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Abstract. The human body possesses highly specialized cellular defense 
mechanisms that, when activated pathologically, can induce a number of 
immunologic disorders. For a normal cellular immune response, the following 
conditions must be fulfilled: (I) accumulation of white blood cells, (2) their 
diapedesis through the vessel walls of the inflammatory area affected by an 
injurious agent, and (3) normal cellular effector functions in the tissue. This 
cascade of inflammatory processes has recently been shown to be regulated 
by a group of molecules that are termed adhesion molecules and consist 
of three subfamilies: selectins, the immunoglobulin supergene family, and 
integrins. 

The cellular functions influenced by adhesion molecules include, among 
others, cytotoxic T-cell responses, CD4-dependent activation of B lympho- 
cytes by T lymphocytes, activation of granulocytes and macrophages, phago- 
cytosis of opsonized particles by monocytes, macrophages, and granulo- 
cytes, antigen-presenting function of macrophages, their antibody-dependent 
cytotoxicity, initiation of a respiratory burst by white blood cells, and activa- 
tion of fibroblasts. 

Studies performed in recent years have shown that pathogenetically 
relevant changes in the expression and function of adhesion molecules are 
involved in a variety of pulmonary diseases. These changes include the 
accumulation and activation of alveolar macrophages in smokers, experimen- 
tally induced bronchial hyperreactivity in bronchial asthma, accumulation 
of eosinophils in allergic rhinitis, bleomycin-induced pulmonary fibrosis, 
binding of viruses and bacteria to respiratory mucosa, and various mecha- 
nisms of acute damage to pulmonary parenchyma. Though their role in tumor 
development is still unclear, adhesion molecules are obviously involved in 
determining the route and organotropism of metastases. Further studies of 
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the function of adhesion molecules in pulmonary diseases will contribute to 
our understanding of the pathomechanisms of these diseases and, through the 
development of specific antibodies, may provide attractive new therapeutic 
approaches to problems for which treatment is not yet available. 

Key words: Integrins--LeuCAM--Sarcoidosis--Pulmonary fibrosis-- 
Asthma--Corticosteroids 

Introduction 

Our understanding of the physiology of inflammatory processes has increased 
markedly over the last 10 years. This is due especially to the discovery and 
description of a group of molecules closely associated with the mechanisms of 
accumulation and activation of inflammatory cells at the site of inflammation. 
These cell-surface molecules were designated as adhesion molecules because 
of one of their first-described properties. In a multicellular organism, adhesion 
processes are involved in embryonal development, the organization of organ 
differentiation, the preservation of tissue architecture, and the ability of the 
organism to react to injuries, infections, and tumors [4, 124, 141] 

The adhesion molecules, which are expressed by all body cells, primarily 
regulate cell-cell and cell-matrix interactions and ensure anchorage of the cells 
in the tissue [2]. In addition, these molecules also mediate signals for the growth, 
differentiation, and activation of cells [110]. It is the aim of this survey article 
to present the family of adhesion molecules in a systematic way, to describe 
their structural and functional properties, and to discuss their possible role in 
pulmonary diseases. 

Gene Families of Adhesion Molecules 

In a simplified classification, the adhesion molecules can be subdivided into 
three families which share a number of structural, functional, and genetic prop- 
erties. The epithelial, endothelial, and leukocytic adhesion molecules character- 
ized so far belong to either the immunoglobulin supergene family, the selectin 
gene family, or the integrin gene family [16] (Table 1). 

The immunoglobulin (Ig) supergene family is characterized by one or more 
repetitive immunoglobulin-like domains consisting of about 100 amino acids 
and a central disulfide bond. This family includes the adhesion molecules ICAM- 
1, ICAM-2, and ICAM-3 (intercellular adhesion molecules 1, 2, and 3), VCAM- 
1 (vascular cell adhesion molecule 1), NCAM (neural cell adhesion molecule), 
and PECAM-1 (platelet endothelial cell adhesion molecule 1) [40, 49, 138]. 
Lymphocyte surface molecules, which play a crucial role in activation, antigen 
recognition, and adhesion processes, also belong to the Ig supergene family; 
among them are the receptors CD2 and its ligand LFA-3, parts of the CD3 
complex, CD4, CD8, MHC class-I and class-II receptors, immunoglobulins, 
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platelet-derived growth factor (PDGF) receptor [144], and carcinoembryonic 
antigen (CEA) [81]. The shared structural properties, high structural constancy, 
and wide biological spread are regarded as evidence for evolutionary signifi- 
cance and the proven stability of these structures [124]. Adhesion molecules 
of the immunoglobulin supergene family are expressed by epithelial and endo- 
thelial cells, lymphocytes, monocytes, platelets, and granulocytes [101]. While 
ICAM-2, ICAM-3, and PECAM-1 are constitutional cell-surface components, 
ICAM-1 and VCAM-1 show stronger expression after stimulation mediated 
primarily by cytokines (e.g., tumor necrosis factor-alpha, interleukin-beta, in- 
terferon-gamma, interleukin-8, granulocyte-macrophage CSF) but also by endo- 
toxins or lipopolysaccharides [93, 124, 135]. 

