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Abstract

Objects rotating in depth with an ambiguous rotation direction frequently appear to rotate
together. Corotation is especially strong when the objects are interpretable as having a shared
axis. We manipulated the initial conditions of the experiment by having pairs of objects initially
appear to be unambiguous, and then make either a sudden or gradual transition to ambiguous spin.
We find that in neither case do coaxial counter-rotating objects persist in being perceived as
counter-rotating. This implies that the perceptual constraint that favors coaxial corotation
overrides the initial perceptual state of the objects.
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Introduction

Perceptual grouping has been a subject of fascination from the time of the Gestalt
psychologists beginning about a century ago (e.g., Koffka, 1935; Kohler, 1920;
Wertheimer, 1923). However, despite the appeal of simplification, it is far from clear that
grouping processes can be unified in a single framework (Zucker, 1987). For example, one
sense of grouping is the incorporation of one kind of element into a different class of element,
such as tangents into curves or texture elements into surfaces. A quite different sense of
grouping occurs when distinct entities, which share an ambiguous property, all acquire the
same value of that property. Consider the case of objects ambiguously rotating in depth.
Presented with an array of transparent kinetic dot objects with a shared axis of rotation in the
plane of the screen, there is a strong tendency to see all the objects spin in the same way, and
when they undergo a perceptual switch to do so synchronously or nearly so (see Dobbins &
Grossmann, 2010, for a counterexample). Gillam (1972) showed that parallel line segments
ambiguously rotating in depth about a shared vertical axis tend to be perceived as rotating
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the same way, although the effect diminished to chance with increasing angular difference
between the lines. In other experiments by Gillam and coworkers, the probability of
line grouping depended in a complex way on the parameters (see Discussion section).
Eby, Loomis, and Solomon (1989) demonstrated this same tendency for coaxial corotation
with transparent, kinetic dot objects. In contrast, if two rotating objects are displaced parallel
to the axis of rotation instead, they are often seen to rotate independently (Long & Toppino,
1981). This is illustrated in Figure 1(a)—coaxial transparent cylinders appear to rotate
together about 90% of the time, while for parallel cylinders, perceived corotation only
slightly exceeds counter-rotation (50%-65% corotation depending on parametric details;
Dobbins, Grossmann, & Smith, 1998), unless they are touching, in which case the opposite
rotation (““frictional’ or “‘gear meshing’) percept is more common (Gilroy & Blake, 2004). It
is not essential that the coaxial objects be interpretable as part of a single object or exhibit
good continuation as occurs with identical cylinders. With objects composed of back-to-back
hemispheres (“‘radar dishes’) having a 90° rotational phase difference between the objects,
the motion flow fields and bounding contours of the coaxial objects change asynchronously,
and yet there is still strong rotational coupling (Figure 1(b)). This remains true even with
objects of different shape (Figure 1(b), Grossmann & Dobbins, 2003). On the other hand, it is
possible to decouple coaxial objects in a variety of ways. Figure 1(c) is inspired by Sereno and
Sereno (1999) who showed that a transparent kinetic dot object appears to have its front face
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Figure |. Rotational grouping of transparent kinetic dot objects. (a) Coaxial objects tend to be perceived as
rotating together (~80%—95% of the time), whereas for parallel objects, shared rotation is only slightly more
common than opposite rotation. (b) Coaxial corotation does not depend on the objects having “good
continuation” (radar dishes are 90° out of phase) or the same form. (c) The objects can be biased in a variety
of ways to break coaxial coupling, for example, by adding suitable binocular disparity, or here by
superimposing a rotating planar flow field that induces a bottom-up bias and leads to perceived counter-
rotation (see Demo I). (d) If the objects are objectively counter-rotating, tilting the virtual camera at some
point leads to a perceptual transition from common spin to common axis interpretation (see Demo 2).
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rotate opposite to the direction of a parallel planar dot field. By using a rotating dot field, the
local bias is opposite for the two objects and they appear to counter-rotate (see Demo 1). Any
manipulation that increases the signal of one direction of dot motion with respect to the other
increases its likelihood of representing the front face of the object and thus determining the
rotation direction.

