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Abstract: Nonalcoholic fatty liver disease (NAFLD) is the most common liver disease with a charac-
teristic of abnormal lipid metabolism. In the present study, we employed apolipoprotein E knockout
(ApoE KO) mice to investigate the effects of hypoxia exposure on hepatic fatty acid metabolism
and to test whether a high-fat diet (HFD) would suppress the beneficial effect caused by hypoxia
treatment. ApoE KO mice were fed a HFD for 12 weeks, and then were forwarded into a six-week
experiment with four groups: HFD + normoxia, normal diet (ND) + normoxia, HFD + hypoxia
exposure (HE), and ND + HE. The C57BL/6J wild type (WT) mice were fed a ND for 18 weeks as
the baseline control. The hypoxia exposure was performed in daytime with normobaric hypoxia
(11.2% oxygen, 1 h per time, three times per week). Body weight, food and energy intake, plasma
lipid profiles, hepatic lipid contents, plasma alanine aminotransferase (ALT) and aspartate amino-
transferase (AST), and molecular/biochemical makers and regulators of the fatty acid synthesis and
oxidation in the liver were measured at the end of interventions. Six weeks of hypoxia exposure
decreased plasma triglycerides (TG), total cholesterol (TC), and low-density lipoprotein cholesterol
(LDL-C) contents but did not change hepatic TG and non-esterified fatty acid (NEFA) levels in ApoE
KO mice fed a HFD or ND. Furthermore, hypoxia exposure decreased the mRNA expression of Fasn,
Scd1, and Srebp-1c significantly in the HFD + HE group compared with those in the HFD + normoxia
group; after replacing a HFD with a ND, hypoxia treatment achieved more significant changes in the
measured variables. In addition, the protein expression of HIF-1α was increased only in the ND + HE
group but not in the HFD + HE group. Even though hypoxia exposure did not affect hepatic TG and
NEFA levels, at the genetic level, the intervention had significant effects on hepatic metabolic indices
of fatty acid synthesis, especially in the ND + HE group, while HFD suppressed the beneficial effect
of hypoxia on hepatic lipid metabolism in male ApoE KO mice. The dietary intervention of shifting
HFD to ND could be more effective in reducing hepatic lipid accumulation than hypoxia intervention.

Keywords: hypoxia; hepatic lipid metabolism; diet; ApoE KO mice

1. Introduction

Nowadays, nonalcoholic fatty liver disease (NAFLD) is the most common liver dis-
ease worldwide [1,2] and includes a series of liver diseases, from simple hepatic steatosis
(non-alcoholic fatty liver) to non-alcoholic steatohepatitis [3]; furthermore, non-alcoholic
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steatohepatitis may develop into cirrhosis and even liver cancer. Besides the liver-related
morbidity or mortality, NAFLD also associates with a high risk of diabetes and cardiovascu-
lar diseases [4,5]. To successfully manage this condition, a growing number of studies are
focusing on the pathogenesis of NAFLD to design more efficient therapeutic strategies [6].

Abnormal lipid metabolism is one of the major characteristics of NAFLD. Peroxi-
some proliferator-activated receptor α (PPARα) is expressed at high levels in the liver
and is known to be involved in mitochondrial fatty acid β-oxidation [7,8]. The genes
of rate-limiting enzymes in mitochondrial fatty acid oxidation, such as medium-chain
acyl-coenzyme A dehydrogenase (Mcad) and carnitine palmitoyl transferase 1/2 (Cpt1 and
Cpt2), are targeted by PPARα protein and have crucial roles in fatty acid catabolism [9,10].
Under the insulin stimulation, sterol regulatory element-binding protein-1c (SREBP-1c),
a major transcriptional regulator of fatty acid and triglyceride synthesis in the liver, will
translocate to the nucleus and upregulate all genes in the fatty acid biosynthetic pathway,
such as acetyl-CoA carboxylase (Acc), ATP-citrate lyase (Acly), fatty acid synthase (Fasn),
and stearoyl-CoA desaturase 1 (Scd1) [11]. A previous study has reported that the increased
level of nuclear SREBP-1c protein contributes to the elevated rates of hepatic fatty acid
synthesis, leading to hepatic steatosis in diabetic mice [12].

AMP-activated protein kinase (AMPK) plays a central role in controlling lipid metabolism.
The phosphorylation of ACC (at Ser79) by AMPK could inactivate ACC, which might
ultimately decrease the level of malonyl-CoA and is beneficial for the recovery of CPT-1
activity and fatty acid oxidation [13,14]. The activity of SREBP-1c is also under the control
of AMPK [15].

