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The complex language of eukaryotic gene expression remains incompletely understood. Despite the importance suggested

bymany noncoding variants statistically associated with human disease, nearly all such variants have unknownmechanisms.

Here, we address this challenge using an approach based on a recent machine learning advance—deep convolutional neural

networks (CNNs). We introduce the open source package Basset to apply CNNs to learn the functional activity of DNA

sequences from genomics data. We trained Basset on a compendium of accessible genomic sites mapped in 164 cell types

by DNase-seq, and demonstrate greater predictive accuracy than previous methods. Basset predictions for the change in

accessibility between variant alleles were far greater for Genome-wide association study (GWAS) SNPs that are likely to

be causal relative to nearby SNPs in linkage disequilibrium with them. With Basset, a researcher can perform a single se-

quencing assay in their cell type of interest and simultaneously learn that cell’s chromatin accessibility code and annotate

every mutation in the genome with its influence on present accessibility and latent potential for accessibility. Thus, Basset

offers a powerful computational approach to annotate and interpret the noncoding genome.

[Supplemental material is available for this article.]

The process of identifying genomic sites that show statistical rela-
tionships to phenotypes holds great promise for human health
and disease (Hindorff et al. 2009). However, our current inability
to efficiently interpret noncoding variants impedes progress to-
ward using personal genomes in medicine. Coordinated efforts
to survey the noncoding genome have shown that sequences
marked by DNA accessibility and certain histone modifications
are enriched for variants that are statistically related to phenotypes
(The ENCODE Project Consortium 2012; Roadmap Epigenomics
Consortium et al. 2015). The first stages of a mechanistic hypoth-
esis can now be assigned to variants that directly overlap these an-
notations (Fu et al. 2014; Kircher et al. 2014; Ritchie et al. 2014).

However, simply considering the overlap of a variant with
annotations underutilizes these data; more can be extracted by un-
derstanding the DNA–protein interactions as a function of the un-
derlying sequence. Proteins that recognize specific signals in the
DNA influence its accessibility and histone modifications (Voss
and Hager 2014). Given training data, models parameterized by
machine learning can effectively predict protein binding, DNA
accessibility, histone modifications, and DNA methylation from
the sequence (Das et al. 2006; Arnold et al. 2013; Benveniste
et al. 2014; Pinello et al. 2014; Lee et al. 2015; Setty and Leslie
2015; Whitaker et al. 2015). A trained model can then annotate
the influence of every nucleotide (and variant) on these regulatory
attributes. This upgrades previous approaches in two ways. First,
variants can be studied at a finer resolution; researchers can prior-
itize variants predicted to drive the regulatory activity and devalue
those predicted to be irrelevant bystanders. Second, rare variants
that introduce a gain of function will often not overlap regulatory
annotations in publicly available data. An accurate model for

regulatory activity can predict the gain of function, allowing fol-
low-up consideration of the site.

In recent years, artificial neural networks with many stacked
layers have achieved breakthrough advances on benchmark data
sets in image analysis (Krizhevsky et al. 2012) and natural language
processing (Collobert et al. 2011). Rather than choose features
manually or in a preprocessing step, convolutional neural net-
works (CNNs) adaptively learn them from the data during train-
ing. They apply nonlinear transformations to map input data
to informative high-dimensional representations that trivialize
classification or regression (Bengio et al. 2013). Early applications
of CNNs to DNA sequence analysis surpass more established algo-
rithms, such as support vector machines or random forests, at pre-
dicting protein binding and accessibility from DNA sequence
(Alipanahi et al. 2015; Zhou andTroyanskaya 2015).More accurate
models can more precisely dissect regulatory sequences, thus
improving noncoding variant interpretation. However, to fully ex-
ploit the value of these models, it is essential that they are techni-
cally and conceptually accessible to the researchers who can take
advantage of their potential.

Here, we introduce Basset, an open source package to apply
deep CNNs to learn functional activities of DNA sequences. We
used Basset to simultaneously predict the accessibility of DNA se-
quences in 164 cell types mapped by DNase-seq by the ENCODE
Project Consortium and Roadmap Epigenomics Consortium
(The ENCODE Project Consortium 2012; Roadmap Epigenomics
Consortium et al. 2015). From these data sets, CNNs simultane-
ously learn the relevant sequence motifs and the regulatory
logic with which they are combined to determine cell-specific
DNA accessibility.We show that amodel achieving this level of ac-
curacy provides meaningful, nucleotide-precision measurements.
Subsequently, we assign Genome-wide association study (GWAS)
variants cell-type–specific scores that reflect the accessibility
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difference predicted by the model between the two alleles. These
scores are highly predictive of the causal SNP among sets of linked
variants. Importantly, Basset puts CNNs in the hands of the ge-
nome biology community, providing tools and strategies for re-
searchers to train and analyze models on new data sets. In
conjunction with genomic big data, Basset offers a promising fu-
ture for understanding how the genome crafts phenotypes.

