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Abstract

Background: Early identification of those with NAFLD activity score ≥ 4 and

significant fibrosis (≥F2) or at-risk metabolic dysfunction-associated

steatohepatitis (MASH) is a priority as these patients are at increased risk

for disease progression and may benefit from therapies. We developed

and validated a highly specific metabolomics-driven score to identify

at-risk MASH.

Methods: We included derivation (n = 790) and validation (n = 565)

cohorts from international tertiary centers. Patients underwent laboratory

assessment and liver biopsy for metabolic dysfunction-associated steatotic

liver disease. Based on 12 lipids, body mass index, aspartate amino-

transferase, and alanine aminotransferase, the MASEF score was devel-

oped to identify at-risk MASH and compared to the FibroScan-AST (FAST)

score. We further compared the performance of a FIB-4 + MASEF algorithm

to that of FIB-4 + liver stiffness measurements (LSM) by vibration-controlled

transient elastography (VCTE).

Results: The diagnostic performance of the MASEF score showed an area

under the receiver-operating characteristic curve, sensitivity, specificity, and

positive and negative predictive values of 0.76 (95% CI 0.72–0.79), 0.69,

0.74, 0.53, and 0.85 in the derivation cohort, and 0.79 (95% CI 0.75–0.83),

0.78, 0.65, 0.48, and 0.88 in the validation cohort, while FibroScan-AST

performance in the validation cohort was 0.74 (95% CI 0.68–0.79; p =

0.064), 0.58, 0.79, 0.67, and 0.73, respectively. FIB-4 +MASEF showed

similar overall performance compared with FIB-4 + LSM by VCTE (p = 0.69)

to identify at-risk MASH.

Conclusion: MASEF is a promising diagnostic tool for the assessment of

at-risk MASH. It could be used alternatively to LSM by VCTE in the algorithm

that is currently recommended by several guidance publications.

INTRODUCTION

Metabolic dysfunction-associated steatotic liver disease
(MASLD),[1] a name recently adopted by consensus for
the disease previously known as NAFLD, is the leading
cause of chronic liver disease worldwide that affects
25% of the general population and is the leading cause
of cirrhosis and liver transplantation in women.[2,3] The
spectrum of MASLD includes isolated steatosis that
may progress to metabolic dysfunction-associated
steatohepatitis (MASH),[1] previously known as NASH,
fibrosis, and eventually cirrhosis or HCC.[4] Patients with
significant (fibrosis stage 2 or higher, ≥F2) or advanced
fibrosis (fibrosis stage 3 or higher, ≥F3) have been
shown to have a higher risk of morbidity and
mortality.[5,6] Thus, clinical trials, especially phase 3
registry trials, have focused on MASH with ≥F2, also
known as “at-risk MASH.”[7]

Liver biopsy remains the gold standard to identify
those with at-risk MASH.[4] Given the challenges and
risks associated with liver biopsies, recent noninvasive
tests, including the serum-based NIS4, FibroScan-AST
(FAST), and MRI-AST (MAST) scores, have been
developed to identify patients with at-risk MASH.[8–10]

The NIS4 score is a serum-based test to identify
patients at-risk MASH.[8] The FAST score uses a
combination of liver stiffness measurement (LSM) and
controlled attenuation parameters by vibration-con-
trolled transient elastography (VCTE) with aspartate
aminotransferase (AST),[9] whereas the MAST score
uses LSM by magnetic resonance elastography and
MRI proton density fat fraction (MRI-PDFF) combined
with AST.[10] Both the FAST and MAST scores rely on
the availability of VCTE or advanced liver imaging and
are more widely used in clinical trials, while the NIS4
remains not as widespread due to its recent approval
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and lack of validation outside of its original publication.
As the enhanced liver fibrosis test is a serum test
identifying those mainly at high risk for progression to
cirrhosis or the development of liver-related events,
enhanced liver fibrosis test lacks the ability to identify
steatohepatitis, the primary disease driver.[11]

Recently, the American Gastroenterology Association
(AGA) and the American Association for the Study of
Liver Diseases (AASLD) issued a call advocating for
MASLD screening in high-risk populations.[12–14] The
AGA, AASLD, and the European Association for the
Study of Liver Diseases (EASL) have recommended
starting with a Fibrosis-4 index score (FIB-4) followed by
LSM on VCTE to identify at-risk MASH.[12–14] These
recommendations for sequential testing are based on
how (1) FIB-4 has at least 30% of the patients failing to be
classified and therefore falling into an indeterminate zone
for diagnosis and (2) sequential testing has been shown
to narrow this indeterminate zone.[15] However, these
testing recommendations have inherent limitations. FIB-4
was developed specifically to identify patients with
advanced fibrosis (≥F3) and so does not target
MASH.[16] Furthermore, the core assumption when
applying FIB-4 to a high-risk population is that the pretest
probability of MASH is high, but this assumption does not
always hold true. In addition, a proportion of individuals in
the FIB-4 indeterminate zone are subsequently required
to be classified by LSM by VCTE, and another proportion
of those patients who fall into the indeterminate zone
(8–12 kPa) on LSM by VCTE require further testing.
VCTE also remains machine-dependent and limited in
accessibility, particularly outside of gastroenterology and
hepatology practices.[16] All of these reasons provide a
rationale for the continued development of biomarker
panels that can be used as a point of care to identify
those with at-risk MASH. Metabolomics are serum/
plasma-based testing that measure lipids, carbohy-
drates, amino acids, and nucleic acids, among other
metabolites. Reflecting the underlying pathophysiologic
processes in MASLD and MASH, metabolites are
attractive noninvasive tests for the identification of those
with at-risk MASH. Previous studies from our group have
shown that a metabolomics-driven score accurately
differentiates normal liver from NAFLD (AUC
0.88±0.05, sensitivity 0.94, and specificity 0.57) and
NAFL from NASH (AUC 0.79 ± 0.04, sensitivity 0.70,
and specificity 0.81).[17–19] We hypothesize that the
Metabolomics-Advanced StEatohepatitis Fibrosis Score
(MASEF score) is superior or comparable to VCTE-
driven scores in identifying patients with at-risk MASH.
We aimed to develop and validate a highly specific
metabolomics-driven score to accurately identify patients
with at-risk MASH. We compared this score to the other
noninvasive tests, including FAST and LSM by VCTE.
We further compared FIB-4 + LSM by VCTE as
recommended by the AGA, AASLD, and EASL with
FIB-4 + MASEF to determine if MASEF can decrease the

