disease pathology. Cell 186, 4365-4385. e4327 (2023).  2331 

49 Wu, T. et al. clusterProfiler 4.0: A universal enrichment tool for interpreting omics data. 2332 
The Innovation 2, 100141 (2021).  2333 

50 Jiang, L. et al. Systematic reconstruction of molecular pathway signatures using scalable 2334 
single-cell perturbation screens. bioRxiv, 2024.2001. 2029.576933 (2024).  2335 

51 Cattaneo, A. et al. The expression of VGF is reduced in leukocytes of depressed patients 2336 
and it is restored by effective antidepressant treatment. Neuropsychopharmacology 35, 2337 
1423-1428 (2010).  2338 

52 Giusto, E. et al. Prospective role of PAK6 and 14-3-3γ as biomarkers for Parkinson’s 2339 
disease. Journal of Parkinson's Disease, 1-12 (2024).  2340 

53 Xi, M. et al. Therapeutic potential of phosphodiesterase inhibitors for cognitive 2341 
amelioration in Alzheimer's disease. European Journal of Medicinal Chemistry 232, 2342 
114170 (2022).  2343 

54 Sikora, J. et al. Quetiapine and novel PDE10A inhibitors potentiate the anti-BuChE 2344 
activity of donepezil. Journal of Enzyme Inhibition and Medicinal Chemistry 35, 1743-2345 
1750 (2020).  2346 

55 Kageyama, R., Ohtsuka, T. & Kobayashi, T. Roles of Hes genes in neural development. 2347 
Development, growth & differentiation 50, S97-S103 (2008).  2348 

56 Bai, G. et al. Epigenetic dysregulation of hairy and enhancer of split 4 (HES4) is 2349 
associated with striatal degeneration in postmortem Huntington brains. Human molecular 2350 
genetics 24, 1441-1456 (2015).  2351 

57 Bozdagi, O. et al. The neurotrophin-inducible gene Vgf regulates hippocampal function 2352 
and behavior through a brain-derived neurotrophic factor-dependent mechanism. Journal 2353 
of Neuroscience 28, 9857-9869 (2008).  2354 

58 Ali, M. & Bracko, O. VEGF paradoxically reduces cerebral blood flow in Alzheimer’s 2355 
disease mice. Neuroscience Insights 17, 26331055221109254 (2022).  2356 

59 De Schepper, S. et al. Perivascular cells induce microglial phagocytic states and synaptic 2357 
engulfment via SPP1 in mouse models of Alzheimer’s disease. Nature Neuroscience 26, 2358 
406-415 (2023).  2359 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 16, 2024. ; https://doi.org/10.1101/2024.10.15.618577doi: bioRxiv preprint 

https://doi.org/10.1101/2024.10.15.618577
http://creativecommons.org/licenses/by-nc-nd/4.0/


 60 

60 Gurses, M. S., Ural, M. N., Gulec, M. A., Akyol, O. & Akyol, S. Pathophysiological 2360 
function of ADAMTS enzymes on molecular mechanism of Alzheimer’s disease. Aging 2361 
and disease 7, 479 (2016).  2362 

61 Nandi, A., Yan, L.-J., Jana, C. K. & Das, N. Role of catalase in oxidative stress‐and age‐2363 
associated degenerative diseases. Oxidative medicine and cellular longevity 2019, 2364 
9613090 (2019).  2365 

62 Nell, H. J. et al. Targeted antioxidant, catalase–SKL, reduces beta‐amyloid toxicity in the 2366 
rat brain. Brain Pathology 27, 86-94 (2017).  2367 

63 Forner, S. et al. Systematic phenotyping and characterization of the 5xFAD mouse model 2368 
of Alzheimer’s disease. Scientific data 8, 270 (2021).  2369 

64 Nong, X. et al. The mechanism of branched-chain amino acid transferases in different 2370 
diseases: Research progress and future prospects. Frontiers in Oncology 12, 988290 2371 
(2022).  2372 

65 Bellenguez, C. et al. New insights into the genetic etiology of Alzheimer’s disease and 2373 
related dementias. Nature genetics 54, 412-436 (2022).  2374 

66 Wightman, D. P. et al. A genome-wide association study with 1,126,563 individuals 2375 
identifies new risk loci for Alzheimer’s disease. Nature genetics 53, 1276-1282 (2021).  2376 

67 De Rojas, I. et al. Common variants in Alzheimer’s disease and risk stratification by 2377 
polygenic risk scores. Nature communications 12, 3417 (2021).  2378 

68 Bis, J. C. et al. Whole exome sequencing study identifies novel rare and common 2379 
Alzheimer’s-Associated variants involved in immune response and transcriptional 2380 
regulation. Molecular psychiatry 25, 1859-1875 (2020).  2381 

69 Holstege, H. et al. Exome sequencing identifies rare damaging variants in ATP8B4 and 2382 
ABCA1 as risk factors for Alzheimer’s disease. Nature Genetics, 1-9 (2022).  2383 

70 Prokopenko, D. et al. Whole‐genome sequencing reveals new Alzheimer's disease–2384 
associated rare variants in loci related to synaptic function and neuronal development. 2385 
Alzheimer's & Dementia 17, 1509-1527 (2021).  2386 

71 Kim, J. J. et al. Multi-ancestry genome-wide association meta-analysis of Parkinson’s 2387 
disease. Nature genetics 56, 27-36 (2024).  2388 

72 Guo, L., Zhong, M. B., Zhang, L., Zhang, B. & Cai, D. Sex differences in Alzheimer’s 2389 
disease: Insights from the multiomics landscape. Biological psychiatry 91, 61-71 (2022).  2390 