Results

Deep CNNs predict genome accessibility

DNA sequence codes for the chromatin shifts that transform cells
in development and disease.We focused here onDNA accessibility
due to the abundance of available data and significant associa-
tion with conserved segments (Thurman et al. 2012), disease vari-
ation (Maurano et al. 2012), and eQTLs (Degner et al. 2012). The
ENCODE Project Consortium performed DNase-seq on 125
cell types (Thurman et al. 2012), and the Roadmap Epigenomics
Consortium curated an additional 39 (Roadmap Epigenomics
Consortium et al. 2015). We collected and merged these sets, re-
sulting in 2 million sites across all cells (Methods; Fig. 2A below).
The GENCODE v18 reference gene catalog annotates these sites
as 17% promoters, 47% intragenic, and 36% intergenic. A minor-
ity, 4.1%–19.0% (median 8.2%), are accessible in any individual
cell type, with 3.8% constitutively open in >50% of the cells. For
each DNase I hypersensitive site (DHS), we extracted 600 bp
from the hg19 reference genome around the midpoint as input
to the model.

To learn the DNA sequence signals of open versus closed
chromatin in these cells, we applied a deep CNN. CNNs have prov-
en highly effective in a number of diverse tasks; this set recently in-
cludes biological sequence analysis (Alipanahi et al. 2015; Zhou
and Troyanskaya 2015). As opposed to manually specifying fea-
tures or performing a preprocessing step to statistically learn
them, CNNs perform adaptive feature extraction to map input
data to informative representations during training. The convolu-
tion operation is the engine of the CNN. In a convolution layer,
the algorithm scans a set of weight matrices called filters across
the input; these weight matrices learn to recognize relevant pat-
terns (Fig. 1). Prior work has demonstrated that with a sufficiently
large data set, deep neural networks can learn far more expressive
and accurate models than other common approaches like random
forests or kernel methods (Bengio et al. 2013).

For DNA sequences, the initial convolution layer corresponds
to optimizing the weights of a set of position weight matrices
(PWMs), which are a well-studied tool in bioinformatics (Stormo
2000). These PWM filters search for their motifs along the se-
quence and output a matrix with a row for every filter and column
for every position in the sequence (Fig. 1). Computing nonlinear
functions of the information flowing through the network allows
for more expressive models. In each convolution layer, we apply
a rectifier operation (i.e., set negative values to zero) to the matrix
of filter output (Nair and Hinton 2010). Finally, we pool adjacent
values by taking the maximum in a small window. This operation
reduces the dimension of the input to the next layer (and thus the
computation required in training). It also provides invariance to
small sequence shifts to the left or right.

Subsequent convolutional layers operate analogously on the
output of the prior layer. Thus, for DNA sequences, they capture
spatial interactions between the initial PWM filter outputs. The
full architecture of our neural network includes three convolution

layers and two layers of fully connected hidden nodes. In general,
deeper networks are able to learn more abstract representations;
here, depth allows the algorithm to consider the sequence at mul-
tiple resolutions and learn sophisticated regulatory codes that com-
bine the recognized sequence motifs. The final layer outputs 164
predictions for the probability that the sequence is accessible in
each of the 164 cell types. During training, we compare these pre-
dictions to the experimentallymeasured accessibilities and update
the model parameters to improve the predictions (see Methods).

Figure 1. Deep convolutional neural network (CNN) for DNA sequence
analysis. Basset predicts the cell-specific functional activity (here DNase I
hypersensitivity) of sequences. First, we convert the sequence to a “one
hot code” representation, where each position has a four-element vector
with one nucleotide’s bit set to one. Convolution layers proceed by scan-
ning weight matrices across the input matrix to produce an output matrix
with a row for every convolution filter and a column for every position in the
input (minus the width of the filter). We apply a rectified linear unit (ReLU)
nonlinear transformation to the convolution output and pool by taking the
maximum across a window of adjacent positions. The first convolution lay-
er operates directly on the one hot coding of the input sequence, making
the convolution filters akin to the common bioinformatics tool position
weight matrices. Subsequent convolution layers consider the orientations
and spatial distances between patterns recognized in the previous layer.
Fully connected layers perform a linear transformation of the input vector
and apply a ReLU. The final layer performs a linear transformation to a vec-
tor of 164 elements that represents the target cells. A sigmoid nonlinearity
maps this vector to the range zero to one, where the elements serve as
probability predictions of DNase I hypersensitivity, to be compared via a
loss function to the true hypersensitivity vector.
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Wehave released open source software implementing all pro-
cedures described in this paper, including routines to preprocess
common functional genomics data, train the network, and extract
the knowledge it has learned. We have named the package Basset,
as an allusion to the extraordinary abilities of these hound dogs to
learn a scent that they are subsequently able to detect and pursue.

We trained Basset and a recently published advance based on
gapped k-mer support vector machines called gkm-SVM (Lee et al.
2015) to predict the accessibility of a set of test sequences in 164
cell types (see Methods). To synthesize sensitivity and specificity,
which inherently trade off, we assessed the models using the area
under the receiver operating characteristic curve (AUC), which
plots the false-positive rate versus the true-positive rate. By this
measure, Basset is more accurate than gkm-SVM, achieving a
mean AUC of 0.895 over all cells, relative to 0.780 for gkm-SVM
(Fig. 2B). Basset substantially improved the AUC for every cell
type. At a false-positive rate of 10%, Basset identifies 55%–80%
of true-positive DHS sequences (Fig. 2C).