The family of selectins has an important role in margination along the vessel 
wall and the initially loose adhesion of leukocytes to endothelial cells in the 
vascular bed. Members of this family are the molecules P-selectin, E-selectin, 
and L-selectin, which are also called GMP-140 (granule membrane protein 
140), ELAM-1 (endothelial leukocyte adhesion molecule 1), and LECCAM-1 
(leukocyte endothelial cell adhesion molecule 1) [22, 61, 101, 120, 123, 124, 
140]. Their ligands are carbohydrate molecules. 

Integrins mediate adhesion to other cells and to components of the extracel- 
lular matrix. They consist of two noncovalently bound, structurally different 
peptide chains (alpha-, beta-heterodimers) [16, 70, 111, 110, 124]. Table 2 lists 
the most important integrins according to their function [3]. Six different beta- 
chains have been identified so far and these can combine with a large number 
of alpha-chains to form the corresponding receptors [16]. The extent of integrin 
expression differs widely from one cell type to another. Cultured cells express 
2 to 10 different types of integrins. Some of these are cell-type-specific, e.g., 
gpIIb/IIIa (megakaryocytes and platelets) and the CD11/CD18 group, which is 
expressed only by leukocytes [110]. 

The ill-Subfamily includes the VLA (very late activation antigen) receptors, 
while the subfamily that shares the fl2-shain determined on chromosome 21 
comprises the LeuCAM receptors (CD11/CD18) [4]. The/33-subfamily consists 
of the two cytoadhesins, vitronectin receptor and thrombocyte-glycoprotein 
IIbIIIa (gpIIbIIIa) [58, 59, 76, 110]. 

The extracellular domain of the integrins contains cysteine-rich repeats 
within the/3-chain, i.e., repetitive regions with disulfide bonds that ensure a 
rigid tertiary structure [74] as well as a disulfide bond that stabilizes the large 
loop of the N-terminal region of the extracellular domain [4]. The extracellular 
domain of the alpha-chain also contains disulfide bonds, which stabilize the 
secondary structure, and its large loop, which leans toward the/3-chain, includes 
regions binding to calcium and other divalent cations [4, 63] (Fig. 1). 

Little is known about the transmembranous region, but it is the intracellular 
domain of these receptors that is of interest. The latter contains regions that 
can bind to actin filaments of the cytoskeleton by means of the cytoskeleton 
proteins talin, vinculin, or alpha-actinine [77, 82], and are involved in motor 
phenomena that are important for transmigration and processing of signals 
between receptor molecules and intracellular second messenger substances. 
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Table 2. Simplified classification of integrins based on binding characteristics [3] 

Subunit Ligands 

aL//32 (LFA-1) ICAM-1, -2 Integrins that function as cell-cell- 
adhesion molecules 

Integrins that bind primarily to 
basement membrane proteins 

Integrins that bind primarily to 
matrix proteins of inflammation, 
wound healing,and development 

O/M/•2 (Mac-l) ICAM-1, C3bi 
azlfl  2 (gp 150,95) ? 
o~4/B1 VCAM-1 
Oq / fll Laminin/collagen 

OL2/]~ l Collagen/laminin 
a 3 / f l l  Laminin/collagen/fibronectin 
a6/ fil Laminin 
a6/~4 Laminin 
a4//31 Fibronectin (CSII site) 

as/fl~ Fibronectin (RGD site) 
O~V/[31 Fibronectin 
av/fl 3 Vitronectin, fibrinogen, 

thrombospondin, von Willebrand's 
factor 

av/~5 Vitronectin 

A special feature of/32-integrins is that the affinity of  the receptor  can 
be enhanced transiently by intracytosolic signals [139] through an Mg 2+- 
dependent  change in the conformation of  the receptor  structure on the cell 
exter ior  [7] after phosphorylat ion of  intracellular parts [136]. Only after this 
change in their conformation are integrins able to bind to their ligands 
ICAM-1, ICAM-2, or ICAM-3 with high affinity [23, 43]. This phenomenon 
plays an important  role in the adhesion cascade of leukocytes because their 
interaction must be transient and they must be able to detach again from 
their temporary  binding site. 