In the usual situation, the axis of rotation is in the plane of the viewing screen. In a way, this
is a degenerate case or singular viewpoint. For example, if the objects are in fact counter-
rotating in the virtual world, then changing the virtual viewing position (or equivalently, tilting
the objects) decouples the spin axis and spin direction. In earlier experiments, we found that at
small tilts, common spin dominated, but that with increasing tilt, the alternative percept
(shared common axis with opposite spin) became more common (Figure 1(d), see Demo 2).
In this situation, there are two alternative perceptual models or groupings. Coaxial grouping
can be modified by either bottom up biases, or plausibly, by top down model-based constraints.
There is one further factor that is worth mentioning. In binocular rivalry and bistable
perception, transient biases are independent of long-term biases. For example, for one of the
authors, the first impression of objects such as those in Figure 1(a) and (b) is of rightward
rotation. Yet, he has no long-term or steady-state bias for rotation direction. A similar
dissociation has been reported in binocular rivalry (Carter & Cavanagh, 2007). This led us
to wonder if by precisely controlling the initial conditions of the display, we could control the
probability of perceptual grouping into any particular perceptual state. Therefore, we
undertook the two experiments reported here in which a pair of rotating dot objects are
displayed so as to be initially unambiguous in their sense of rotation and then undergo
either an abrupt or smooth transition to ambiguous rotation. This is possible based on two
observations: (a) if the dots in a kinetic dot object move in only one direction, this is almost
invariably seen as the front surface of an opaque object; (b) if the dots in a kinetic dot object
move in two opposite directions and the dots moving in one direction have higher contrast,
these more energetic dots are seen as the front surface (Grossmann & Dobbins, 2003), first
shown with wire frame cubes (Schwartz & Sperling, 1983). In the first experiment, the kinetic
dot objects initially are opaque and then abruptly become transparent. The sudden appearance
of the oppositely directed dots tends to cause an immediate perceptual reversal—the newly
visible dots becoming the front surface. In the second experiment, initially opaque objects are
joined by oppositely directed dots that ramp up to be equal in luminance to the initially visible
dots. In each case, the question is, if the objects are initially counter-rotating, can this normally
unfavored state persist when the evidence for the two alternatives becomes balanced?

Methods
Apparatus

Experiments were run on a Silicon Graphics Indigo 2 computer running custom software
developed in the laboratory that employed the Open Inventor® and Open GL® libraries and
the Guile scripting language (the GNU Project). The video monitor was a 20” Sony CRT
(1280 x 1024 @ 76 Hz). Observers had their head centered via a chin rest and curved forehead
restraint, adjusted so that eye level was at mid-screen. The display was viewed from a distance
of 57cm in a room with dim lighting to minimize screen reflections.

Stimuli

Dot-covered cylinders (axial length: 3°, radius: 1.5°) were orthographically projected and
rotated in depth at 20r/min. Cylinders were centered at + 3° displaced along the x or y
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axes (separated by one object diameter) so that the rotational axes were coaxial (four same
spin and four opposite spin conditions) or parallel (four same spin and four opposite spin
conditions). Each cylinder was covered by 100 randomly positioned dots (size: 2 x 2 pixels) of
high contrast on a dark background (dots: 85cd/m?; background: 4.8 cd/m?). Dot density
was low enough that the bounding contours of cylinders were not clearly demarcated by dot
position, and the dot size (~3 arc min) was small enough so as to appear as dots rather than
square texture objects.

Subjects

Both authors and four naive observers participated in the first experiment and one author
and four naive observers participated in the second experiment. All subjects had normal
acuity. In addition, preliminary evaluation established that the observer could see an
ambiguously rotating object in both interpretations and without a strong bias for one of
the interpretations. This was determined by having one of the investigators sit with the
candidate observer and having them verbally report each perceptual switch of a single
rotating ambiguous kinetic dot object. Following this initial screening, participants were
instructed how to do the experiment. This included going through the conditions in order
from 1 to 16, pointing out the icons on the keyboard for that trial, having the
observer preposition their hands, and then hitting the space bar to initiate the trial.
Thus familiarized, each observer then underwent a practice session that involved running
the full-length experiment. At the end of this practice run, one of the investigators entered the
room, sat with the observer, and asked questions about the experience (Could they clearly see
both objects throughout the trial? Did they have trouble making appropriate key responses?
Did they have any observations to share?) Data from this session were examined by the
investigators immediately after the run but not saved. On a following day, the participants
ran the experiment again and the data obtained from that session were saved, analyzed, and
are reported here. Experimental protocols were approved by the UAB institutional review
board for research with human subjects.