Apolipoprotein E (ApoE), primarily produced by the liver, works with other lipopro-
teins to mediate the lipid transport in the circulation [16]. ApoE knockout (KO) mice
spontaneously develop hypercholesterolemia and atherosclerosis when fed a standard
chow [17], while high-fat diet (HFD) can further accelerate the process [18]. Furthermore,
previous studies have confirmed that ApoE KO mice fed a HFD could serve as a valuable
NAFLD model [19,20].

Several lines of studies have shown that moderate hypoxia protocols had beneficial
effects on metabolism, including reduced body weight, blood glucose, and cholesterol lev-
els, and improved insulin sensitivity [21,22]. Hypoxia stimulates blood glucose disposal
in rodents [23,24], isolated human muscle tissue [25], and type 2 diabetic patients [26].
High-altitude chronic hypoxia amends obesity-induced NAFLD in mice by regulating mi-
tochondrial and AMPK signaling [27]. These findings imply that hypoxia exposure may be
efficient for treating metabolic abnormalities. However, its possible effects on NAFLD have
not been fully explored, and the conclusions regarding the potential relationship between
hypoxia and NAFLD are inconsistent [28,29]. In particular, the effects of hypoxia-inducible
factor 1α (HIF-1α), the master regulator of several genes responsible in cellular adaptation to
hypoxia [30], on regulating hepatic steatosis setup and progression remain to be elucidated.

In this study, after 12 weeks of feeding of a HFD in ApoE KO mice, we focused on
the effects of hypoxia exposure on fatty acid metabolism in the liver of the mice, and
whether it would be more effective when shifting a HFD to a normal diet in this special
animal model. We hypothesized that the intervention of hypoxia exposure would present
beneficial impacts on hepatic fatty acid metabolism and HFD would suppress the beneficial
effect in ApoE KO fed HFD.

2. Materials and Methods
2.1. Animals

The protocol of this study was approved by the Animal Care and Use Committee of
Beijing Sport University (2019100A). Male C57BL/6J ApoE KO mice (n = 24, aged 10 weeks)
and male C57BL/6J wild type (WT) mice (n = 6, aged 10 weeks) were purchased from
Charles River Development, Inc. (Beijing, China). All mice were housed indoors under a
temperature of 22 ± 2 ◦C, humidity of 50–70%, and 12-h light/dark cycles.
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The ApoE KO mice were fed HFD, containing 21% (w/w) fat, 43% (w/w) carbohydrate
without sucrose, and 1.5% (w/w) cholesterol, 4.554 kcal/g (Beijing Keao Xieli Feed Co.,
Ltd., Beijing, China) for 12 weeks. In the food protocol of for the first seven days, a HFD
was gradually added into a normal diet until the feeding proportion was totally a HFD.
After 12 weeks of the HFD feeding, all ApoE KO mice were forwarded into a six-week
interventional experiment and randomly allocated to two groups: normoxia and hypoxia
exposure (HE); then they were further divided into HFD and normal diet (ND) groups,
respectively (Figure 1). There were four groups: HFD + normoxia, ND + normoxia, HFD +
HE, and ND + HE, with six mice in each group (one mouse in the ND + normoxia group
was euthanized due to accidental death in the later of intervention). The HFD groups were
fed a HFD continuously, while the ND groups were changed to a normal chow containing
4–5% (w/w) fat, 50–60% carbohydrate, and no added cholesterol and sucrose, 3.420 kcal/g
(Beijing Huafukang Bioscience Co., Ltd., Beijing, China). WT mice were fed a ND for
18 weeks as a baseline control.
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Figure 1. A schematic figure of the study protocol.

Mice had ad libitum access to food. The hypoxia environment was created by placing
the mice in a normobaric and hypoxia chamber (210 cm long, 200 cm wide, and 200 cm
high) with an oxygen concentration of 11.2% (at about the level of a simulated altitude of
4500 m) together with the cage [31]. The chamber was infused with hypoxic air through
an air compressor and a nitrogen synthesizing machine, which could reduce the oxygen
concentration in the chamber to 11.2%. The oxygen concentration in the chamber was
monitored throughout the experimental period with an oxygen sensor. The hypoxia
treatments were carried out in the morning, one hour per time, three times per week, for six
weeks. At the same time, the mice in the normoxia groups were placed in a normobaric and
normoxic chamber together with the cage, and only the oxygen concentration was different
between hypoxia and normoxia treatments.

To avoid acute effects of the last hypoxia treatment session, the mice were placed in
normoxia at least 48 h prior to tissue collection. The mice were fasted overnight and were
anesthetized (50 mg pentobarbital sodium/kg body weight) and the blood samples were
collected by the percutaneous cardiac puncture. The liver samples from the left lateral lobe
were removed, cleaned, and quick-frozen in liquid nitrogen, and then stored at −80 ◦C.