/32-integrins are constitutional molecules expressed by all leukocytes.  The 
flz-integrins CD1 lb/CD18 and CDI lc/CD18 are stored in the granules of neutro- 
phils and monocytes  and can be released to the cell surface within minutes. 
Upon  stimulation, the expression of  CD 11 a/CD 18 remains unchanged on neutro- 
phils and shows only a slight increase on monocytes  [74]. Resting memory  T 
cells express significantly more adhesion molecules than native T cells; the 
number  of  CD 11 a/CD 18 receptors  on the surface of  native cells is 50,000-60,000 
as opposed to over  300,000 on memory  cells and natural killer cells [103]. 
Probably more important  than quantitative receptor  density, due to increased 
recrui tment  of  molecules to the cell surface, is the above-described higher 
affinity of  the receptors  in the sense of  an activation or functional upregulation 
of  adhesions molecules [27, 148]. 
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Fig. 1. Schematic view of the heterodimeric leukocyte cell adhesion molecule (/32-integrin), inter- 
acting with the intercellular adhesion molecule-1 (ICAM-1), the most important inducible counter- 
part on endothelial cells. /32-integrius are expressed in thousands on the leukocyte surface. The 
affinity of the/32-integrin is dependent on conformational changes. Adhesion parallels activation 
of the cell. For further explanation see text. 

Leukocyte Adhesion and Migration 

Subtle regulatory mechanisms recruit and activate the white blood cells required 
for the defense reaction and attract them to the site of injury. Endothelial cells, 
whose surfaces are enlarged by furrowing [120], have a fundamental regulatory 
role due to their strategic position and omnipresence at the interface between 
blood or lymph and tissue. This role has been demonstrated not only for inflam- 
matory and immunologic processes but also for the regulation of vascular tone, 
hemostasis, and fibrinolysis, as well as for cell growth and differentiation [53, 
87, 120, 144]. 

In accordance with the concentration gradient of chemotactic substances, 
leukocytes can adhere to endothelial cells at the nearest vessel wall and transmi- 
grate through the basement membrane between the endothelial cells to reach 
the effector site in the tissue matrix [100, 131, 135]. The specific expression of 
proteoglycans on different endothelial cells is assumed to codetermine the type 
of cytokines bound on the cell surface, and this probably is an additional 
regulatory component [84]. 

In the systemic circulation, leukocyte passage into the tissue occurs in the 
postcapillary venules, where the flow rate of the blood is lowest and is even 
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Fig, 2. Adhesion cascade: In postcapillary venules, the area of slowest flow rate of the circulatory 
system, shear forces between activated endothelial cells and/or activated leukocytes provoke a 
slowing-down and rolling of leukocytes by the weak and temporary adherence mediated by selectins. 
Strong adherence is mediated by the transient activation of/~2-integrins that interact with inducible 
intercellular adhesion molecules on endothelial cells. Adhesion, transendothelial migration, and 
locomotion through extracellular matrix are chiefly directed by cytokines and their concentration 
gradients. Abbreviations: SLeX, Sialyl Lewis X; ICAM, Intercellular Adhesion Molecule. For 
further explanation see text. 

further reduced by the dilatation of vessels in the presence of inflammation 
[120]. The adhesion cascade, in which all three of the above families of adhesion 
molecules are involved, can be subdivided into three steps (Fig. 2). In the first 
step, the selectins induce rolling of the leukocyte;  it touches the vessel wall 
under  flow conditions and is slowed down by the combined effect of  transient 
binding and shearing forces,  and thus rolls along the endothelial cells [56, 64]. 
The second step, firm at tachment  of the leukocyte to endothelial cells, is induced 
by the transient activation of the/32-integrins on the leukocyte.  This is followed 
by transmigration of  the leukocyte through the basement membrane between 
the endothelial cells into interstitial tissue [148], which is associated with a 
change in the shape of  the cell (polarization of the neutrophils, formation of  
pseudopods,  or a local increase in the density of receptors for CD1 lb/CD18 on 
lymphocytes  [74, 79, 84, 104]. The further course of cell migration is dominated 
by adhesion to the extracellular matrix, e.g., to the glycoproteins fibronectin 
and vitronectin. 

There  are five possible mechanisms by which the recruitment of inflamma- 
tory cells can be increased: a change in the number or affinity of leukocytic 
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Fig. 3. The five possibilities for the recruitment of leukocytes to inflammatory sites. For further 
explanation see text. 

molecules, increased supply in the circulation, and an increase in the number 
or affinity of endothelial ligands on capillary endothelial cells (Fig. 3). 