Experimental Design

In both experiments, a message box appeared on the screen to inform the experimenter of the
type of trial (different trial types involved the use of different keys) to allow prepositioning of
fingers. With fingers in place, a press of the Space Bar initiated the central fixation stimulus
and the display of the two cylinder stimuli. In all trials, the observer used four keys (two per
hand) to report the perceived rotational state of each object. The key positions in the different
trials mimicked the spatial configuration of the objects on the screen, for example, in a
vertical axis coaxial trial, two adjacent keys in the top row were labeled with left and right
arrows for the upper object, and two adjacent lower row keys directly below the designated
upper row keys were labeled with left and right arrows for the lower object. Because of the
complexity of the task, the practice session the day before the experiment enabled the
observers to gain fluency in the task. The experiment was self-paced with observers able to
take breaks and look around between trials when desired.

Trials were 20s in duration. There were 16 conditions to generate all combinations of
coaxial and parallel configurations, horizontal and vertical rotational axes, and co- and
counter-rotation in all positions. A block of trials consisted of each of the 16 conditions
occurring once in random order, and there were 6 blocks of trials in Experiment 1, and 6, §,
or 10 blocks in Experiment 2 (two observers had 6, two observers had 8, and one observer had
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10 across two sessions). Six versus eight blocks was an accidental change in the experimental
script, while the observer (one of the authors) who viewed 10 blocks was a result of running two
experimental sessions on separate days with additional control conditions.

Experiment |—Step

Ten seconds into each trial, the dots on the rear surface of the cylinders made a sudden
transition from invisibility to visibility. Initially, cylinders might be corotating or counter-
rotating, but once the rear surface dots appeared, there was equal evidence for both
interpretations of rotation direction (20 s total).

Experiment 2—Ramp

Five seconds into each trial, the rear surface dots (initially invisible) began a 10-s linear ramp
up of luminance, equaling the front surface dots 15 s into the trial. The trial continued for an
additional 5s at equal luminance (20 s total).

Videos

Included are several videos to illustrate the different trial types with self-explanatory file names
that replicate each of the four types of experimental trials in the two experiments. Note that
these QuickTime videos are generated with different software run on a different computer (Mac
OS X 10.11 El Capitan), and although some effort was made, they are not precisely the same as
the original real-time animations in the corresponding experiment. However, they are close
enough to provide the viewer a better sense of the experimental stimuli than is provided by text
description alone (for guide to movie files, see online Table 1).

Results
Guide to Figures

The figures have a consistent color code. Dark blue represents the time before the first
response at trial onset and pale blue (State 1) represents the period of the initial
unambiguous percept. The dark brown color (State 2) represents its opposite—the
rebound state when each cylinder is perceived as spinning opposite to its initial state.
Therefore, for same-spin initial configurations, brown represents same-spin but in the
opposite direction to the initial state, whereas for opposite-spin initial configurations,
brown represents the complementary opposite-spin configuration. In all cases, therefore,
brown represents the perceptual state representing the switch to the state in which both
objects spin oppositely to the initial state. On the other hand, the interpretation of the
green (State 3) and mustard states (State 4) varies—they are always the states that are
neither the initial state or opposite-to-initial state, but they correspond to counter-rotation
in the initially corotating trials (top two panels) and to corotation in the initially counter-
rotating trials (bottom two panels) of Figures 3 and 5.

Response Latency

Figure 2 shows all of the individual trial data for Conditions 1 (vertical coaxial—initial rotation
left) and 3 (vertical coaxial—initial top right, bottom left). Dark blue represents the time before
the first response at trial onset and pale blue (State 1) represents the period of the initial
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Figure 2. All individual data for two experimental conditions. (a) Raw data for the condition in Experiment
I in which coaxial objects initially rotate to the left. Despite the difference in rate of perceptual switching
among observers, in almost every trial, the first response after the opaque-transparent transition at the 10-s
mark is to report seeing both cylinders spinning to the right (Opposite). In 33 of the 36 trials, at the end of
the trial, the observers are reporting one of the corotation percepts (initial or opposite). (b) Raw data for one
of the vertical coaxial, counter-rotation conditions. The opposite-to-initial percept is not necessarily the first
following the stimulus transition and does not dominate. Rather, the corotation states (3 and 4) appear to be
most common.
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unambiguous percept. Individual observers have mean latencies ranging from ~0.6s to ~1s.
The distribution of initial response latencies for all four trials types collapsed across observers
can be seen at the left of Figure 3. Note that the median latency is higher and the distribution
broader in the counter-rotation conditions (Figure 3(c) and (d)).