2.2. Body Weight, Food and Energy Intake

The mice were weighed weekly using an analytical scale. Any remaining food was
replaced, and food intake was measured daily. The energy intake was calculated by energy
content per gram of food × food intake.
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2.3. Plasma Lipid Profiles

Plasma triglycerides (TG), total cholesterol (TC), low-density lipoprotein cholesterol
(LDL-C), and high-density lipoprotein cholesterol (HDL-C) were measured following the
methods and assay kits of our previous study [32]. Plasma non-esterified fatty acids (NEFA)
were determined using a commercially available kit from Solarbio (BC0595, Beijing, China).
Changes in absorbance were determined with Bio Tek Synergy H1 (Bio Tek Instruments,
Inc., Winooski, VT, USA) at 550 nm.

2.4. Hepatic Lipid Contents, Plasma ALT and AST Levels

The supernatant of tissue homogenate was used to determine TG, TC, and NEFA in
hepatic tissue by enzymatic methods according to the commercial kits (A111-1-1; A110-
1-1; A042-2-1, respectively. Nanjing Jiancheng Bioengineering Institute, Nanjing, China).
Plasma levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were
measured using commercially available detection kits (C009-2-1 and C010-2-1, respectively.
Nanjing Jiancheng Bioengineering Institute, Nanjing, China). Changes in absorbance were
determined with Bio Tek Synergy H1 (Bio Tek Instruments, Inc., Winooski, VT, USA) at 510,
510, 546, 510, and 510 nm, respectively.

2.5. Real-Time Quantitative PCR Analysis

Total RNA was isolated from about 50 mg of liver tissue, reverse-transcribed to
cDNA and performed real-time quantitative PCR analysis as previously described [33].
Mcad (QT00111244) and 18S ribosomal RNA (Rn18s; QT02448075) commercial primers from
Qiagen (Hilden, Germany) were used. The primer sequences of Cpt1a, Cpt2, Acly, Acc1,
Fasn, Scd1, and Srebp-1c were listed in Table 1 and these primers were synthesized by
Invitrogen Trading Co., Ltd. (Shanghai, China). The difference in expression between
control and experimental samples was calculated using the 2−∆∆Ct method, as described
previously [34].

Table 1. Description of primers used for quantitative real-time PCR.

Gene Name Gene ID Forward Primer Reverse Primer

Cpt1a 12894 CTCCGCCTGAGCCATGAAG CACCAGTGATGATGCCATTCT
Cpt2 12896 CAGCACAGCATCGTACCCA TCCCAATGCCGTTCTCAAAAT
Acc1 107476 ATGGGCGGAATGGTCTCTTTC TGGGGACCTTGTCTTCATCAT
Acly 104112 ACCCTTTCACTGGGGATCACA GACAGGGATCAGGATTTCCTTG
Fasn 14104 GGAGGTGGTGATAGCCGGTAT TGGGTAATCCATAGAGCCCAG
Scd1 20249 TTCTTGCGATACACTCTGGTGC CGGGATTGAATGTTCTTGTCGT

Srebp-1c 20787 GTGAGCCTGACAAGCAATCA GGTGCCTACAGAGCAAGAG

2.6. Western Blotting

According to the methods of our previous study, total proteins were isolated from
50 mg of liver tissue and western blotting was performed. The blots were probed using the
following antibodies: HIF-1α (sc-10790, 1:1000), PPARα (sc-9000, 1:1000), SREBP-1 (2A4)
(sc-13551, 1:500), DEC1 (s-8) (sc-101023, 1:1000), AMPKα1/2 (sc-74461, 1:1000), Thr172-
p-AMPKα1/2 (sc-33524, 1:1000), and β-actin (sc-477778, 1:1000); the above-mentioned
antibodies were all from Santa Cruz Biotechnology, Dallas, TX, USA. ACC (#3662, Cell
Signaling Technology, Inc., Danvers, MA, USA) and Ser79-p-ACC (#3661; Cell Signaling
Technology, Inc., Danvers, MA, USA). The density of protein bands was analyzed using Bio-
Rad imaging software (Bio-Rad Laboratories, Hercules, CA, USA). The individual values
were originally expressed as a ratio of a standard (β-actin content) and then expressed as a
fold change of the control group value.