Special Status of the Lung 

The lung is the only organ in which all white blood cells pass the capillary 
network [88]. Only little is known about the regulation of neutrophil transit 
through pulmonary microcirculation, but it is clearly different from that of 
systemic circulation. In the pulmonary circulation, leukocytes enter the tissue 
only in the capillary bed [85]. Intravascular pressure in the pulmonary circula- 
tion is markedly lower than in the systemic circulation, and the flow is pulsatile 
rather than constant. The pulmonary capillary bed is the most important store of 
intravascular neutrophilic granulocytes [85, 88]. There is presumably a dynamic 
equilibrium between the circulating and the non-circulating neutrophil pool 
in the pulmonary capillaries. This factor may play an important role in the 
development of adult respiratory distress syndrome (ARDS) in cases of shock 
associated with reduced blood flow [42, 85, 132]. 

Videomicroscopic studies suggest that the neutrophils are sequestered ex- 
clusively in the pulmonary capillaries; margination or rolling has been observed 
neither in the arterioles nor in the venules. In vitro studies have demonstrated 
that there is a clear correlation between the reduced deformability of neutrophils 
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upon activation and their sequestration in the pulmonary capillaries [85, 135, 
144]. Though CD 11/18 seems not to be required for the sequestration of normal 
neutrophils in the normal vascular bed of the lungs, it mediates neutrophil 
migration in case of inflammation [27, 41, 145]. 

The recruitment processes in the pulmonary circulation described here for 
neutrophils are similar for monocytes, to which we will return later. 

Adhesion Molecules in Pulmonary Diseases 

In the following, we present some of the results obtained in studies investigating 
the role of adhesion molecules in pulmonary diseases. We will focus on those 
disorders in which leukocyte integrins (LeuCAM) appear to play an important 
pathogenetic role: pulmonary diseases caused by smoking, bronchial asthma, 
pulmonary infections, acute and chronic damage to the lung parenchyma, and 
malignancies. 

Smoking-Related Lung Diseases 

Inhalation smoking can lead to the development of pulmonary obstruction, 
which begins in the small airways and later extends to the large bronchi when 
smoking is continued [96, 128]. Smoking also causes pulmonary emphysema, 
with destruction of the architecture of the alveolocapillary units [34]. These 
changes are the result of inflammatory processes, since smoking is associated 
with the accumulation of inflammatory cells in the lung. This accumulation is 
regulated by adhesion molecules. While there are many studies in the literature 
on the pathogenetic role of neutrophils in inhaling smokers [26, 28, 44, 69, 86, 
126], little is known about the contribution of alveolar macrophages. 

The pool of alveolar macrophages is two to three times larger in smokers 
than in nonsmokers [18, 144]. The expression density of the receptors CD11/ 
CD18 varies on human alveolar macrophages from nonsmokers [19, 66, 114]. 
The alveolar macrophages of nonsmokers show a relative decrease in CD1 la 
expression and a relative increase in CD1 lc and CD1 lb expression compared 
to peripheral blood monocytes, which is similar to the expression described 
for other resting tissue macrophages [51]. Since a quantitative difference in the 
mRNA coding for these molecules was not found, the regulatory mechanisms 
can be assumed to be posttranslational [5]. 

There are no uniform data in the literature on the effect of inhalation 
smoking on the expression of LeuCAM molecules on human alveolar macro- 
phages. Some investigators have reported an increased expression of adhesion 
molecules as well as changes in their expression pattern [19, 114]. It was found 
that inhalation smoking leads to a relative increase in CDl lb  expression and 
a decrease in CD1 la expression, which results in an expression pattern indica- 
tive of a higher activation level of alveolar macrophages. Possible explanations 
for the increased expression are a higher influx of monocytes into the lungs or 
changes in the expression or affinity of the receptors induced by proinflamma- 
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tory stimuli. Another study, using a different method, only demonstrated an 
increase in the absolute number of CD11/CD18-positive alveolar macrophages 
in smokers [66], while the relative expression was reduced compared to non- 
smokers. 

Interestingly, the expression of CDI 1/CD18 receptors has different effects 
on the functional repertoire of alveolar macrophages in smokers and nonsmok- 
ers. It was shown, for instance, that the adhesive propensity of alveolar macro- 
phages on ICAM-l-expressing endothelial cells is markedly higher in smokers 
than in nonsmokers and that this is at least partly due to the binding of CD11/ 
CD18 to ICAM-1 [114]. Since receptor-ligand binding of/~2-integrins leads to 
an activation of the cell, which is reflected in an increase in intracellular free 
calcium and a higher translocation rate of protein kinase C [136], altered adhe- 
sive propensity may be important in the activation of alveolar macrophages. 
As for neutrophils [99], there is obviously also a close relationship between 
the induction of a respiratory burst and adhesion molecules on human alveolar 
macrophages. The increased spontaneous production of superoxide anions by 
smoker as opposed to nonsmoker alveolar macrophages [20, 65] can be markedly 
reduced by blocking the/3-chain of the CDll/CDI8 receptors [114]. 