73 Zhao, S., Ye, B., Chi, H., Cheng, C. & Liu, J. Identification of peripheral blood immune 2391 
infiltration signatures and construction of monocyte-associated signatures in ovarian 2392 
cancer and Alzheimer's disease using single-cell sequencing. Heliyon 9 (2023).  2393 

74 Patel, H., Dobson, R. J. & Newhouse, S. J. A meta-analysis of Alzheimer’s disease brain 2394 
transcriptomic data. Journal of Alzheimer's Disease 68, 1635-1656 (2019).  2395 

75 Tian, Y. et al. Identification of diagnostic signatures associated with immune infiltration 2396 
in Alzheimer’s disease by integrating bioinformatic analysis and machine-learning 2397 
strategies. Frontiers in Aging Neuroscience 14, 919614 (2022).  2398 

76 Walters, S. et al. Associations of sex, race, and apolipoprotein e alleles with multiple 2399 
domains of cognition among older adults. JAMA neurology 80, 929-939 (2023).  2400 

77 Loh, P.-R., Kichaev, G., Gazal, S., Schoech, A. P. & Price, A. L. Mixed-model 2401 
association for biobank-scale datasets. Nature genetics 50, 906-908 (2018).  2402 

78 Uffelmann, E. et al. Genome-wide association studies. Nature Reviews Methods Primers 2403 
1, 59 (2021).  2404 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 16, 2024. ; https://doi.org/10.1101/2024.10.15.618577doi: bioRxiv preprint 

https://doi.org/10.1101/2024.10.15.618577
http://creativecommons.org/licenses/by-nc-nd/4.0/


 61 

79 Li, Y. et al. Analyzing bivariate cross-trait genetic architecture in GWAS summary 2405 
statistics with the BIGA cloud computing platform. bioRxiv, 2023.2004. 2028.538585 2406 
(2023).  2407 

80 Plenge, R. M., Scolnick, E. M. & Altshuler, D. Validating therapeutic targets through 2408 
human genetics. Nature reviews Drug discovery 12, 581-594 (2013).  2409 

81 Otero-Garcia, M. et al. Molecular signatures underlying neurofibrillary tangle 2410 
susceptibility in Alzheimer’s disease. Neuron 110, 2929-2948. e2928 (2022).  2411 

82 Leng, K. et al. Molecular characterization of selectively vulnerable neurons in 2412 
Alzheimer’s disease. Nature neuroscience 24, 276-287 (2021).  2413 

83 Zhou, Y. et al. Human and mouse single-nucleus transcriptomics reveal TREM2-2414 
dependent and TREM2-independent cellular responses in Alzheimer’s disease. Nature 2415 
medicine 26, 131-142 (2020).  2416 

84 Grubman, A. et al. A single-cell atlas of entorhinal cortex from individuals with 2417 
Alzheimer’s disease reveals cell-type-specific gene expression regulation. Nature 2418 
neuroscience 22, 2087-2097 (2019).  2419 

85 Morabito, S. et al. Single-nucleus chromatin accessibility and transcriptomic 2420 
characterization of Alzheimer’s disease. Nature genetics 53, 1143-1155 (2021).  2421 

86 Lau, S.-F., Cao, H., Fu, A. K. & Ip, N. Y. Single-nucleus transcriptome analysis reveals 2422 
dysregulation of angiogenic endothelial cells and neuroprotective glia in Alzheimer’s 2423 
disease. Proceedings of the National Academy of Sciences 117, 25800-25809 (2020).  2424 

87 Yang, A. C. et al. A human brain vascular atlas reveals diverse mediators of Alzheimer’s 2425 
risk. Nature 603, 885-892 (2022).  2426 

88 Sayed, F. A. et al. AD-linked R47H-TREM2 mutation induces disease-enhancing 2427 
microglial states via AKT hyperactivation. Science translational medicine 13, eabe3947 2428 
(2021).  2429 

89 Gerrits, E. et al. Distinct amyloid-β and tau-associated microglia profiles in Alzheimer’s 2430 
disease. Acta neuropathologica 141, 681-696 (2021).  2431 

90 Smith, A. M. et al. Diverse human astrocyte and microglial transcriptional responses to 2432 
Alzheimer’s pathology. Acta neuropathologica 143, 75-91 (2022).  2433 

91 Sadick, J. S. et al. Astrocytes and oligodendrocytes undergo subtype-specific 2434 
transcriptional changes in Alzheimer’s disease. Neuron 110, 1788-1805. e1710 (2022).  2435 

92 Barker, S. J. et al. MEF2 is a key regulator of cognitive potential and confers resilience to 2436 
neurodegeneration. Science Translational Medicine 13, eabd7695 (2021).  2437 

93 Tian, Y. et al. Single-cell immunology of SARS-CoV-2 infection. Nature biotechnology 2438 
40, 30-41 (2022).  2439 

94 Smith, G. Limma: linear models for microarray data. Bioinformatics and Computational 2440 
Biology Solutions using R and Bioconductor. Springer, New York, 397-420 (2005).  2441 

95 Quijano Xacur, O. A. The unifed distribution. Journal of Statistical Distributions and 2442 
Applications 6, 1-12 (2019).  2443 

96 Robin, X. et al. pROC: an open-source package for R and S+ to analyze and compare 2444 
ROC curves. BMC bioinformatics 12, 1-8 (2011).  2445 

97 Crowell, H. L. et al. Muscat detects subpopulation-specific state transitions from multi-2446 
sample multi-condition single-cell transcriptomics data. Nature communications 11, 6077 2447 
(2020).  2448 

 2449 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 16, 2024. ; https://doi.org/10.1101/2024.10.15.618577doi: bioRxiv preprint 

https://doi.org/10.1101/2024.10.15.618577
http://creativecommons.org/licenses/by-nc-nd/4.0/