After the transition from opaque to transparent at the 10s mark, observers make a
perceptual switch with latencies slightly longer than the initial response, but some
observers exhibit much greater variance with a mix of short and long latency responses
(Figure 2). The median latency range seen in the initial response is at best a rough guide
to the latencies expected for later responses. With this point in mind, perceptual transitions
are probably at least a second earlier than their accompanying reports. The implication is
that the perceptual transitions reported within 1 to 2s of the step transition at mid-trial in
Figures 2 and 3 probably occurred almost immediately after the step transition.

Experiment |

Figures 3 and 4 shows the results of the step experiment in which the cylinders instantly
transition from opaque to transparent halfway through each trial.

Figure 3 illustrates the time evolution of the different percepts summed over all observers.
One can think of this as summing all of the individual data (e.g., as shown for Conditions 1
and 3 in Figure 2) in small time bins to create a stacked histogram. At any given time, the sum
of the different states must add to one. To aid interpretation, note that the opposite-to-initial
or rebound state (brown) is always on the top of the stack and so its magnitude can be
measured down from the top of the plot. There are two main points: (a) there is a rebound
effect that occurs very rapidly (peak at ~12s—indicated by white arrows) in all conditions
and (b) the coaxial counter-rotation rebound (Figure 1(c)) is much smaller than in the other
conditions (~ 40% peak at 12s, diminishing to less than 10% by the end of the trial) and
corotation predominates within 3 or 4s. In other words, it is not possible to sustain the
perception of coaxial counter-rotation even when biased into that state by the rebound effect
induced by initial adaptation plus step change.

For three of the four classes of conditions, the opposite-to-initial or rebound state quickly
becomes dominant (A: 75%, B: 80%, D: 67% at ~12s (Figure 3, white arrows)). However,
the time evolution of the perception then varies in the different conditions. For example, in
A (initial-coaxial-corotation), there is a slow recovery of the initial coaxial state. In other
words, both cylinders tend to switch in perceived rotation together with little single object
switching, and hence very little perceived counter-rotation. A similar result is seen in B
(initial-parallel-corotation), with the gradual recovery of the initial perceived rotation state
accompanied by some single object switching, leading to substantially more perceived
counter-rotation (green and mustard). The opposite rotation conditions are similar to each
other in the sense that the recovery of the initial percept (pale blue) is absent (C) or weak (D),
and the two same-rotation percepts (mustard and green) grow rapidly as the rebound effect
diminishes. A difference between the initial corotation (A and B) and counter-rotation (C and
D) conditions is that in the latter, one can estimate a time constant (1/e) of recovery from the
rebound effect (C: ~4s, D: ~5.5s), whereas in the initial corotation conditions, the local
rebound percept never declines to 1/e of its peak value and remains the most probable state
throughout the trial.

The bars at the right side of Figure 3 collapse the four perceptual states to show the
fraction of corotation at the end of the trial. The bars are color-coded to illustrate the two
states that compose corotation in each condition. The coaxial conditions (Figure 3(a) and (c))
have the greatest corotation at the end of the trial (A—initial corotation: 94%, C—initial
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Figure 3. Temporal dynamics of step transition to transparency. A pair of kinetic dot cylinders rotates
unambiguously for 10s, then instantly transitions to being ambiguous. The graph represents the time
evolution of the four perceptual states summed over all subjects. Initial configuration: (a) Coaxial corotation;
(b) Parallel corotation; (c) Coaxial counter-rotation; (d) Parallel counter-rotation. Left column: In the first half
of the trial, observers report seeing the opaque objects veridically essentially all the time (pale blue). Brown
represents the local rebound effect since both objects switch. At 1.5 to 2.5s posttransition, observers are
most likely to be in this perceptual state. The white arrow represents the fraction of time in State 2 (brown)
at ~12s. Note that for coaxial counter-rotation (c) the magnitude of the local rebound effect (white arrow) is
substantially lower at 40%. The probability of perceiving the local aftereffect (brown) diminishes from the
peak, but how much depends on whether it is consistent with corotation (a, b) or counter-rotation (c, d). In
the latter conditions, corotation (mustard and green) increase as the local aftereffect diminishes. Right
column: The bar plots illustrate the fraction of time the observers perceive corotation at the end of the trial:
~90% corotation in the coaxial conditions and ~55% to 75% in the parallel conditions. The difference reflects
the strong tendency toward perceiving coaxial corotation. The colors blue/brown or green/mustard
represents the two perceptual states on the left that are summed to represent corotation in each condition
(Error bars: SEM).
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Figure 4. Time in each state during second phase of trial during step experiment. Each group of four bars
represents the merging of four different experimental conditions (horizontal and vertical axes and both