Adhesion Molecules and Allergic Reactions of the Respiratory Tract 

It has been demonstrated in a primate model in 1990 that the intravenous 
administration of an antibody directed against ICAM-1, the ligand of CDll /  
CD18 receptors, can prevent the development of experimentally induced bron- 
chial hyperreactivity [142]. In asthma, this effect depends on the LFA-1/ICAM- 
l-mediated adhesion of eosinophils to the endothelial cells in the pulmonary 
vessels [13, 23, 31]. Stimulation with proinflammatory stimuli such as tumor 
necrosis factor alpha (TNF-o0, y-interferon, and interleukin-lfi was found to 
enhance the expression of ICAM-1 on bronchial mucosa and vascular endothe- 
lial cells in bronchial vessels [142]. However, the effect of an anti-ICAM-1 
antibody on the accumulation of inflammatory cells was seen in this primate 
model only when recently sensitized animals were used. 

Proinflammatory cytokines such as interleukin-1 or TNF-o~ have also been 
shown to markedly enhance the expression of ICAM-1 on human epithelial 
cells of the trachea [133]. This enhancement is associated with an increased 
adhesion of human neutrophilic granulocytes, which can be reduced by the 
administration of antibodies directed against both CDll/CDI8 and ICAM-1. 
But there are also studies that did not find a difference in the expression of 
ICAM-1 and ELAM-1 in bronchial mucosa of clinically stable asthmatics and 
control subjects [92]. 

Following segmental bronchial antigen expression, there is an increase in 
the expression of CD1 lb on alveolar granulocytes [52], which is accompanied 
by an intra-alveolar increase in lymphocytes, neutrophils, and eosinophils in 
the involved segments of the bronchial tree. Severity of asthma correlates with 
the number of eosinophils in the bronchial mucosa [25]. It is important, in 
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connection with the increased number of eosinophils in the bronchial mucosa 
of patients with asthma, that the transendothelial migration of eosinophilic cells 
through human endothelial cells appears to be dependent on the expression of 
CD11/CD18 on eosinophilic granulocytes and of ICAM-I on endothelial cells 
[45]. 

The markedly increased expression of ICAM-1 seen in allergic patients was 
also demonstrated on mucosal cells of the nasal mucosa in allergic rhinitis [91]. 
The latter is also associated with an increase in the number of CD1 la-positive 
leukocytes in the nasal mucosa. 

Of particular interest for the pathogenesis of asthma is the interaction 
between CD11/CD18 receptor expression and platelet-activating factor (PAF), 
a proadhesive phospholipid that is released by eosinophilic granulocytes and 
endothelial cells [75, 147, 148]. It has been shown that the permeability of the 
intestinal mucosa following stimulation of the tissue with PAF can be markedly 
reduced by administration of anti-CD 11/CD 18 antibodies. This effect is probably 
due to granulocyte depletion of the mucosa induced by administration of the 
anti-LeuCAM antibodies [75]. The fact that the migration of eosinophilic cells 
through endothelial cells can be blocked by selective PAF antagonists such as 
WEB-2086 [29] suggests that PAF stimulates or costimulates the expression of 
these molecules, or that PAF influences the affinity of the receptors by means 
of an intracellular regulatory mechanism [147, 148]. 

Glucocorticoids and Adhesion Molecules 

The effect of glucocorticoids in inflammatory processes is probably due mainly 
to their antiinflammatory action such as reduction of cytokines and lipid media- 
tors [56, 121, 122]. It is controversial whether glucocorticoids can reduce the 
in vitro expression of ICAM-1 on endothelial cells and bronchial epithelial cells 
[53, 137]. Glucocorticoids suppress the production and release of granulocytes 
from the bone marrow, as well as leukocyte activation and their adhesion- 
molecule-mediated passage through the vessel wall [32, 53, 55, 95]. The inhibi- 
tion of cytokines probably also reduces the survival time of eosinophils in the 
lung, which is assumed to play a role in allergic diseases [56]. 

Adhesion Molecules and Pulmonary Infections 

The biological significance of adhesion molecules in the defense against infection 
is impressively demonstrated by cases with hereditary "leukocyte adhesion 
deficiency" (LAD), of which more than 50 cases have been described in the 
literature [9, 10, 11, 24, 37, 39, 63]. LAD is inherited as an autosomal recessive 
disorder assumed to be caused by a point mutation within the gene region 
coding for CD18 on chromosome 21 in band q22.3 [17, 74]. This genetic disorder 
is associated with a defective production of the beta-chain of LeuCAM recep- 
tors, resulting in a low number or absence of normal receptors on the cell 
surface [15]. 