number of patients in the indeterminate zone who may
subsequently need a referral to hepatology and increase
the number of patients correctly classified.

METHODS

Study design

This is an international cross-sectional multicenter
study, with data collected between 2015 and 2021,
consisting of derivation (n = 790) and validation (n =
565) patient cohorts. The transparent reporting of a
multivariable prediction model for individual prognosis
or diagnosis guidelines were followed to report the
development and validation of the prediction model for
the diagnosis of at-risk MASH patients (see Supple-
mentary Table 1, http://links.lww.com/HEP/H911).[20,21]

Cohorts

The derivation cohort included data from the ARREST
Cohort[22] (with patients from Israel, United States, and
Mexico) and 7 separate tertiary care centers, including
the University of Florida, United States; Donostia
University Hospital, Spain; Pontificia Universidad Catól-
ica de Chile, Chile; Fondazione IRCCS Ca’ Granda—
Ospedale Maggiore Policlinico, Italy; Marqués de Valde-
cilla University Hospital, Spain; General University
Hospital and the First Faculty of Medicine, Charles
University, Czech Republic; and Virgen de Valme
University Hospital, Spain. The validation cohort included
data from Spain’s NASH Registry (from 6 hospitals:
Marqués de Valdecilla University Hospital; Clinic Uni-
versity Hospital, University of Valladolid; Virgen del
Rocío University Hospital; Gregorio Marañón University
Hospital; Ramón y Cajal University Hospital; and Puerta
del Hierro University Hospital) and 6 separate tertiary
care centers including Marqués de Valdecilla University
Hospital, Spain; Cruces University Hospital, Spain;
Cedars-Sinai Medical Center, United States; Virginia
Commonwealth University, United States; Príncipe de
Asturias University Hospital, Alcalá University, Spain;
and Mount Sinai Health System, United States.

The derivation cohort data were first collected
between 2015 and 2018, and the validation cohort
was subsequently collected between 2019 and 2021.
Both the derivation and validation cohorts included
those aged 18 years or older who underwent laboratory
testing and liver biopsy for suspicion of MASLD within a
6-month period. Exclusion criteria for all cohorts
included history of liver diseases such as α1-antitrypsin
deficiency, autoimmune hepatitis, chronic hepatitis B
or C, hemochromatosis, primary biliary cholangitis,
primary sclerosing cholangitis, Wilson’s disease, med-
ications or supplements that may cause hepatic
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steatosis, history of HIV, and excessive alcohol use,
defined as ≥ 14 or ≥ 7 standard drinks of alcohol/week
for men or women, respectively. For algorithm develop-
ment, only MASLD patients without cirrhosis were
included, whereas MASLD patients with fibrosis stage
4 (F4) were also evaluated in the validation cohort.

Patients underwent in-depth medical history taking,
physical examination, and laboratory studies before
being selected for liver biopsy based on LSM >7 kPa
on VCTE or other methods that suggested that these
patients may have significant or advanced fibrosis. This
approach has become a standard in clinical practice
and clinical trials, as performing liver biopsy without
prior stratification could be unethical.

All procedures were conducted in accordance with
both the Declarations of Helsinki and Istanbul and with
the appropriate ethics and/or institutional review com-
mittee of each contributing institution. All patients gave
written informed consent to participate in the study.

Liver histology

Expert liver pathologists blinded to both clinical and
imaging data completed histological assessments for
their own center or study cohorts independently.
Patients were diagnosed with MASH if they met Brunt
criteria[23] and were assessed for NAFLD activity score
(NAS) using Kleiner criteria.[24] For the NAS score
ranging from 0 to 8, liver histology was scored and
summed for steatosis from 0 to 3, hepatocellular
ballooning from 0 to 2, and lobular inflammation from
0 to 3. Staged from 0 to 4, fibrosis was defined as
fibrosis stage 0: no fibrosis; fibrosis stage 1: either mild-
moderate perisinusoidal or periportal fibrosis; fibrosis
stage 2 (F2): both perisinusoidal and portal/periportal
fibrosis; fibrosis stage 3 (F3): bridging or advanced
fibrosis; and fibrosis stage 4 (F4): cirrhosis.

MASEF score

The test was developed initially to identify MASH with at
least 1 point in each category of steatosis, lobular
inflammation, and ballooning, as well as ≥F2. The
MASEF score provides the logistic probability score that
allows for obtaining a predicted probability score (ranging
from 0 to 1) of at-risk MASH using a multivariable logistic
regression algorithm. The final MASEF score included 12
lipids, body mass index (BMI), AST, and alanine amino-
transferase (ALT). Importantly, we used machine learn-
ing models to develop the final score.