In imbalanced data sets like these, the area under the preci-
sion-recall curve (AUPRC) is also instructive. Basset achieves a
greater mean AUPRC of 0.561 versus 0.322 for gkm-SVM (Supple-
mental Fig. S1). At a false-discovery rate of 20%, Basset recalls 20%–

35% of accessible sites. Thus, although Basset extracts substantial
information about how sequence determines accessibility, no
tool is presently accurate enough to annotate large genomes de
novo.

In addition to predicting constitutive sites, Basset effectively
captures cell- and lineage-specific accessibility (Supplemental Fig.
S2). Cell- and lineage-specific sites aremore challenging to predict,
and accuracy computed on sites active in less than half the cells
decreases to 0.858 AUC (Supplemental Fig. S3). Finally, Basset pre-
dicted accessibility of sites assigned to various annotation classes
with consistent accuracy: 0.900 for promoters, 0.884 for intragen-
ic, and 0.891 for intergenic (Supplemental Fig. S4).

Basset recovers known protein binding motifs

Though deep neural networks predict accurately, the principles
that they learn are not trivially interpretable as they are in simpler

linear models. However, substantial information can be extracted
from themodel by examining its parameters, modulating the flow
of information through components of the network, and explor-
ing its predictions on purposefully chosen sequences.

The typical DHS is a nucleosome-free region where protein(s)
bind the DNA to create an accessible site (Sherwood et al. 2014;
Voss and Hager 2014). Thus, we expect that a predictive model
of accessibility will capture this dependence by learning the
DNA binding sites of a variety of universal and cell-specific
proteins. The first convolution layer of the model scans the DNA
sequence with a set of pattern-recognizing filters whose weights
are optimized during training. These filters are ideal for capturing
this protein binding information.

The model’s 300 convolution filters recovered an extensive
repertoire of known DNA binding protein motifs (Fig. 3B). To aid
in their interpretation, we nullified each filter by setting its output
to a constant value: its mean output over all nucleotides in the
test set. This obstructs the filter from passing any information
forward through the network. We considered the vector contain-
ing the change in predicted accessibility in each cell type and
quantified each filter’s influence as this vector’s sum of squares.
Complementing that filter-centric analysis, we performed a pro-
tein-centric analysis by introducing knownprotein bindingmotifs
from the CIS-BP database into the center of many sequences and
measuring the change in predicted accessibility (Weirauch et al.
2014).

The critical genome architecture protein CTCF was most pre-
dictive of accessibility across all cell types. Themodel dedicates the
most filters (12) to comprehensively represent CTCF’s 19-bp-long
DNA recognition site (Supplemental Fig. S5). Each filter focused on
overlapping portions and variations of the motif. The AP-1 com-
plex, consisting of proteins from the JUN, FOS, ATF, and JDP fam-
ilies, also emerged as highly influential via four filters. AP-1’s
important role in regulating open chromatin has been previously
observed (Biddie et al. 2011).

At a q-value threshold of 0.1, 45% of the filters aligned sig-
nificantly to protein motifs in CIS-BP, which were originally ac-
quired by independent ChIP-seq or in vitro experiments (Gupta
et al. 2007; Weirauch et al. 2014). This set included highly similar

Figure 2. Basset accurately predicts cell-specific DNA accessibility. (A) The heat map displays hypersensitivity of 2 million DNase I hypersensitive sites
(DHSs) mapped across 164 cell types. We performed average linkage hierarchical clustering using Euclidean distance to both cells and sites. (B) The scatter
plot displays AUC for 50 randomly selected cell types achieved by Basset and the state-of-the-art approach gkm-SVM, which uses support vector machines.
(C ) The ROC curves display the Basset false-positive rate versus true-positive rate for five cells, selected to represent the 0.05, 0.33, 0.50, 0.67, and 0.95
quantiles of the AUC distribution.
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weight matrices for many developmental regulators; Figure 3B
depicts a sample. Many more filters capture partial coverage of
known motifs, which were deemed insignificant matches to the
database after multiple testing correction (Supplemental Fig. S5).
Motifs known to allow for variable spacing between two compo-
nents were not prominently recognized by these partial motif fil-
ters (Reid et al. 2010).

Some unrecognized filters captured lower-order sequence
composition, such as the known enrichment of higherGC content
in TF-bound DHSs (Wang et al. 2012). One filter directly detects
CpG’s, which can be methylated and are a well-studied feature
of regulatory modules (Bird and Wolffe 1999). Other examples
measure poly-AT stretches and nonconsecutive C’s and G’s (thus
avoiding the CpG). Their influence emphasizes the importance
of the local sequence context of binding motifs to their function
(Fig. 3A; Levo and Segal 2014; Dror et al. 2015).

To further explore how these filters influence predictions, we
studied the AP-1 consensus motif TGASTCA in detail. Rather than
indiscriminately predicting accessibility upon detection of the
motif, Basset accurately captures the nuance of these binding
events. The model achieved an average AUC of 0.86 across all
cell types on test sequences that contain the motif in the center
50 nt; a classifier that had only learned the motif would merely
be guessing at which specific motif instances were bound and
achieve AUC 0.5.