senses of spin). The icons above a group of bars represent one object or spin configuration in the group. The
bars show the fraction of time spent in each of the four perceptual states for the last 10 s of the trial when the
objects are transparent. The small rectangles at the bottom enclosing either States | and 2 or States 3 and 4
represent the same-spin perceptual states. For all but the coaxial counter-rotation conditions, State 2—the
local rebound effect—in which each object is seen to rotate opposite to the initial unambiguous percept—is
the most common. Error bars (SEM) are displaced to the left so as to not obscure individual data markers.

counter-rotation: 88%) while the parallel conditions have rather less (B—initial corotation:
74%, D—initial counter-rotation: 56%). In the coaxial conditions, at the end of trial,
observers perceived corotation in 265 out of 288 or 92% of trials. The end-of-trial
difference in corotation between A and C and between B and D represents the residual of
the rebound effect at 10 s posttransition. Figure 7 summarizes end-of-trial corotation data for
both experiments. To summarize the main point, there is a strong coaxial corotation
constraint and the experimental manipulation failed to sustain coaxial counter-rotation
beyond a transient rebound effect.

Figure 4 shows the fraction of time spent in each of the four perceptual states in the last
10s of the trial when rotation is ambiguous. In the initially corotating conditions, observers
spend the majority of the 10s perceiving corotation opposite to the initial state, followed by
the initial corotation percept, with very little time perceiving counter-rotation. The pattern
is very different in the initially counter-rotating conditions. For the initial coaxial
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counter-rotation case, the corotation percepts are more frequent that either the initial or
rebound percepts, while in the parallel counter-rotation case, the rebound state is the most
prevalent. The most salient feature of the data is the discrepant coaxial counter-rotation
conditions—in which only 18% of time is spent in the rebound state and only 32% in
States 1 and 2 combined—much less than in the three other object configurations.

Figures 3 and 4 show that in the coaxial counter-rotation conditions, the peak rebound
effect is smaller than the other conditions and much less time is spent in that state. If the
rebound were primarily attributable to a local, classical motion aftereffect, one would not
expect the early peak aftereffects to vary so dramatically.

Experiment 2

Figures 5 and 6 illustrate the results of the ramp experiment. Although the structure of
Experiment 2 is different with a slow transition from opaque to transparent, analogously
with Figure 1, Figure 6 is obtained from the second 10-s epoch of each trial. The data could
have been analyzed differently, for example, examining the post-ramp 5s of each trial, but
Figure 5 shows that the observers begin making perceptual transitions within a few seconds
of the ramp onset. Therefore, for ease of comparison, Figure 6 uses the last 10 s. Again,
Figure 5 shows the time evolution of the percepts in the different conditions and Figure 7
summarizes and compares the step and ramp experiments.

Figure 5 shows that in all conditions, perceptual switches become noticeable within 2 to 3's
of the beginning of the increase in dot luminance. Unlike the step experiment, there is not a
clearly demarcated transient peak and decay in the opposite-to-adapt (rebound) perceptual
state (brown). In the four conditions that comprise Panel C, there are two main points to
note: (a) the initial counter-rotating perceptual state gradually diminishes to become
negligible as rear face dot Iuminance ramps up and (b) the opposite-to-initial rebound
state (perceptual counter-rotation) represents 10% or less of the percepts throughout the
trial. Therefore, as in the first experiment, perception of coaxial counter-rotation becomes
rare. As in Figure 3, the right column bars depict fraction of corotation at trial’s end.

Figure 6 shows that for the initial corotation conditions, more time is spent in the rebound
percept. In the initial coaxial counter-rotation conditions, very little time is spent in the initial
or rebound states—corotation predominates. The results are qualitatively very similar to the
step experiment (Figure 4) with two exceptions: (a) in the initial coaxial counter-rotation
conditions, perceived corotation is more predominant in the ramp experiment and (b) in the
initial parallel counter-rotation condition, the rebound percept is no more common than the
other percepts. Both differences are probably attributable to the absence of a transient
rebound in the ramp experiment.