Outcomes

The primary outcome of this study was the diagnosis of
at-risk MASH, defined as MASH with NAS Z 4 and

significant fibrosis (ZF2), with NAS scoring at least 1
point in each category of steatosis, lobular inflamma-
tion, and ballooning. This group of patients is targeted
for pharmacological therapy in MASH, as this group
carries an increased risk of morbidity and mortality. Our
secondary outcomes were (1) to compare the MASEF
score to the FAST score and (2) to compare the current
recommended care pathway starting with FIB-4 fol-
lowed by LSM by VCTE to an alternative care pathway
starting with FIB-4 followed by the MASEF score.

Statistical analysis

The MASEF score was developed on the 790 patients in
the derivation cohort. The selection of parameters was
based on the combination of lipidomic features and
clinical variables related to MASH and fibrosis. Param-
eters were combined into a multivariable logistic regres-
sion algorithm. From a feature set including ~240 lipids,
BMI, AST, ALT, platelets, and glycosylated hemoglobin
(HbA1c), a first selection process was applied using a
variance threshold and a feature importance analysis.[25]

Among the different approaches for model selection, the
MASEF score algorithm was selected using Training and
Test Cohorts (derivation cohort recursively divided into
training and test sets).[26] Varying model complexity
(adding or deleting parameters), we measured the model
error to select the optimal complexity. To evaluate the
real performance of the model and avoid overfitting, the
estimator was internally validated using a 10-fold cross-
validation procedure splitting all the samples into 10
groups, where the estimator learned using 9 groups and
was evaluated in the last remaining group.[26] Statistical
analyses were performed using Python with scikit-learn
v1.0.2 and pandas v1.1.4.[27,28]

Performance was achieved in terms of area under the
receiver-operating characteristic (AUC) curve using R
software v4.0.3 (packages: ‘ROCR’ v1.0-11; ‘pROC’
v1.17.0.1). The AUC is reported along with a 95% CI
calculated with 2000 stratified bootstrap replicates. The
1-score cutoff was obtained as the optimal Youden’s J
statistic (or J point), where sensitivity + specificity −1 is
maximum, as shown in Figure 1. Multiple score cutoffs
corresponding to high sensitivity (cutoff A) and high
specificity (cutoff B) were calculated in the derivation
cohort and then applied to the validation cohort. The
best 2 cutoffs corresponding to 80% sensitivity and 90%
specificity were chosen and are comparable to
the serum-based NIS4 test.[8] Values between these 2
cutoffs (A–B) are usually known as indeterminate or “grey
zone” values. In addition, as mentioned, we have also
reported various cutoffs’ performances in Supplementary
Table 2, http://links.lww.com/HEP/H912. For each cutoff
value, sensitivity, specificity, positive predictive value
(PPV), and negative predictive value (NPV) were
estimated using package ‘caret’ v6.0-88. CIs were
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calculated as exact binomial confidence limits using
package ‘epiR’ v2.0.4190.

To assess differences in clinical variables among
groups, statistical significance was determined using
the chi-square test for categorical variables and the
Kruskal-Wallis H-test for continuous variables.

RESULTS

Baseline characteristics

The derivation cohort of 790 subjects was used to
develop the MASEF score, which was then validated in a
separate cohort of 565 subjects (see Supplementary
Figure 1, http://links.lww.com/HEP/H913 Supplementary
Figure 2, http://links.lww.com/HEP/H913). Table 1 shows
the derivation and validation cohorts’ demographic,
metabolic, serologic, and histologic characteristics.
Given that the MASEF score classifies populations into
at-risk MASH or not at-risk MASH, Table 1 has been split
into these 2 categories. In terms of demographic,
metabolic, and serologic characteristics, the derivation/
validation cohort respectively had a mean age of 51.4
(±11.6)/54.0 (±10.6) years with 51%/51% females and
28%/51% with type 2 diabetes. In the derivation/
validation cohorts, respectively, mean AST was 39.8
(± 29.4)/40.1 (± 26.6) IU/L, mean ALT was 56.5
(± 45.2)/52.4 (± 39.4) IU/L, mean triglyceride was
170.3 (± 109.0)/163.7 (± 116.7) mg/dL, and mean
HbA1c was 6.5% (± 1.2%) / 6.2% (± 1.9%). In addition,
a comparison of demographic, metabolic, serologic, and
histologic characteristics in patients with and without
at-risk MASH between derivation and validation cohorts
is shown in Supplementary Table 3, http://links.lww.com/
HEP/H914.

Regarding histologic characteristics, the prevalence of
MASLD with ≥F2 and ≥F3 was respectively 31.5% and
12.2% in the derivation cohort, whereas the prevalence
of MASLD with ≥F2, ≥F3, and F4 was 32.6%, 20.0%,
and 6.4%, respectively in the validation cohort. Patients
with F4 were excluded from the derivation cohort to avoid
bias in the algorithm development that could artificially
increase the performance of the test, but F4 patients
were included in the validation cohort. Furthermore, at-
risk MASHwas reported in 235 (29.7%) of 790 patients in
the derivation cohort and 165 (29.2%) of 565 patients in
the validation cohort (Table 1).