To determine what features the model uses to vary its predic-
tions for AP-1motifs, we artificially inserted themotif into the cen-
ter of a random set of sequences and compared predictions before
and after. We focused the analysis on mammary fibroblast (HMF)
and H7-hESCs, which serve as examples of cells that respond with

strong and medium strength to the AP-1 motif, respectively. The
motif alone was insufficient to predict high accessibility but does
shift most predictions upward to varying degrees (Supplemental
Fig. S6). We noted several features that influence Basset’s predic-
tions. The first nucleotide 5′ prefers [ACG] rather than T, and the
first nucleotide 3′ prefers [CGT] rather than A. This is apparent
in the weight matrix for the primary filter used by the model to
identify AP-1 (Supplemental Fig. S7). In HMFs, the average predic-
tion for the full consensus motif is 0.49 versus 0.25 for the motif
with a 5′ T and versus 0.10 for the motif with a 5′ T and 3′ A.

The sequence composition of an additional ∼100 nt of
flanking sequence also influences the predictions. The clearest ef-
fect comes from flanking poly-AT stretches that drive down the
prediction (Supplemental Fig. S7). So-called A-tracts are known
to narrow the minor groove of the DNA double helix (Rohs
et al. 2009). Additional protein binding sites also influence pre-
dictions. We observed an interesting case of a GGAART motif
(best represented in CIS-BP by ETS family member FEV) that can
overlap 5′ the AP-1 motif for a high prediction (Supplemental
Fig. S8). We also observed that nearby weak nonconsensus
TTASTCA AP-1 motifs increase the prediction (Supplemental Fig.
S8). These observations suggest that CNNs offer a simple and
effective approach to automatically capture the subtle influences
on functional activity provided by local sequence composition
(Slattery et al. 2014).

Several unrecognized filters had high information content,
which indicates that they may refer to unannotated proteins or al-
ternative binding modes of annotated ones. To further explore
these filters, we computed the influence of nullifying each filter
on the downstream cell accessibility predictions (Supplemental

Figure 3. Basset initial convolutional layer discovers known and novel sequence motifs. (A) In the scatter plot, the x-axis describes the information con-
tent for the PWMs represented by the 300 first layer convolution filters (Methods). The y-axis describes an influence score, which we compute by setting
all output from the filter to its mean (thus nullifying the filter) and taking the sum of squares of the vector of accessibility prediction changes over all cells.
We colored filters by whether or not they could be annotated at a q-value threshold of 0.1 by the TomTom motif comparison tool to known TF motifs in
the humanCIS-BP database. (B) Overall, 45% of filters could be annotated, including the alignments shown here. (C) Clustering the filters by their influence
on accessibility predictions in each cell type revealed this set matching TP63, GRHL1, and KLF factors, which are known to be involved in epithelial
development.
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Fig. S9). Clustering these influence profiles reveals modules of fil-
ters matching proteins known to regulate development to their
active cell types. For example, filters matching database motifs
for known epithelial regulators TP63, GRHL1, and KLF factors
are predictive of accessibility in a variety of epithelial cells (Fig.
3C; Wilanowski et al. 2008; Ray and Pollard 2012; Pignon et al.
2013). The unrecognized filters span a range of cell preferences,
and future work will be necessary to determine their role and po-
tential binding proteins.

In silico saturation mutagenesis pinpoints nucleotides

driving accessibility

A trained model can be used to predict the functional activity of
arbitrary sequences, offering a powerful approach to understand
and apply the regulatory grammar that it has learned. Saturation
mutagenesis experiments, in which every mutation to a sequence
is tested, are a powerful tool for dissecting the exact nucleotides

driving a functional activity (Patwardhan et al. 2009; Melnikov
et al. 2012). State-of-the-art experimental approaches involve
a complex procedure of synthesizing massive pools of oligonucle-
otides and measuring their activity in a parallel reporter assay
(Melnikov et al. 2012; Patwardhan et al. 2012). By computing
the predicted accessibility of all possible mutations to a sequence,
Basset can be used to perform an in silico saturation mutagenesis.

We constructed heat maps that display the change in predict-
ed accessibility frommutation at every position to each alternative
nucleotide. These maps highlight the individual nucleotides most
critical to a sequence’s activity.We assigned two scores to every po-
sition: (1) The loss score measures the largest possible decrease and
(2) the gain score measures the largest increase.