2.7. Activities of FASN and ACC

The activities of FASN and ACC in the liver tissue were determined using commer-
cially available kits from Gene Lab (Beijing, China) and Solarbio (BC0415, Beijing, China),
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respectively. FASN catalyzed malonyl coenzyme A, acetyl coenzyme A, and NADPH
to produce long chain fatty acids and NADP+. NADPH had a characteristic absorption
peak at 340 nm. The activity of FASN was calculated by measuring the decreasing rate
of absorbance at 340 nm (Bio Tek Synergy H1, Bio Tek Instruments, Inc., Winooski, VT,
USA). ACC catalyzed acetyl CoA, NaHCO3, and ATP in the production of malonyl CoA,
ADP, and inorganic phosphorus. Molybdenum blue and phosphate generated substances
with characteristic absorption peaks at 660 nm (Bio Tek Synergy H1, Bio Tek Instruments,
Inc., Winooski, VT, USA). The increase of inorganic phosphorus was measured by the
ammonium molybdate phosphorus determination method to reflect the ACC activity.

2.8. Statistical Analysis

All values are reported as means ± SD. Statistical calculations were performed using
SPSS Statistical software V 19.0 (IBM Corp., Armonk, NY, USA). Data were analyzed using a
two-way ANOVA (ND × HE), and simple effect analysis with the least significant difference
(LSD) post hoc test was performed to identify significant mean differences between groups.
Significance was set at p < 0.05.

3. Results
3.1. Changes in Plasma Lipid Profiles, ALT, AST Levels and Hepatic Lipid Profiles between WT
and NAFLD Model

The ApoE KO mice fed a HFD had significantly higher levels (p < 0.05 or p < 0.01)
of plasma TG, TC, NEFA, LDL-C, HDL-C, and ALT than those of WT mice fed a ND
(Figure 2A,B). Furthermore, lower levels of hepatic TG, TC and NEFA were also found in
WT mice than ApoE KO mice (p < 0.05 or p < 0.01) (Figure 2D–F).
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3.2. Changes in Body Weight, Food and Energy Intake

There were no significant differences in body weight between the HFD and ND groups
with or without HE during the six-week interventions (from the end of week 12 to the
end of week 18) (Figure 3A). However, HE strongly decreased food and energy intake in
the HFD + HE group compared with those of the HFD + normoxia group at 14, 15, 17,
and 18 weeks of the intervention period, and also significantly reduced food and energy
intake levels in the ND + HE group compared with those of the ND + normoxia group at 13,
14, 15, 17, and 18 weeks (Figure 3B,C). In addition, under normoxia, ND strongly increased
food intake in the ND + normoxia group compared with those of the HFD + normoxia
group at 13, 15, 17, and 18 weeks, but ND significantly decreased energy intake in the
ND + normoxia group compared with that of the HFD + normoxia group at 14–18 weeks.
Under hypoxia, ND also strongly decreased energy intake in the ND + HE group compared
with those of the HFD + HE group at 13, and 15–18 weeks (Figure 3B,C).
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3.3. Changes in Plasma Lipid Profiles, ALT, AST Levels and Hepatic Lipid Profiles

HE strongly decreased plasma TG, TC, LDL-C, and ALT levels in the HFD + HE group
compared with those of the HFD + normoxia group, and also significantly reduced plasma TG,
TC, LDL-C, ALT, and hepatic TC levels in the ND + HE group compared with those of the ND
+ normoxia group. Under normoxia, ND strongly decreased plasma TG, TC, NEFA, LDL-C,
ALT, and hepatic TG, TC, and NEFA levels in the ND + normoxia group compared with those
of the HFD + normoxia group. Under hypoxia, ND also strongly decreased their levels in the
ND + HE group compared with those of the HFD + HE group (Figure 4A–D,F,H–J).
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3.4. Changes in Hepatic PPARα Protein Expression, mRNA Expression Levels of Genes Involved in
Mitochondrial Fatty Acid Oxidation and Synthesis, and Activities of FASN and ACC

There were no significant differences in the protein expression of PPARα and mRNA
expression levels of hepatic genes involved in mitochondrial fatty acid oxidation, including
Cpt1a, Cpt2, and Mcad, between the HFD and ND groups with or without HE (Figure 5A–D).
However, there were lower levels of the mRNA expression of Fasn and Scd1 in the liver of
the HFD + HE group than those of the HFD + normoxia group (Figure 5G,H). Additionally,
the mRNA expression of Acc1, Fasn, Scd1, and ACC activity in the liver of the ND + HE
group were lower than those of the ND + normoxia group (Figure 5F–J). In addition,
ND strongly decreased hepatic mRNA expression of Scd1 and FASN activity in the ND +
normoxia group compared with those of the HFD + normoxia group, and ND also strongly
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decreased hepatic mRNA expression of Acc1 and Scd1, and FASN activity in the ND + HE
group compared with those of the HFD + HE group (Figure 5F,H,I).