Risk factors of at-risk MASH

In both derivation and validation cohorts, at-risk MASH
was significantly associated with increased age, glucose,
HbA1c, AST, and ALT (Table 1). In addition, at-riskMASH
in the derivation cohort was significantly associated with
increased homeostatic model assessment (HOMA) and
gamma-glutamyl transferase (GGT) (HOMA and GGT
were not available in the validation cohort), whereas at-
risk MASH in the validation cohort was significantly
associated with traditional risk factors such as increased
triglyceride, and total cholesterol (Table 1).

The MASEF score and its performance

Models combining metabolic features and clinical varia-
bles, including BMI, ALT, AST, platelets, and HbA1c,
were compared (see statistical analysis). The final
algorithm, comprising 12 lipids, BMI, ALT, and AST,
was found to be the best model with the highest AUC in
the derivation cohort for identifying at-risk MASH patients,
resulting in the MASEF score. The panel of 12 lipids

F IGURE 1 Cumulative distribution analysis for MASEF score in the derivation cohort. This plot displays sensitivity, specificity, accuracy, and
balanced accuracy versus all possible MASEF score cutoffs. The values for (sensitivity + specificity − 1) are also represented to illustrate the
evaluation of Youden’s J statistic (or J point), the cutoff for maximum sensitivity + specificity − 1. Cutoff for 80% sensitivity = 0.258. Cutoff for 90%
specificity = 0.513. Cutoff for the optimal J point = 0.330. Abbreviations: MASEF, metabolomics-advanced steatohepatitis fibrosis score.
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TABLE 1 Characteristics of the Derivation and Validation Cohorts: (a) Characteristics of the Derivation Cohort. (b) Characteristics of the
Validation Cohort

At-risk MASH Not at-risk MASH p Overall

(A) Characteristics of the derivation cohort

Demographics

n, (%) 235 (29.7) 555 (70.3) — 790

Age (y) 52.7 ± 11.0 (235) 50.8 ± 11.8 (555) 0.0389 51.4 ± 11.6 (790)

BMI (kg/m2) 35.6 ± 7.4 (235) 34.8 ± 7.7 (555) 0.0518 35.1 ± 7.6 (790)

Sex, n (%) Female 132 (56) Female: 271 (49) 0.0704 Female: 403 (51)

Male: 103 (44) Male: 284 (51) — Male 387 (49)

Metabolic

Diabetes (type 2), n (%) 70 (30) 149 (27) 0.106 219 (28)

Abdominal perimeter (cm) 148.8 ± 12.4 (4) 133.4 ± 18.3 (30) 0.092 135.2 ± 18.3 (34)

Blood

Glucose (mg/dL) 127.4 ± 40.4 (195) 119.2 ± 35.0 (464) 8.16e-3 121.6 ± 36.8 (659)

HbA1c (%) 6.8 ± 1.2 (189) 6.4 ± 1.2 (449) < 0.001 6.5 ± 1.2 (638)

HOMA 8.1 ± 6.6 (45) 4.6 ± 3.8 (141) < 0.001 5.4 ± 4.8 (186)

AST (IU/L) 52.8 ± 37.4 (235) 34.3 ± 23.2 (555) < 0.001 39.8 ± 29.4 (790)

ALT (IU/L) 70.2 ± 48.4 (235) 50.6 ± 42.4 (555) < 0.001 56.5 ± 45.2 (790)

GGT (IU/L) 72.0 ± 99.2 (181) 51.9 ± 59.9 (377) < 0.001 58.5 ± 75.4 (558)

Triglyceride (mg/dL) 179.3 ± 137.4 (197) 166.7 ± 95.1 (492) 0.644 170.3 ± 109.0 (689)

Total cholesterol (mg/dL) 191.9 ± 46.8 (231) 190.2 ± 44.8 (547) 0.651 190.7 ± 45.4 (778)

LDL cholesterol (mg/dL) 114.7 ± 39.0 (191) 116.4 ± 39.8 (487) 0.968 115.9 ± 39.5 (678)

HDL cholesterol (mg/dL) 45.0 ± 13.5 (197) 45.3 ± 12.6 (490) 0.637 45.2 ± 12.8 (687)

Histology

Steatosis in NAS, n (%) 0: 0 (0) 0: 0 (0) < 0.001 0: 0 (0)

1: 81 (34) 1: 299 (54) — 1: 380 (48)

2: 94 (40) 2: 155 (28) — 2: 249 (32)

3: 60 (26) 3: 101 (18) — 3: 161 (20)

Ballooning in NAS, n (%) 0: 0 (0) 0: 265 (48) < 0.001 0: 265 (34)

1: 127 (54) 1: 231 (42) — 1: 358 (45)

2: 108 (46) 2: 59 (11) — 2: 167 (21)

Inflammation in NAS, n (%) 0: 0 (0) 0: 65 (12) < 0.001 0: 65 (8)

1: 36 (15) 1: 294 (53) — 1: 330 (42)

2: 156 (66) 2: 171 (31) — 2: 327 (41)

3: 43 (18) 3: 25 (5) — 3: 68 (9)

Fibrosis, n (%) F0: 0 (0) F0: 216 (39) < 0.001 F0: 216 (27)

F1: 0 (0) F1: 325 (59) — F1: 325 (41)

F2: 142 (60) F2: 11 (2) — F2: 153 (19)

F3: 93 (40) F3: 3 (1) — F3: 96 (12)

F4: 0 (0) F4: 0 (0) — F4: 0 (0)

(B) Characteristics of the validation cohort

Demographics

n (%) 165 (29.2) 400 (70.8) — 565

Age (y) 57.7 ± 9.1 (165) 52.4 ± 10.8 (400) < 0.001 54.0 ± 10.6 (565)

BMI (kg/m2) 34.5 ± 6.6 (165) 38.4 ± 7.7 (400) < 0.001 37.2 ± 7.6 (565)

Sex, n (%) Female: 83 (50) Female: 205 (51) 0.714 Female: 288 (51)

Male: 72 (44%) Male: 164 (41%) — Male: 236 (42%)

Metabolic

Diabetes (type 2), n (%) 115 (70) 174 (44) < 0.001 289 (51)
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included 2 triglycerides, 5 glycerophosphocholines, 1
cholesteryl ester, 1 ceramide, and 3 sphingomyelins.