Adhesion Molecules in Lung Diseases 201 

Patients with LAD develop severe bacterial infections of the body surfaces, 
especially of the skin, in the oral and urogenital area, the intestine, and the 
respiratory tract. The fact that LAD, unlike neutropenia, can also be associated 
with defective wound healing, i.e., the formation of peculiar, paper-thin or 
dysplastic scars and characteristic peridontal defects, indicates that the CD11/ 
CD18 integrins have an important biological role in the formation and repair 
of connective tissue, a function that, under normal conditions, is assumed to 
be fulfilled by the influx of monocytes and other inflammatory tissue reactions 
[119, 124]. Infected tissue shows dense infiltrates of eosinophils, lymphocytes, 
plasma cells, and some macrophages, but is totally devoid of neutrophils and 
monocytes. These histologic features suggest adhesion mechanisms that are 
independent from CDI 1/CD18. VCAM-1 and the corresponding integrin, VLA- 
4, which are important in accumulation of eosinophils in allergic and parasitic 
disease, are supposed to compensate for the lacking CDll/CD18 adhesion 
molecules [11, 50, 57, 135]. Blood granulocyte counts are fivefold to twentyfold 
the normal count; in case of infection, the number rises up to 100,000/liter [9, 
50]. Adhesion-dependent cellular functions such as chemotaxis and aggregation 
are disturbed in proportion to the extent of receptor deficiency. Phagocytosis 
ofiC3b-opsonized particles, which is another function of Mac-1 (CDI Ib/CD18), 
does not occur due to the absence of the CR3 receptor, and there is no induction 
of a respiratory burst [99]. Lymphocyte function is preserved, probably because 
of a possible compensation by lymphocyte receptors [14]. 

The genetic defect has been successfully repaired in vitro by transfection of 
the granulocytic stem cell with a CD 18-encoding sequence [62]. After successful 
transfection, the cells express functionally normal CD1 la/CD18 molecules and 
show a restitution of their functional properties. 

So far only two patients have been described who lack the carbohydrate 
ligand Sialyl-Lewisx as a binding site for E-selectin. The clinical picture is 
nearly identical to that of the above-described LAD [47], which suggests that 
selectins and integrins are indispensible for leukocyte function in common 
biological processes. 

Adhesion molecules are also involved in other infectious diseases of the 
respiratory tract, since they are ligands for viral and bacterial pathogens. This 
is by no means accidental, since various similarities have been described to exist 
between cell-cell adhesion and cell-virus, cell-bacterium, or cell-protozoan 
adhesion [124]. Recent studies have demonstrated the N-terminal region of the 
ligand ICAM-1 to be a high-affinity receptor for rhinoviruses [54, 125]. Borde- 
tella pertussis also binds to the CD1 Ib/CD18 receptor of bronchial ciliated cells 
and macrophages by means of a bacterial adhesion that contains the RGD 
sequence of the LeuCAM receptor binding domain consisting of the three amino 
acids Arg, Gly, and Asp [109, 113]. 

Consideration of adhesion molecules also sheds light on the pathophysio- 
logic relationship between respiratory viral infections and compromised cellular 
defense. The infection of mononuclear cells with respiratory syncytial virus 
(RSV) reduces CDI la and ICAM-1 expression by these cells [112]. However, 
the effects of viral infection on the expression of adhesion molecules are depen- 
dent on the type of virus used in the experiments. It has recently been shown 
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that the infection of human epithelial tracheal cells with parainfluenza 2 virus 
markedly enhances the expression of ICAM-1 on these cells, which appears to 
be functionally significant, since the affected cells were able to bind more 
neutrophils [1341. 

Chronic bacterial inflammatory diseases of the lungs are associated with 
an increased influx of mononuclear cells into the bronchial system. Monocytes 
from patients with bronchiectasis adhere more readily to surfaces coated with 
fibronectin, and their adhesion can be further increased by stimulation with 
lipopolysaccharides or proinflammatory cytokines [102]. Preincubation with an 
antibody directed against CD18 reduces the adhesion of monocytes from these 
patients by more than 50%. But the adhesion mechanism mediated by CDl l /  
CD18 is not the only one, since a synthetic peptide containing the RGDS 
sequence instead of RGD was also shown to reduce the enhanced adhesion of 
these monocytes [102]. 

Adhesion Molecules in Models of Acute and Chronic Lung Injury 

Antibodies directed against CDll/CD18 or ICAM-1 antigens can influence or 
even prevent experimentally-induced parenchymal damage of the lung. It was 
shown in guinea pigs that the intrapulmonary infusion of neutrophilic granulo- 
cytes and opsonized zymosan induces the development of pulmonary edema, 
which can be considerably reduced after in vitro treatment of the neutrophils 
with an antibody to CD18 [73]. In vitro experiments with endothelial cells have 
shown that this effect of anti-CDl8 is based on a markedly reduced adhesive 
propensity of neutrophils and a markedly lower albumin permeability of the 
endothelial layer following incubation of the neutrophils with anti-CD18. 