Figure 7 brings together the results from the two experiments. Panels A and B compare the
peak rebound at ~12 s (white arrows, Figure 3, N.B. varies somewhat) in Experiment 1 to the
rebound at initial equiluminance (15 s) in Experiment 2. The choice of time points to compare
is somewhat arbitrary given the differences in the experiments, and the variation is not
included because we are not persuaded of the legitimacy of a statistical inference here.
However, the qualitative pattern of results across conditions is similar in the two
experiments, but with more dominance of the local rebound effect in Experiment 1. (This
does not depend on the choice of 15s as the reference point in Experiment 2: comparing
Figures 3 and 5, one can see that the peak rebound effect in Experiment 1 exceeds the
maximum of State 2 at any time in Experiment 2.) In both experiments, the rebound state
is substantially smaller in the coaxial counter-rotation conditions compared with the other
conditions.
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Figure 5. Temporal dynamics during ramp transition to transparency. For the first 5s, an object’s visible

dots move in only one direction and are interpreted as the front surface. Beginning at 5, back surface dots
begin a 10-s linear ramp up in luminance. At I5s, they are equal in luminance to the front surface dots and so
each object is balanced in energy for the trial’s final 5s. All conventions are the same as in Figure 3. The

principal difference is that there is no clear peak in the local rebound effect (State 2—brown), instead there is
a slow increase in probability of a transition beginning within about 2 s of the ramp onset. The distribution of
perceptual states is very similar in the final seconds of corresponding conditions in both experiments, and this
is summarized in the right column which depicts the proportion of time seeing corotation at the end of trial.

Figure 7(c) shows that the fraction of corotation is essentially the same across comparable
conditions at trial’s end in Experiments 1 and 2. Coaxial conditions have very high corotation
at trial’s end with a suggestion of higher corotation in the initially corotating conditions
(A > C). This tendency is present in the parallel conditions as well (B > D). This presumably
reflects the fact that in A and B, the initial state and its complementary rebound state involve
corotation, while in B and D, the initial state and complementary rebound state are opposed
by the tendency for corotation.
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Figure 6. Time in each state during second phase of trial during ramp experiment. As in Figure 4, the bars
depict the fractional time in each perceptual state for the last 10s of the trial. For the coaxial and parallel
corotation trials (two left groups), observers spend more time perceiving the corotation opposite to the
initial state. In the coaxial counter-rotation condition, the most frequently perceived states are corotation
(States 3 and 4) with very little time spent in the opposite-to-initial state (State 2).

Discussion

From several earlier studies, it was known that arrays of objects ambiguously rotating in
depth tend to be seen as rotating together. When reduced from many objects to two, this
effect is typically weak for parallel kinetic dot objects, but very strong for coaxial ones
(Dobbins et al., 1998; Eby et al., 1989; Long & Toppino, 1981). With orthographically
projected line segments, Gillam’s group has shown that multiple factors affect rotational
grouping including: shared axis of rotation (Gillam & McGrath, 1979), relative line
orientation (Gillam, 1972), the fractional (gap to line) separation (Gillam, 1981; Gillam &
Grant, 1984), and closure (Gillam, 1975; for a review: Gillam, 2005).

When we set out to do these experiments, we wondered if coaxial rotational coupling
might involve a race condition in which the ‘“rotating object” that first perceptually
emerges from the set of moving dots captures the rotation of the other. If true, then
controlling the initial conditions so that each object is initially unambiguous would
obviate the race condition explanation in the sense that the system is placed in a specified
state and there is no opportunity for an accidental capture of one object’s rotation by the
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Figure 7. Summary of the two experiments. Peak perception of the rebound (opposite-to-initial) state in
(a) step and (b) ramp experiments ((a) to (d) under bars refer to corresponding classes of conditions in
Figures 3 to 6). The pattern is quite similar in the two experiments with a stronger peak aftereffect (by 10% to
20%) in the step experiment. In both experiments, the coaxial counter-rotation conditions exhibit a notably
smaller peak aftereffect. (c) A comparison that demonstrates the similarity of the fraction of corotation at the
end of trial in step and ramp experiments. Corotation is greater in (a) than (c), and greater in (b) than (d) at
trial’s end, indicating that initial corotation (and its local rebound corotation) have a persistent advantage
compared with the initial counter-rotation conditions, in which corotation and the local rebound effect are
incompatible.

other as the percept initially emerges. Strikingly, however, coaxial objects remain resistant to
being perceived as counter-rotating in our experiments. In neither of the two experiments did
it prove possible to substantially increase the likelihood of perceiving coaxial counter-
rotation, except transiently in Experiment 1. In that experiment, the rear surface dots
suddenly appear, and it is likely that a combination of the transient response to motion
onset combined with the adaptation of response in the direction that has been stimulated
for 10 s combine to cause the abrupt perceptual reversal.