High loss scores mark positions with existing functional mo-
tifs wheremutations can damage themotif and decrease accessibil-
ity. For example, the sequence mapped in Figure 4 is accessible in
embryonic stem cells and contains the AP-1 motif. AP-1 complex
members JUN and JUND ChIP-seq in H1-hESCs support the

Figure 4. In silico saturated mutagenesis for DNase I hypersensitivity. (A) We used Basset to predict the effect of everymutation on the accessibility of the
region Chr 9: 118,434,976–118,435,175 in H1-hESCs. The heat map displays the change in predicted accessibility for mutated sequences. Each column
corresponds to a position in the sequence. Each row represents mutation to the corresponding nucleotide. In the line plot below, loss scores measure the
maximum decrease among all mutations from the true nucleotide. Gain scores measure themaximum increase.We drew nucleotides to be proportional to
the loss score, beyond aminimum height. At this locus, the model highlights the TGASTCAmotif of the AP-1 complex (shown as the CIS-BP databasemotif
for FOS). ChIP-seq of JUN and JUND in H1-hESCs confirm binding of the complex. The bound motif displays high conservation according to PhyloP.
(B) Genome-wide, loss scores had a strong relationship with PhyloP (see Methods). (C,D) Gain scores alone had a weaker relationship (C ), but the com-
bination of gain and loss scores achieved the strongest relationship (D).
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binding event, and PhyloP conservation statistics support the pre-
cise relevance of the TGASTCA motif (Pollard et al. 2010).
Mutationswithin themotif andnumerous flankingnucleotides re-
sult in decreased predicted accessibility. Genome-wide, a synthesis
of loss scores from all cell types significantly correlated with
PhyloP (Pearson 0.188; P-value 4.4 × 10−102) (see Methods; Fig.
4B).

In contrast, high gain scores suggest latent potential in a se-
quence; the correspondingmutation often introduces a functional
motif to increase the predicted accessibility. Although such a posi-
tion does not mark a present functional motif, there may be neg-
ative selection against one forming and rearranging accessibility
in the region. In support of this effect, considering both loss and
gain scores increased the Pearson correlation with PhyloP to
0.221 (P-value 3.0 × 10−141) (Fig. 4D). This correlation was consis-
tent across promoter, intragenic, and intergenic annotation classes
(Supplemental Fig. S10).

Basset predicts greater accessibility changes for likely

causal GWAS SNPs

Genome-wide association studies (GWAS) have uncovered ample
noncoding variants associated with physical traits and disease in
human populations (Welter et al. 2014). DHSs are highly enriched
for GWAS SNPs, which canmodulate the accessibility of the site to
affect local gene expression (Degner et al. 2012; Maurano et al.
2012). Basset captures the sequence signals driving accessibility
and ought to have predictive power for prioritizing noncoding var-
iants and suggestingmechanistic hypotheses for further investiga-
tion into their causal role for the phenotype. For this purpose, we
defined SNP Accessibility Difference (SAD) profiles as the differ-
ence in predicted accessibility across cell types between two alleles.

The scarcity of confirmed positive examples of noncoding
causal variants challenges a thorough assessment of the value of
SAD scores for GWAS prioritization. Instead, we studied probabilis-
tic assessments of causality assigned by an orthogonal method:

8741 GWAS SNPs associated with auto-immune disease were ana-
lyzed with a statistical method called PICS, which leverages dense
genotyping data to assign a probability of being the causal SNP
among a nearby set of SNPs in linkage disequilibrium (LD) (Farh
et al. 2015). In a large number of cases, PICS identified the causal
SNP with high probability.

We focused on a set of 7252 GWAS SNPs for which no SNP in
LD affects a protein coding gene, and classified 235 high-PICS
SNPs that were assigned causal probability of 0.5 or more and
3004 low-PICS SNPs that were assigned causal probability of 0.05
or less. SAD profile means were significantly greater for the set
of high-PICS SNPs (Mann-Whitney U test, P-value <1.3 × 10−7)
(Supplemental Fig. S11). More than seven times more high-PICS
SNPs than lowwere predicted to change accessibility by an average
of more than 0.1 over the cell types (Fig. 5A). Coverage of the SNPs
in this set is wide: 31% of all index SNPs had at least one SNP
in its LD set for which themodel predicted a >10% change in prob-
ability of accessibility in some cell type (Supplemental Fig. S11).
We report all predicted mutation effects on this data set in
Supplemental Table S1.

Among the agreements with PICS was rs4409785, associated
with vitiligo (Jin et al. 2012), rheumatoid arthritis (Okada et al.
2013), and immune mechanisms in multiple sclerosis (Sawcer
et al. 2011). PICS assigned rs4409785 85.3% probability of causal-
ity for vitiligo. The SNP is located in a 559-kb gene desert. However,
it has been hypothesized to regulate TYR, which although 6.28Mb
away, offers a plausible mechanism for the skin color disease viti-
ligo. TYR catalyzes conversion of tyrosine tomelanin, the pigment
that gives skin its color (Jin et al. 2012).