The effect of antibodies directed against CDll/CD18 and anti-ICAM-1 on 
oxygen-induced pulmonary toxicity was studied in the mouse [143]. After hyper- 
oxia for 48 h, the alveolar structures of the animals showed a markedly increased 
expression of ICAM-1. The injection of an anti-ICAM-1 antibody significantly 
reduced neutrophil infiltration of the pulmonary parenchyma and the number 
of neutrophils in bronchoalveolar lavage and improved the pulmonary function 
of the mice. 

An antibody directed against the CD 1 lb epitope appears to be able to reduce 
the toxic effect of intravenously administered TNF-o~ in dogs [46]. Although the 
mortality within the first 10 days after intravenous injection of a high dose of 
TNF-o~ did not differ, analysis of mortality within the first 30 h revealed a clear 
advantage for those dogs that had received an intravenous injection of an anti- 
CD1 lb antibody. 

In another animal model, it was shown that the administration of IgA 
complexes induces parenchymal damage in the lung of rats, which is assumed 
to result from a pronounced increase in the production of oxygen radicals 
by alveolar macrophages [97]. These experiments also demonstrated that the 
intravenous administration of an anti-CD 18 antibody but not of anti-CD 11 nearly 
normalized the increased permeability of intrapulmonary vessels and markedly 
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reduced the number of alveolar macrophages in bronchoalveolar lavage (BAL). 
Similar results were obtained in rats after intravenous administration of a snake 
venom. In these experiments, both anti-CD1 lb and anti-CD18 antibodies sig- 
nificantly reduced the extent of acute parenchymal damage of the lung [98]. 

Studies in different animals and investigations in humans have elucidated 
the role of adhesion molecules in chronic inflammatory processes. It was shown 
that the administration of anti-CDlla or anti-CDllc antibodies almost com- 
pletely prevents pulmonary fibrosis inducible by the intratracheal application 
ofbleomycin [107]. For anti-CD 1 la, this effect was seen even when the antibody 
was administered 3 weeks after bleomycin application. The accumulation of 
platelets and alveolar macrophages was markedly lower in the antibody-treated 
animals. These two mechanisms might be responsible for the reduced loco- 
regional release of platelet-derived growth factor (PDGF) and the ensuing de- 
crease in fibroblast activation [118]. It remains open whether this therapeutic 
effect can also be achieved in man, since platelets in humans, unlike those in 
rodents, do not express leukocyte integrins. 

Sarcoidosis 

In sarcoidosis, the total number of alveolar macrophages correlates with the 
number of CD 11/CD 18-positive macrophages [ 115]. This correlation is probably 
due to a compartment effect of pulmonary macrophages, since a parallel increase 
in CD11/CD18-positive peripheral monocytes is not seen in these patients. In 
another study investigating monocytes by laser flow cytometry, sarcoidosis 
patients had fairly similar proportions of CDll/CD18-positive monocytes, but 
a markedly higher expression density of the epitopes on these cells [117], which 
might be explained by methodologic differences. 

The data on the expression of individual epitopes on alveolar macrophages 
are contradictory. While some investigators reported an increased expression 
of CDll/CD18 [115], others found an increase only for CDlla ,  CDllb ,  and 
CD54 (ICAM-1) [89], or for CDl lb  and CD54 [127]. There is also one study in 
which the expression of CDll/CD18 was not found to be different in patients 
with sarcoidosis [67]. 

The increased expression of CDll/CD18 epitopes on the alveolar macro- 
phages of patients with sarcoidosis is likewise accompanied by changes in 
alveolar cell function. It has been shown that the C3bi-mediated phagocytosis 
of agarose beads is dependent on CD1 lb [105]. The enhanced respiratory burst 
of the alveolar macrophages seen in sarcoidosis also depends on the expression 
of CDll/CD18 epitopes [115]. Since the interaction of alveolar macrophages 
and T cells appears to be an important pathomechanism of sarcoidosis, the 
expression of CD11/CD18 receptors on alveolar macrophages should also play 
an important role in this disorder [38]. In the case of accumulation of alveolar 
macrophages, there might be a marked increase in the locoregional secretion 
of lymphotactic cytokines and lymphocyte-activating substances from alveolar 
macrophages, which in turn might be responsible for the accumulation of lym- 
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phocytes in the alveolar space. The expression of ICAM-1 and LFA-1 on 
antigen-presenting alveolar macrophages is also required for the binding of 
specific T-cell clones (CD4-positive T cells) [8, 71, 83]. 