Figure 1 demonstrates the MASEF score’s perfor-
mance versus the cutoff in the derivation cohort. To
evaluate the contribution of the lipidomic versus clinical
variables to the final model, the MASEF score
performance was compared with 2 different models,
including (1) only clinical variables (BMI, AST, and ALT)
or (2) only lipidomic features and BMI (without ALT and
AST). The MASEF score’s overall performance was
better than those of the 2 aforementioned models (see
Supplementary Table 4, http://links.lww.com/HEP/H915).

Table 2 shows the performances of MASEF and
FAST scores in identifying at-risk MASH in terms of
AUC, accuracy, sensitivity, specificity, PPV, and NPV.
The performances were assessed using a 1-score

cutoff that is the optimal Youden’s J statistic (or J point).
The 1-score cutoff for MASEF was obtained in the
derivation cohort, as shown in Figure 1, and then was
applied to the validation cohort. FAST J point was
calculated in the validation cohort, as it was not
available in the derivation cohort. MASEF score
sensitivity and NPV were statistically higher (p <
0.001) than FAST in the validation cohort, however,
the specificity and PPV were statistically lower than
FAST. ROC plots of sensitivity versus 1-specificity for
all possible 1-score cutoffs for the MASEF and FAST
scores are shown in Figure 2.

Table 3 shows the performances of the MASEF and
FAST scores with 2-score cutoffs corresponding to 90%
specificity and 80% sensitivity. MASEF cutoffs were
calculated in the derivation cohort and applied in the

TABLE 1 . (continued)

At-risk MASH Not at-risk MASH p Overall

Abdominal perimeter
(cm)

N/A ± N/A (N/A) N/A ± N/A (N/A) N/A N/A ± N/A (N/A)

Blood

Glucose (mg/dL) 131.7 ± 46.3 (116) 105.9 ± 37.7 (329) < 0.001 112.6 ± 41.6 (445)

HbA1c (%) 6.6 ± 1.0 (106) 6.1 ± 2.1 (289) < 0.001 6.2 ± 1.9 (395)

HOMA NaN ± NA (0) NaN ± NA (0) NA NaN ± NA (0)

AST (IU/L) 56.7 ± 33.8 (165) 33.3 ± 19.2 (400) < 0.001 40.1 ± 26.6 (565)

ALT (IU/L) 71.3 ± 46.6 (165) 44.6 ± 33.2 (400) < 0.001 52.4 ± 39.4 (565)

GGT (IU/L) NaN ± NA (0) NaN ± NA (0) NA NaN ± NA (0)

Triglyceride (mg/dL) 181.1 ± 145.8 (133) 157.3 ± 103.6 (365) 0.0219 163.7 ± 116.7 (498)

Total cholesterol (mg/dL) 187.3 ± 38.3 (131) 176.2 ± 38.3 (374) 4.25e-3 179.0 ± 38.6 (505)

LDL cholesterol (mg/dL) 107.1 ± 36.4 (119) 104.5 ± 34.3 (330) 0.469 105.2 ± 34.9 (449)

HDL cholesterol (mg/dL) 47.6 ± 10.8 (125) 43.4 ± 13.9 (338) < 0.001 44.5 ± 13.3 (463)

Histology

Steatosis in NAS, n (%) 0: 0 (0) 0: 50 (12) < 0.001 0: 50 (9)

1: 44 (27) 1: 187 (47) — 1: 231 (41)

2: 85 (52) 2: 108 (27) — 2: 193 (34)

3: 36 (22) 3: 55 (14) — 3: 91 (16)

Ballooning in NAS 0: 0 (0) 0: 130 (32) < 0.001 0: 130 (23)

1: 64 (39) 1: 192 (48) — 1: 256 (45)

2: 99 (60) 2: 77 (19) — 2: 176 (31)

Inflammation in NAS, n (%) 0: 0 (0) 0: 111 (28) < 0.001 0: 111 (20)

1: 96 (58) 1: 196 (49) — 1: 292 (52)

2: 57 (35) 2: 74 (18) — 2: 131 (23)

3: 12 (7) 3: 19 (5) — 3: 31 (5)

Fibrosis, n (%) F0: 0 (0) F0: 197 (49) < 0.001 F0: 197 (35)

F1: 0 (0) F1: 184 (46) — F1: 184 (33)

F2: 68 (41) F2: 3 (1) — F2: 71 (13)

F3: 70 (42) F3: 7 (2) — F3: 77 (14)

F4: 27 (16) F4: 9 (2) — F4: 36 (6)

Note: ≥F2, fibrosis stage 2 or higher; At-risk MASH, MASH + NAS≥ 4 + significant fibrosis (≥F2).
Abbreviations: ALT, alanine aminotransferase; AST, aspartate aminotransferase; BMI, body mass index; F0, fibrosis stage 0; F1, fibrosis stage 1; F2, fibrosis stage 2;
F3, fibrosis stage 3; F4, fibrosis stage 4 or cirrhosis; GGT, gamma-glutamyl transferase; HbA1c, glycosylated hemoglobin; HOMA, homeostatic model assessment;
MASH, metabolic dysfunction-associated steatohepatitis; NAS, NAFLD activity score.
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validation cohort. FAST’s previously published cutoffs
of 0.35 and 0.67 were applied in the validation cohort[9]

as FAST was not available in the derivation cohort.
Other various specificity and sensitivity threshold
performances of the MASEF score are shown in
Supplementary Table 2, http://links.lww.com/HEP/
H912.