Basset predictions support this hypothesis; the more preva-
lent T allele is devoid of activity, but the C allele creates a motif
recognized by the model’s CTCF filters (Fig. 5B). Although this
sequence imperfectly matches the CTCF database motif, Basset
predicts dramatically increased accessibility in all cell types, in-
cluding an increase in H1-hESCs from 0.8% probability to
73.24%. To assess experimental evidence for allele-specific CTCF

Figure 5. SNP accessibility difference (SAD) scores enable genomic variant interpretation. (A) Basset assigned greater scores to likely causal GWAS SNPs
(PICS probability >0.5) versus unlikely nearby SNPs (PICS probability <0.05) as determined by population fine mapping data. The bars measure the pro-
portion of SNPs assigned a SAD profile mean across all cell types of more than 0.1. (B) We annotated rs4409785 among the highest SAD scores, in agree-
ment with the PICS view of this haplotype block. Basset predicts themore common T allele to be completely dormant, but the region transformswith the C
allele into a site deemed by Basset to have very high accessibility due to a CTCF binding site. (C) CTCF ChIP-seq in 88 unique cell types strongly supports the
allele specificity of CTCF at this site. We plotted cells with more than three reads (summed across replicates) aligned to the site, andmarked significant peak
calls with asterisks. The 11 cells with significant peak calls all sequenced the C allele.
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binding, we downloaded 88 unique CTCF ChIP-seq data sets
performed in a variety of cell types by ENCODE (The ENCODE
Project Consortium 2012). Of these, 21 cell types had more than
three reads aligned to rs4409785, of which 11 had significant
peak calls (Fig. 5C). Every significant peak sequenced the C allele,
strongly supporting the allele specificity of CTCF binding at
this site.

Recent work has demonstrated that modulating CTCF bind-
ing at topologically associating domain boundaries can drama-
tically affect gene expression by altering the architecture of the
genomic region (Guo et al. 2015; Lupiáñez et al. 2015). By model-
ing the underlying sequence driving the experimental mea-
surement, Basset’s highlight of rs4409785 suggests a functional
hypothesis to accelerate study of this widely influential variant.

Leveraging large-scale models allows accurate and efficient

prediction of new data sets

To make the most of machine learning to identify causal SNPs,
researchers must train models on data from the appropriate
(perhaps specialized) cell type (Lee et al. 2015). In many cases,
such cells may be experimentally characterized by individual
laboratories rather than by large-scale mapping projects. We de-
signed Basset to accommodate this frequent and critical scenario.
We also hypothesized that Basset can rapidly learn to accura-
tely predict new data by leveraging a model pretrained on public
data.

To test this hypothesis, we removed 15 data sets spanning the
range of AUC from the pool of 164 studied above.We retrained on
the remaining 149 “public” data sets to establish a “pretrained”
model. This model achieved an average AUC of 0.892 across the
149 cells, on par with the full model analyzed above.

For each remaining data set individually, we sampled a
matching number of sites from the “public” 149 to serve as nega-
tive examples. Rather than train from scratch on the data
set alone, we initialized the model parameters with those from
the “pretrained” model (Methods). By providing this head start,
we need only perform one training pass through the new data
to achieve models with predictive accuracies rivaling those from

the full 164 cell model above (Fig. 6; Supplemental Fig. S12;
Supplemental Table S2). We completed this training procedure
in an average of 6.5 h on a Macbook 2.8-GHz Intel core i7 or 18
min on an NVIDIA Tesla K20m GPU. Thus, this approach allows
researchers to train highly accurate deep CNNmodels on common
computer hardware in a few hours.

Discussion

In this work, we introduced Basset, an open source package to ap-
ply deep CNNs to learn DNA sequence activity. Basset effectively
learned the complex code of DNA accessibility across many cell
types and substantially surpassed the predictive accuracy of the
present state of the art. We demonstrated how our model precisely
implicates the nucleotides driving activity, highlighting genomic
positions with either fragile activity that can be lost by mutation
or latent potential activity that can be unlocked by mutation.
These sites are more conserved, and their mutation is more likely
to cause disease.

Predicting the functional output of DNA sequences is a fun-
damental problem in computational biology with a long history
of approaches (Bussemaker et al. 2001; Segal et al. 2003; Beer and
Tavazoie 2004). Our work, considered with independent successes
in other groups (Alipanahi et al. 2015; Zhou and Troyanskaya
2015), indicates that hardware (GPGPUs), software (CNNs), and
training data (mammalian genome-wide) have now converged
to enable drastically enhanced performance on such problems.
What has been missing from our previous models? One primary
difference is that CNNs naturally consider positional relation-
ships between sequence signals. In contrast, most sequence kernel
approaches immediately throw away position information to
represent DNA as vectors of k-mer counts (Ghandi et al. 2014).
Position-specific sequence kernels exist, but they greatly increase
the dimensionality of the raw input space to which the sequence
is initially mapped. Unfortunately, such kernel methods do not
scale well to higher dimensional inputs, both in computational
efficiency and in predictive performance, due to the curse of di-
mensionality: Generalization via interpolation suffers in higher
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Figure 6. Basset leverages large-scale public data to inform additional data set learning. (A) The scatter plot shows AUC for 15 data sets achieved by the
full model trained on all 164 cell types on the x-axis and AUC achieved by a procedure to simulate studying that data set alone on the y-axis. To study the
data set alone, we pretrain a model on 149 cells (after removing these 15), seed training of the additional cell with that model’s parameters, and perform a
single training pass through the new data. This rapid procedure was effective for all but one data set (HRCEpiC, renal cortical epithelial cells), for which
multitask training with the many other similar epithelial cells was beneficial. The AUC improvement for many cells suggests that our full model may benefit
from increased capacity or decreased regularization. (B) The seeded training procedure is far faster on the GPU and allows for feasible CPU training.
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dimensional spaces. By jointly learning a meaningful representa-
tion and a smooth parameterized projection to the outputs,
CNNs, in essence, learn the kernel. Finally, neural networks
trained via stochastic gradient descent scale very well to large
data sets, allowing us to learn good parameters within a general
and expressive model structure.