In a preliminary experiment, observers engaged in a variation of Experiment 1 with a
single object in which the prestep portion of the trial had variable length (3, 9, or 27s),
followed by a step transition to transparency. Increasing the initial phase of the trial
increased the time spent in the rebound state, consistent with a classical motion aftereffect.
However, examination of the data in Figure 2 shows that the dynamics are quantitatively
rather different for the different observers. Observer ACD shows only a very brief rebound
effect, while observer JOEL’s rebound lasts for the duration of the trial (Figure 2(a)).
Differences in latency of the first response and variability of latency (Figure 2(a): observer
HONG) also explain why the rebound effect is less than complete when averaged across
observers (Figure 3(a)). The other qualitative aspect of observer variability occurs in the
coaxial counter-rotation conditions (Figures 2(b) and 3(c)). Recall that here the peak
rebound effect is quite small when averaged (38%, Figure 3(c)). Observers showed either a
mix of brief rebound effect or an immediate transition to perception of corotation, bypassing
the rebound state altogether (Figure 2(b)).

The rapid motion onset of the previously invisible dots, most likely produces a transient
response in the neural population sensitive to the direction of the just-appeared dots. This
phenomenon probably has a similar basis to the experimental manipulation used in binocular
rivalry, in which rapidly switching a binocularly visible grating to a different orientation in
only one eye causes the new orientation to be visible at the expense of the previous one.
Unlike binocular rivalry, the competition is not for visibility, but for representing the front
surface of the object, which determines the rotation direction. In Experiment 1, 10s of
visibility of one direction of motion (and rotation) has the additional effect of adapting
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low-level direction-selective neurons as well as neurons that represent more sophisticated
properties such as surface shape derived from motion. (However, the present experiments
do not distinguish between a classical low-level motion aftereffect and higher level effects
involving surface convexity or concavity or object rotation.) Therefore, after the initial switch
to the rebound percept, we would expect there to be a persistent but declining advantage for
the most-recently visible dots in representing the front surface as seen in the slow decline of
the fraction of rebound state over the latter part of the trial (Figures 3 and 5).

The results of the second experiment are different from the step experiment in that there is
not a transient peak in the rebound effect—just a slow increase in probability of switching to
the rebound state that begins within a few seconds of ramp onset. On the other hand, the
results are also qualitatively similar to Experiment 1 as can be seen by comparing Figures 3 to
5 and Figures 4 to 6. The distribution of time in each state (Figures 4 and 6) is qualitatively
similar, with a greater bias toward the rebound state in the step experiment. This is
particularly true in the parallel counter-rotation condition. Figure 7 summarizes a
comparison between the two experiments. One reviewer rightly pointed out the danger of
choosing a single time point as region of interest for comparison. The point is well-taken.
However, the choice of peak rebound is not arbitrary for the step Experiment, although the
choice of 15s as the point in the Ramp experiment certainly is. If one examines Figure 5
closely, it is clear that there is not a sensitive-dependence on the choice of time point in the
result—any point in the 14 to 16s range yields about the same answer. The main point of
the summary shown in Figure 7(a) and (b) is that the overall pattern is the same—with the
coaxial counter-rotation conditions having much less rebound effect than the other
conditions. This is demonstrated more robustly in terms of total time in state (Figures 4
and 6). Finally, Figure 7(c) shows that by the end of trial, the differences associated with the
initial condition (A vs. C and B vs. D) have dissipated with only a small residual effect on the
amount of corotation observed. One way of thinking about the result shown in Figure 7 is
that the dots that ramp up slowly in luminance drive the direction-selective cells less initially
(compared with Experiment 1), while the direction-selective neurons driven by the initially
visible high luminance dots decrease in response due to adaptation, with the two populations
crossing in activity at some point during the ramp, leading to a perceptual switch.

Why are coaxial ambiguous objects so strongly inclined to rotate together? One kind of
answer is provided by Occam’s razor—corotation is the simplest explanation of the data.
On the other hand, is this not the simplest explanation of the data in the parallel axis case as
well? We can think of the setup in our experiments in at least two different ways. In one,
object motion is to be explained as much as possible (most generically) in terms of observer
motion. In another, motion is attributable to the objects and not the observer. Of course, we
can also imagine a combination of the two. From a theorem of mechanics known as Chasles’
Theorem (Chasles, 1830) and as clearly expressed by Whittaker (1904): ““A rotation about
any axis is equivalent to a rotation through the same angle about any axis parallel to it,
together with a simple translation in a direction perpendicular to the axis.”