Idiopathic Pulmonary Fibrosis 

Only few data are available on the behavior of alveolar macrophages and their 
expression of CD 11/CD 18 epitopes in patients with idiopathic pulmonary fibro- 
sis [67, 115]. A correlation between the number of alveolar macrophages and 
the expression of CDll/CD18 epitopes has been described [!15], and these 
receptors also appear to be involved in the enhanced respiratory burst of alveolar 
macrophages [115]. A contribution of CD11/CDI8- and ICAM-l-positive alveo- 
lar macrophages to the pathogenesis of idiopathic pulmonary fibrosis is possible, 
since these receptors play an important role in the chemotaxis and activation 
of neutrophilic granulocytes [21, 35]. 

Tumors and Adhesion Molecules 

While neoplastic processes, now regarded as multi-step disorders, are character- 
ized by a loss of growth control, malignant transformation additionally involves 
invasive and metastatic capacity [6]. Depending on the cell type, differentiation 
and adhesion are coregulated by 2-10 different adhesion molecules [111]. A 
transient loss of cell-cell and cell-matrix adhesion, and rearrangement of 
cell-cell and cell-matrix contact is also required for the incorporation of the 
daughter cells into the tissue in normal cell division [6]. 

Binding to the basement membrane and to extracellular matrix proteins is 
mediated primarily by the integrins of the/31 and/~4 groups [68], and by cadhe- 
rines. The latter regulate extracellular cell-cell binding and, via the cytoplasmic 
protein catenin, the stable connections between the cytoskeleton and adjacent 
cells as well [82]. They are found in the zonula adherens and are involved in 
the formation and stabilization of cell binding [3, 82]. 

The role of adhesion molecules in the development of tumors may be 
complex. On one hand, upregulation can affect the growth, differentiation, and 
proliferation of cells and thus directly promote or induce tumor genesis [4, 
116]. On the other hand, downregulation can reduce cell binding and thus 
facilitate metastasis formation, which depends on the loss of normal cell-cell 
and cell-matrix adhesion [3,108, 129]. In addition, adhesion molecules are also 
involved in the pathomechanisms of hematogenic and lymphogenic metastatic 
spread (Fig. 4). The mechanisms involved in hematogenic spread are cell-cell 
and cell-matrix interactions with endothelial cells, and the capacity for transen- 
dothelial migration with diapedesis into the interstitial stroma through the base- 
ment membrane [30, 80], while the adhesion molecules of the CD44 family 
seem to be involved in lymphogenic spread [130]. Macrophages and T and 
B lymphocytes transiently express molecules of the CD44 family to achieve 
tolerance in the lymph nodes and lymphatic tracts. Tumor cells possibly express 
variants of the CD44 molecule and thus evade the lymphatic immune defense, 
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Fig. 4. Hypothetic role of adhesion molecules in malignancy. Lymphatic spread may be associated 
with exprimation of splice variants of the adhesion molecule CD44, possibly mimicking a lymphocyte 
in lymphatic tissue, or by important regulatory mechanisms, e.g., specific activation processes, 
associated with its expression on the cell surface. In hematogenous spread, which is often tissue- 
specific, specific "vascular addressins" might regulate adhesion of neoplastic cells, and therefore 
tissue-specific metastatic spread. For further explanation see text. 

while they are recognized as developing cells in the lymph nodes [12, 72]. On 
the other hand, they might interact with adhesion processes, as a modulation 
of CD2 and LFA-1 by antibodies to CD44 has been found [60]. The organotro- 
pism of metastatic spread is presumably determined by organ-specific endothe- 
lial adhesion molecules, termed "vascular addressins" [1, 3, 146]. 
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Since different lung tumor cell lines show a wide variation in the expression 
of integrins, it has not yet been possible to establish any characteristic patterns 
or to arrive at any clear conclusions as to the pathophysiological processes 
involved [36, 90]. Small-cell lung cancer is characterized by very early meta- 
static spread. Interestingly, preliminary studies of five cell cultures have shown 
that these tumors weakly express the alpha-chains aL and aM (CDl la  and 
CD1 lb) of the/32-integrins, whereas aX (CD1 lc) could not be demonstrated. 
Northern blot analysis did not identify mRNA for the expression of/32-integrins 
but did for/31-integrins [48]. The/34-integrins, on the other hand, are expressed 
by non-small-cell carcinomas but not by small-cell carcinomas [33]. It has 
also been observed that all small-cell bronchial carcinomas express neural cell 
adhesion molecule (NCAM), which is expressed by only 20% of the non-small- 
cell carcinomas. The latter are associated with a markedly poorer prognosis 
compared to tumors that do not express NCAM [94]. 
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