The most successful prior approaches to analyze noncoding
variants compare them to the broad regions that functional geno-
mics experiments have annotated to have reproducible accessibil-
ity, protein binding, and/or histone modifications (Fu et al. 2014;
Kircher et al. 2014; Ritchie et al. 2014). Basset has two primary ben-
efits over this approach. By directly modeling the mapping from
sequence to activity, Basset implicates the precise nucleotides
influencing accessibility, providing a finer-resolution view than
mere overlap with a broad region. Basset assigns low SAD profiles
to many nucleotides overlapped by these regions, calling into
question their consideration for causal roles.

Furthermore, if the genome sequenced in the original exper-
iment included only the inaccessible allele, there will be no indi-
cation that accessibility is relevant to the SNP. Basset readily
identifies these gain-of-function mutations, as demonstrated for
CTCFbinding to rs4409785 (Fig. 5). As statistical searches for influ-
ential variants in human populations continue, rare variants will
make up a greater proportion. Especially for these rare variants,
the functional genomics experiment will be unlikely to have been
performed in the necessary genetic background. This growing
trend makes methods like Basset even more important if we are
to interpret these variants.

With Basset, a researcher can perform a single sequencing as-
say in their cell type of interest and simultaneously learn that cell’s
chromatin accessibility code and annotate every mutation in the
genome with its influence on present accessibility and latent po-
tential for accessibility. By leveraging large-scale public data, one
can train accurate models on common computational hardware.
Researchers continue to discover noncoding variants in human
populations that influence phenotypes, and such annotation
will be indispensable for interpreting how those variants function.
As the tide of functional genomics data continues to flow, novel
machine learning approaches such as deepCNNs have great power
to aid this goal.

Methods

DNase I hypersensitivity data

WedownloadedDNase-seq peak BED format files for 125 cell types
from the ENCODE Project Consortium (2012) and 39 cell types
from the Roadmap Epigenomics Consortium (2015). For both
sets, the previous groups called peaks using the HotSpot algorithm
and performed a simulation procedure to establish a set with 1%
false-discovery rate. We considered all peaks, regardless of overlap
with genomic annotations.

To merge the peaks into one set, we first extended each one
from its midpoint to 600 bp. We greedily merged peaks based on
their distance to an adjacent peak until no peaks overlapped by
>200 bp. During a merger of peaks, we specified the activity of
the new peak as the union of the sets of active cell types for each
individual peak. We specified the new limits by extending from
a weighted average of the two peak midpoints, weighted by the
number of cells each individual peak was active in. This produced
a set of 2,071,886 peaks, of which 4.1%–19.0% (median 8.2%)
were active in the individual cell types. We extracted the hg19 ref-
erence genome sequence for eachmerged site as input to themod-

el. Thus, the input data to training for each site include its 600-bp
DNA sequence and a binary vector to indicate the presence of a
significant peak in each of the 164 cell types.

For some analyses of model predictions, we divided sites
among promoter (within 2 kb of a transcription start site), intra-
genic (overlapping a gene’s span), and intergenic classes using
the GENCODE v18 reference catalog (Harrow et al. 2012).

Deep CNN

Deep CNNs are a type of deep neural network that are specifically
parameterized to take advantage of known spatial structure. They
were originally developed to recognize handwritten digits in imag-
es (LeCun et al. 1998). Convolutional networks have since become
the gold standard for numerous image analysis tasks (Krizhevsky
et al. 2012; Szegedy et al. 2015). Recently, convolutional networks
have been modified for use within natural language processing
and text analysis by applying a one-dimensional convolution tem-
porally over a sequence (Hu et al. 2014; Zhang et al. 2015).

We implemented a deep CNN using Torch7 (http://torch.ch).
Initially, we map the DNA sequence to four rows of binary vari-
ables representing the presence or absence of an A, C, G, or T at
each nucleotide position. The first convolutional layer of the net-
work scans PWMs across the sequence (Fig. 1). The matrix weights
are parameters learned from the data. These are typically referred
to as filters in the CNN literature. After convolving the matrix
across the sequence, we applied a rectified linear ReLU nonlinear-
ity [ f (x) =max(0,x)], which has been found helpful in avoiding
the vanishing gradient problem that plagued early deep learning
research (LeCun et al. 1998; Nair and Hinton 2010). Finally, we
“pool” adjacent positions by taking the maximum from a small
window in order to reduce the number of parameters and achieve
invariance to small shifts of the sequence left or right.

Subsequent convolutional layers operate on the output of
the prior layer, which represents recognition of filter patterns
across windows of the sequence. After three convolutional layers,
we placed two standard, fully connected artificial neural network
hidden layers and a final fully connected sigmoid transformation
to 164 outputs, representing the predicted probability of accessibil-
ity in each cell type. We trained to minimize the binary cross en-
tropy loss function, summed over these 164 outputs.