In the present context (Figure 8), this can be interpreted to mean that a pure translation of
the observer can be equally conceived as a combination of rotation and translation of the
objects. Consideration is narrowed to the case where an eye movement is employed to render
stationary on the retina a particular fixation point (F). In the transverse parallax scenario
(Figure 8(b)), two initially aligned objects both translate (r) and rotate (o) on the retina.
Object translation direction and speed depends on the rotation of the eye (which point in the
scene is fixated) in addition to distance. In contrast, object rotation does not depend on the
eye rotation. Therefore, there are clear benefits for the visual system to decompose object
motion into translational and rotational components.
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Figure 8. Object translation and rotation for a moving observer. (a) Three cubes and fixation objects.
The drawings in the next two parts of the figure consider Objects | and 2 (b) or | and 3 (c) under different
movement regimes. (b) Moving to the left while fixating on the central object yields a combination of
translation (7) and rotation (o) in Objects | and 2. Translation depends on the eye movement during observer
movement, but the object rotation does not. (c) Moving forward between Objects | and 3 leads to opposite
rotation in the two objects. (N.B. Object translation is not depicted in this case, nor is object expansion).

With transverse parallax (Figure 8(b)), initially aligned objects (1 and 2) rapidly become
misaligned and rotate at different rates because they are at different distances. In contrast, if
Object 2 were directly above Object 1 (coaxial), their translation and rotation would be identical.
In other words, in the ego motion regime, apparently coaxial objects with identical motion can
be explained by transverse parallax. As an example, think of walking past a tree trunk that is
partially occluded so that it forms two cylinders. Analogously with the present experiments, the
two parts of the tree trunk share common translation and rotation. In Figure 8(c), motion along
a trajectory between two objects generates opposite rotation and translation (as well as
expansion). The important thing here is that in the parallel configuration in our experiments,
same-spin and opposite-spin can both be accounted for by particular ego motions, but there is
no ego motion that can generate coaxial counter-rotation.

Although ego motion-generated visual motion probably represents the overwhelming
majority of our experience, we also commonly experience multiple independently moving
objects, and we are capable of generating hypotheses to account for these situations. Indeed,
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as pointed out in Figure 1(d; and Demo 2), with increasing tilt and with common spin pitted
against common axis, we become increasingly willing to opt for a common axis interpretation
as tilt increases (see also Dobbins & Grossmann, 2010; Grossmann & Dobbins, 2006).
At higher tilt, shared object symmetry prevails over spin direction. Occam’s razor counsels
that we favor simple explanations over complex ones when both account equally well for the
data. MacKay (1991, 2003) goes one better: ““Coherent inference (as embodied by Bayesian
probability) automatically embodies Occam’s razor, quantitatively.”

His point is that a simple model in covering less of the data space is more probable or
predictive than a more complex model that spreads its predictive power over more of the data
space (see MacKay, 2003, for examples). In the current context, the simplest model is the one that
attempts to account for the data in terms of ego motion, while a more complex model permits
independent object motion or combines ego motion with object motion. A natural objection is
that the participant in these experiments has no evidence of undergoing ego motion—she is
sitting in a chair watching what appear to be stationary spinning objects. Nevertheless, if the
form-from-motion apparatus operates on the instantaneous motion fields rather than integrating
over time, the constraints derived from ego motion analysis may well prevail.

Finally, it is worthwhile to return to the point that the viewing condition in our experiments
degenerate in a certain sense—axis and spin sense correspond—axial alignment and common
spin are in agreement. Corotation is considered as perceptual grouping and opposite rotation
as not (or “fragmentation” in the terminology of Gillam). Yet, under a variety of conditions,
the fragmented percept can also be an example of perceptual grouping. For instance, in
Experiment 1 of Gillam (1972), alternative perceptual interpretations are possible, and
possibly with different likelihoods as a function of the degree of divergence of the two lines.
One of those interpretations is akin to Demo 2 in which tilted, rotating cylinders can be seen to
have opposite spin with a shared axis or common spin with oppositely tilted axes. This case in
which spin and axis are decoupled represents a kind of symmetry-breaking not present in the
standard orthogonally viewed display, and shows that one can invoke different models or
hypotheses to explain the data. The common spin model is compatible with the ego-
translation hypothesis, while the common axis model requires the assumption of
independent, spinning objects.
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