Compared with FAST, MASEF exhibited numerically
higher AUC (p < 0.064) in the validation cohort (Table 3).
In addition, MASEF demonstrated similar PPV and
sensitivity, accuracy, and overall higher specificity (p <
0.042) and NPV (p < 0.004) at the 80% sensitivity cutoff.
MASEF also exhibited similar sensitivity, specificity,
accuracy, and PPV and overall higher NPV (p < 0.023)
at the 90% specificity cutoff compared to FAST’s
validation cohort (Table 3, Figure 3).

FIB-4 + MASEF in comparison with FIB-4 +
LSM by VCTE

We further compared the performance of a FIB-4 +
MASEF algorithm to that of FIB-4 + LSM by VCTE, the
current recommendation of many societies’ guidance, in
the same subpopulation of 310/565 patients with
available LSM by VCTE data in the validation
cohort.[4,29] In all, 133 (43%) of 310 patients had FIB-4
< 1.30 and were classified as low risk of having at-risk
MASH, 37 (12%) of 310 patients had FIB-4 > 2.67 and
were classified as high risk of having at-risk MASH, and
140 (45%) of 310 were classified into the indeterminate
or grey zone and then were further analyzed by MASEF
score or LSM by VCTE (Table 4).

When using MASEF as the second test after FIB-4,
19 (14%) of 140 patients had MASEF < 0.258 and were
classified as not at-risk MASH, 57 (41%) of 140 had
MASEF > 0.513 and were classified as at-risk MASH,

and 64 (45%) fell into the indeterminate zone. Among
patients with MASEF < 0.258, 15 (79%) were correctly
classified (NAS ≤ 3 with any fibrosis or fibrosis r F1
with any NAS), and 4 (21%) were misclassified (NAS ≥
4 with ≥F2). Among patients with MASEF > 0.513, 37
(65%) were correctly classified, and 20 (35%) were
misclassified. Among the 64 (46%) of 140 patients
classified into the grey zone, 28 (44%) patients were at-
risk MASH.

TABLE 2 Performances of the MASEF and FAST Scores in Identifying At-Risk MASH

MASEF FAST
Cohort Derivation Validation Validation

AUC (p) 0.756 0.789 (0.89) 0.736 (0.064)

(95% CI) (0.718–0.792) (0.750–0.827) (0.683, 0.788)

Cutoff 0.33 0.33 0.637

Accuracy (p), % 72.9 69.0 (0.134) 70.4 (0.73)

Sensitivity (p), % 69.4 78.2 (0.66) 58.5 (p < 0.001)

Specificity (p), % 74.4 65.2 (0.003) 79.0 (0.001)

PPV (p), % 53.4 48.1 (0.24) 66.7 (0.001)

NPV (p), % 85.2 87.9 (0.33) 72.6 (p < 0.001)

Total patients (n) 790 565 311

Notes: The performances of the MASEF and FAST scores in identifying at-risk MASH are assessed using a 1-score cutoff that is the optimal Youden’s J statistic (or J
point). The 1-score cutoff for MASEF was obtained in the derivation cohort and applied to the validation cohort. The 1-score cutoff for FAST was calculated in the
validation cohort, as FAST was not available in derivation cohort. There is no grey zone as there is only 1 cutoff.
≥F2, fibrosis stage 2 or higher; At-risk MASH, MASH + NAS ≥ 4 + significant fibrosis (≥F2).
Abbreviations: AUC, area under the receiver-operating characteristic curve; FAST, FibroScan-aspartate aminotransferase; MASEF, metabolomics-advanced steatohepatitis
fibrosis score; MASH, metabolic dysfunction-associated steatohepatitis; NAS, NAFLD activity score; NPV, negative predictive value; PPV, positive predictive value.

F IGURE 2 Diagnostic Performances of the MASEF and FAST
Scores in Terms of AUC for the Diagnosis of At-Risk MASH in the
Derivation and Validation Cohorts ≥F2 = fibrosis stage 2 or higher.
At-risk MASH = MASH + NAS ≥4 + significant fibrosis (≥F2).
Abbreviations: AUC, area under the receiver-operating characteristic
curve; FAST, FibroScan-aspartate aminotransferase; MASEF,
metabolomics-advanced steatohepatitis fibrosis score NAS, NAFLD
activity score; MASH, metabolic dysfunction-associated steatohepa-
titis; NIT, noninvasive test.
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When using LSM by VCTE as the second test after
FIB-4, 36 (25%) of 140 patients had LSM < 8 kPa and
were classified as not at-risk MASH, 53 (38%) of 140
had LSM > 12 kPa and were classified as at-risk
MASH, and 51 (36%) fell into the indeterminate zone.
Among patients with LSM < 8 kPa, 24 (67%) were
correctly classified (NAS ≤ 3 with any fibrosis or
fibrosis r F1 with any NAS), and 12 (33%) were
misclassified (NAS ≥ 4 with ≥F2). Among patients with
LSM > 12 kPa, 32 (60%) were correctly classified, and
21 (39%) were misclassified. Among the 51 (36%) of

140 patients classified into the grey zone, 25 (49%)
patients were at-risk MASH.