We applied stochastic gradient descent to learn all model pa-
rameters, including those representing convolution filters, using
RMSprop updates on minibatches (Tieleman and Hinton 2012).
First, we randomly initialized the parameters to small values.
During training, the network computes predictions for small
batches of sequences.We compare these predictions to the true ex-
perimentalmeasurements using the loss function.We then update
the model parameters to improve those predictions by taking a
step in the direction of the gradient of the parameters with respect
to the loss function, which we compute using the back propa-
gation algorithm. After iterating over many batches of training
data, themodel begins to recognize specific sequencemotifs indic-
ative of accessibility and to project this recognition through the
network to the cell predictions.We continue training until accura-
cy ceases to increase on a held-out validation set for 12 passes
through the training data.

The user must specify the number of each type of layer, num-
ber of filters per convolution layer, filter sizes, poolingwidths, fully
connected layer units, and numerous regularization and training
optimizationparameters.We experimentedwith variousmodel ar-
chitectures and hyperparameter settings using Bayesian optimiza-
tion, implemented in the package Spearmint (available from https
://github.com/HIPS/Spearmint) (Snoek et al. 2012).We committed
to analyzing a top-performing architecture that is depicted in
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Supplemental Figure S13. Importantly, we apply batch normaliza-
tion after every layer, which substantially stabilized training opti-
mization (Ioffe and Szegedy 2015).

Training, validation, and test data sets

From the 2,071,886 total sites, we randomly reserved 71,886 for
testing and 70,000 for validation, leaving 1,930,000 for training.
We trained and tested on all cell types.We performed optimization
directly on the training set. We used the validation set for “early
stopping” after 12 epochs of unimproved validation loss and
Bayesian optimization. We performed all assessment and analysis
on the test set.

gkm-SVM

We downloaded gkm-SVM v1.3 from http://www.beerlab.org/
gkmsvm/ (Ghandi et al. 2014; Lee et al. 2015). Because the code
computes the full Gram matrix, we could only feasibly train on a
100,000 subsample of the full data set. For each cell type, we
down-sampled the inactive sequences to match the number of ac-
tive sequences. Though Basset easily handles imbalanced data sets,
we found the natural imbalances of this DHS data set significantly
decreased gkm-SVM accuracy. When using default options, gkm-
SVM required 16 d to train and test on 50 randomly selected cell
types.

Motif analysis

We converted Basset-learned first convolution layer filters to prob-
abilistic PWMs by counting nucleotide occurrences in the set of se-
quences that activate the filter to a value that is more than half of
its maximum value. We identified the likely binding protein for
the motifs by querying the CIS-BP database (accessed on June
12, 2015) (Weirauch et al. 2014) using the TomTom v4.10.1 search
tool (Gupta et al. 2007) and requiring an FDR q-value <0.1. We
computed the information content for a motif as

IC = −
∑

i,j

bj log2(bj) +
∑

i,j

mij log2(mij),

wherem is the 19 × 4matrix of nucleotide probabilities for themo-
tif, and b is the length 4 array of background hg19 nucleotide
probabilities.

Comparison of Basset predictions to PhyloP

We used Basset to compute loss and gain scores for every nucleo-
tide. We compute the loss score as the predicted activity with the
reference nucleotide subtracted by the minimum predicted activi-
ty after mutating the position to the alternative 3 nucleotides (nt).
We compute the gain score as the maximum predicted activity af-
termutation subtracted by the reference nucleotide activity. To ask
whether these scores have a significant statistical relationshipwith
nucleotide conservation, we required a method to consider all 328
scores per nucleotide with respect to PhyloP. We applied a linear
regressionmodel with ridge penalty, training on 80% of the nucle-
otides and testing on the remaining 20%. We limited the analysis
to nonrepetitive regions where more-confident PhyloP statistics
can be assigned and to the center 100 bp of the DHSs, where
Basset makes stronger predictions (Supplemental Fig. S14).

PICS

We downloaded 8741 PICS SNP annotations from the supplement
of the investigators’ manuscript (Farh et al. 2015). For SAD profile
comparison, we focused on an unquestionably noncoding set of
7252 SNPS by removing all SNPs linked to a SNP in a protein cod-

ing gene. Without sufficient training data to learn weights for
the various cell types studied, we resorted to comparing the SAD
profile means to the PICS causal SNP probabilities.

Seeding with pretraining model parameters

To estimate Basset’s accuracy on additional novel data sets, we
removed 15 of 164 from the full set and trained a model on the
remainder, which we refer to as “public” in order to simulate a fu-
ture scenario where onemight leverage existing public data sets to
make better predictions on a new data set. For each of the 15 left-
out data sets, we seeded the model with the parameters from the
“public” model. We replaced the final hidden layer of the model
to make predictions for the single new target and initialized
the new parameters as above. Finally, we performed a single pass
through the data with a halved learning rate for the stochastic
gradient descent optimization. Additional passes through the
data overfit this smaller prediction task.

Software availability

Source code implementing all steps—data preprocessing, training,
and downstream analysis—is available in the package Basset from
http://www.github.com/davek44/Basset. In addition, source code
is included in the Supplemental Material.
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