The performances of FIB-4 + LSM by VCTE and FIB-
4 + MASEF using a 1-score cutoff are shown in Table 5.
Individual scores (FIB-4, LSM, and MASEF) were also
compared with the combination algorithms to evaluate
the performance of each method. The overall
performance of FIB-4 + MASEF, though higher, was
not statistically different from that of FIB-4 + LSM by
VCTE (p = 0.69). The MASEF score alone obtained
higher sensitivity (p < 0.001) than the FIB-4 + LSM by

TABLE 3 Performances of the MASEF and FAST Scores with 2-score Cutoffs in Identifying At-risk MASH

MASEF FAST
Cohort Derivation, % Validation, % Validation, %

AUC (p) 0.756 0.789 (0.89) 0.736 (0.064)

(95% CI) (0.718–0.792) (0.750–0.827) (0.683, 0.788)

Cutoff A 0.258 0.258 0.35

n 377 215 91

Sensitivity (p) 80.0 89.1 (0.022) 85.4 (0.44)

Specificity (p) 59.5 49.2 (0.002) 39.8 (0.042)

PPV (p) 45.5 42.0 (0.37) 50.5 (0.059)

NPV (p) 87.5 91.6 (0.163) 79.1 (0.004)

Cutoff B 0.513 0.513 0.67

n 137 121 98

Sensitivity (p) 34.9 44.2 (0.074) 52.3 (0.21)

Specificity (p) 90.1 88.0 (0.36) 83.4 (0.172)

PPV (p) 59.9 60.3 (1.0) 69.4 (0.21)

NPV (p) 76.6 79.3 (0.33) 70.9 (0.023)

Grey zone A-B, n (%) 276, (35.0) 229, (40.5) 122, (39.2)

Total patients (n) 790 565 311

Notes: For MASEF, the performances were assessed with the cutoffs determined in the derivation cohort and applied in the validation cohort. The lower cutoff is a rule-
out threshold corresponding to 80% sensitivity in the derivation cohort, whereas the higher cutoff comprises a rule-in threshold corresponding to 90% specificity in the
derivation cohort. For FAST, only available in the validation cohort, the previously published cutoffs were used. Participants with a score in-between these cutoffs are
in the grey zone.
≥F2, fibrosis stage 2 or higher; At-risk MASH, MASH + NAS ≥ 4 + significant fibrosis (≥F2).
Abbreviations: AUC, area under the receiver-operating characteristic curve; FAST, FibroScan-aspartate aminotransferase; MASEF, metabolomics-advanced stea-
tohepatitis fibrosis score MASH, metabolic dysfunction-associated steatohepatitis; NAS, NAFLD activity score; NPV, negative predictive value; PPV, positive
predictive value.

F IGURE 3 Diagnostic performances of the MASEF and FAST scores with 2-score cutoffs for the diagnosis of at-risk MASH. This plot displays
sensitivity, specificity, NPV, PPV, and accuracy in the validation cohort for the cutoffs corresponding to 80% sensitivity (rule-out threshold) and
90% specificity (rule-in threshold). In each plot, the CI of the MASEF score for each characteristic is represented with a grey band. ≥F2 = fibrosis
stage 2 or higher. At-risk MASH = MASH + NAS ≥4 + significant fibrosis (≥F2). Abbreviations: FAST, FibroScan-aspartate aminotransferase;
MASEF, metabolomics-advanced steatohepatitis fibrosis score; MASH, metabolic dysfunction-associated steatohepatitis; NAS, NAFLD activity
score; NPV, negative predictive value; PPV, positive predictive value.
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the VCTE algorithm. All the individual scores provided
an indeterminate zone that was statistically higher (p <
0.001) than the combination of FIB-4 + LSM by VCTE or
FIB-4 + MASEF (Table 5, Figure 4).

DISCUSSION

In this study, we developed and validated the novel,
blood-based Metabolomics-Advanced StEatohepatitis
Fibrosis Score (MASEF score) that noninvasively
identifies patients with at-risk MASH who may benefit
from pharmacotherapies and intervention.

Given that no significant differences were found
between FIB-4 + MASEF and FIB-4 + LSM by VCTE,
MASEF is a promising candidate to be used alter-
natively to LSM by VCTE in the FIB-4 + LSM by VCTE
algorithm that is currently recommended by the AGA,
AASLD, and EASL. The current FIB-4 + LSM by
VCTE algorithm invites ambiguity regarding the next
steps for patients who fall into the indeterminate zone

on LSM by VCTE (8-12 kPa) and who may warrant
subsequent referral to a hepatologist. In contrast, the
FIB-4 + MASEF algorithm’s numerically higher accu-
racy, sensitivity, NPV, and PPV improve the identi-
fication of previously indeterminate patients on FIB-4
+ LSM by VCTE and may thus decrease the number
of subsequent hepatology referrals. Furthermore,
whereas VCTE’s use remains limited by personnel
training, machine expense, and operating costs and is
therefore available mainly to gastroenterologists,
MASEF is a blood-based test that, once available,
can be routinely requested in the primary care clinic
setting. Replacement of LSM by VCTE with MASEF
in the FIB-4 + LSM by VCTE algorithm currently
recommended by the AGA, AASLD, and EASL,
therefore, expands the identification of patients to
include at-risk MASH, which is associated with a
higher degree of disease progression to fibrosis and
cirrhosis and remains a target for novel pharmaco-
therapies and clinical trials.

TABLE 4 Patient classification using FIB-4 + MASEF in comparison with FIB-4 + LSM by VCTE. 310 patients were first classified using FIB-4

Notes: Those patients that FIB-4 classified as intermediate risk (140) were subsequently analyzed with a second test, MASEF score or LSM by VCTE.
≥F2, fibrosis stage 2 or higher; At-risk MASH, MASH + NAS ≥ 4 + significant fibrosis (≥F2).
Abbreviations: FIB-4, fibrosis-4 index; LSM, liver stiffness measurement; MASEF, metabolomics-advanced steatohepatitis fibrosis score; MASH, metabolic dys-
function-associated steatohepatitis; NAS, NAFLD activity score; NPV, negative predictive value; PPV, positive predictive value; VCTE, vibration-controlled transient
elastography.

TABLE 5 Performance of FIB-4 + LSM by VCTE in Comparison with FIB-4 + MASEF

Algorithm
Accuracy

(p) %
Sensitivity

(p) %
Specificity

(p) % PPV (p) % NPV (p) %
Indeterminate zone

(p) %

FIB-4 + LSM by
VCTE

69.1 54.7 79.1 64.4 71.6 16

FIB-4 + MASEF 71.1 (0.69) 61.2 (0.42) 78.3 (0.99) 67.0 (0.83) 73.7 (0.77) 21 (0.22)

FIB-4 72.4 (0.54) 41.9 (0.150) 89.8 (0.033) 70.3 (0.67) 72.9 (0.9) 45 (p < 0.001)

LSM 65.6 (0.5) 79.3 (p < 0.001) 55.8 (p < 0.001) 56.5 (0.31) 78.8 (0.3) 37 (p < 0.001)

MASEF 71.6 (0.66) 84.7 (p < 0.001) 61.9 (0.005) 62.2 (0.87) 84.5 (0.051) 45 (p < 0.001)

FAST 73.7 (0.35) 77.9 (0.001) 70.0 (0.135) 69.1 (0.61) 78.7 (0.28) 40 (p < 0.001)

Notes: The performances of FIB-4 + LSM by VCTE and FIB-4 + MASEF, in the subpopulation where LSM by VCTE data were available (310 patients), are compared
using a 2-score cutoff that is the optimal Youden’s J statistic (or J point). Individual scores, including FAST, were also compared with the combination algorithms. No
significant differences were found between the combination algorithms of FIB-4 + LSM by VCTE and FIB-4 + MASEF.
Abbreviations: FAST, FibroScan-aspartate aminotransferase; FIB-4, fibrosis-4 index; LSM, liver stiffness measurement; MASEF, metabolomics-advanced steato-
hepatitis fibrosis score; NPV, negative predictive value; PPV, positive predictive value; VCTE, vibration-controlled transient elastography.
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This study has limitations. First, as this was a
multicenter international study, liver biopsies were not
read centrally. However, histological readings were
performed by experienced hepatopathologists. Second,
the FAST score and LSM by VCTE data were available
in only a subset of patients, yet this data set was large
enough to make meaningful comparisons. Third, FIB-4
was developed specifically to identify patients with
advanced fibrosis (≥F3), and there is still a paucity of
data for using the test in primary care settings, where
the prevalence of advanced fibrosis is much lower than
in secondary care settings. Furthermore, the MASEF
score was developed using cohorts with a higher
prevalence of significant and advanced fibrosis (≥F2).
For those reasons, further studies should be conducted
to assess the performance of FIB-4 + MASEF in primary
care settings. Finally, some patients underwent some
sort of staging before liver biopsy. However, this
approach has become a standard in both clinical
practice and clinical trials, as conducting liver biopsy
without prior stratification could be unethical.

In addition, this study has major strengths. First, study
data were collected from numerous international centers
spanning multiple years and are thus very clinically
applicable in the real-world setting. Second, the MASEF
score performed similar to FAST. Third, MASEF is a blood-
based test with clinical variables that are widely available
and often routinely obtained in primary care or ambulatory
care clinics at low cost, unlike other noninvasive staging
tests that may require VCTE or MRI that are much more
expensive and limited to gastroenterologists. Of note, the
addition of lipids to the clinical parameters and vice versa
has improved the score’s performance, which is plausible
as metabolomics and lipid changes are essential to the
pathogenesis of MASH. Fourth, MASEF’s cohorts had
large sample sizes empowering robust derivation and
validation. Finally, to our knowledge, this is the first study
that uses a blood-based score as a replacement for LSMby
VCTE in the AGA’s currently recommended FIB-4 + LSM
by VCTE algorithm.

Utilizing the MASEF score as a replacement for LSM
by VCTE in the AGA’s currently recommended FIB-4 +
LSM by VCTE algorithm is feasible and practical, given
MASEF’s similar performance, high accuracy, and
increased accessibility due to the fact that MASEF is
a blood-based test. Accurate identification of at-risk
MASH will allow patients at high risk of severe liver
disease progression to be targeted for novel pharma-
cotherapies and clinical trials.
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