Life 2022, 12, 1535 9 of 17 
 

 

liver of the HFD + HE group than those of the HFD + normoxia group (Figure 5G,H). 
Additionally, the mRNA expression of Acc1, Fasn, Scd1, and ACC activity in the liver of 
the ND + HE group were lower than those of the ND + normoxia group (Figure 5F–J). In 
addition, ND strongly decreased hepatic mRNA expression of Scd1 and FASN activity in 
the ND + normoxia group compared with those of the HFD + normoxia group, and ND 
also strongly decreased hepatic mRNA expression of Acc1 and Scd1, and FASN activity in 
the ND + HE group compared with those of the HFD + HE group (Figure 5F,H,I). 

 

Figure 5. Changes in hepatic PPARα protein expression (A), mRNA expression levels of genes
involved in mitochondrial fatty acid oxidation (B–D) and synthesis (E–H), and activities of FASN (I)
and ACC (J). * p < 0.05, ** p < 0.01 vs. HFD groups; # p < 0.05, ## p < 0.01 vs. normoxia groups.
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To obtain more molecular evidence of the effects of HE on fatty acid metabolism,
the protein expression of p-AMPKα(The172)/AMPKα, p-ACC(Ser79)/ACCα in the liver
were measured. Immunoblotting revealed that there was an increasing trend in the hepatic
p-AMPKα (The172)/AMPKα and p-ACC(Ser79)/ACCα ratios of the HFD + HE group
or ND + HE group compared with the HFD + normoxia group or ND + normoxia group,
respectively, but not significant between them (Figure 6A,B).
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3.6. Changes in Protein Expression of HIF-1α, DEC1 and SREBP-1, and mRNA Expression
of Srebp-1c

There was a significantly lower level of the mRNA expression of Srebp-1c in the liver
of HFD + HE mice, than that of the HFD + normoxia group (Figure 7C). Additionally,
the protein expression of HIF-1α and DEC1 were higher, and the mRNA expression of
Srebp-1c was lower in the liver of the ND + HE group than those of the ND + normoxia
group (Figure 7A–C); the protein expression of HIF-1α and DEC1 in the liver of the ND +
HE group were higher than those of the HFD + HE group (Figure 7A,B).
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4. Discussion

The findings of the present study revealed that six weeks of hypoxia exposure im-
proved the plasma lipid profile but did not affect hepatic TG and NEFA levels significantly
in ApoE KO mice fed both a HFD and ND. Furthermore, the hypoxia exposure decreased
the mRNA expression of Fasn, Scd1, and Srebp-1c significantly in the HFD + HE group
compared with those in the HFD + normoxia group; while after replacing a HFD with ND
feeding, the ND + normoxia group achieved more significant changes in the measured
variables than those of the ND + HE group. In addition, the protein expression of HIF-1α
was increased when hypoxia was performed in the ND group, but not in the HFD group.
These results support the hypothesis of the present study at the genetic level, which is that
the intervention of hypoxia exposure would present beneficial impacts on gene expression
of hepatic fatty acid metabolism and HFD could suppress the beneficial effect caused by
hypoxia treatment in ApoE KO mice, although at the macro level there were no significant
changes in hepatic TG and NEFA contents following the hypoxia treatment. To the best of
our knowledge, this study was the first investigation into the effects of hypoxia exposure
on hepatic fatty acid metabolism in ApoE KO mice fed HFD.

Some studies have established that ApoE KO mice fed HFD could serve as a valuable
NAFLD model [19,20]. Our results of blood lipid profiles, ALT, AST, and hepatic lipid
contents also showed that ApoE deficient mice fed with HFD, compared with WT fed ND
(Figure 2), lead to hepatic accumulation of free cholesterol and triacylglycerol and liver
injury. This might suggest that ApoE KO mice could not correctly down-regulate dietary
cholesterol absorption or stimulate biliary excretion when fed with a high-cholesterol
diet [35].

The association between hypoxia and lipid homeostasis has already been speculated,
however, the currently available data were inconsistent. Some studies have shown a
lower prevalence of obesity in adult individuals living at moderate or high altitudes [36],
and hypoxia could improve glucose-lipid metabolism disorders [24,27]. It is also known
that high hypoxia may accelerate the progression of various diseases, such as cardiovascular
disease, cancer, inflammatory diseases, and liver disease [37–40] and upregulate the gene
expression involved in lipogenesis, lipid uptake, and lipid droplet formation [41,42]; while
moderate altitude has the opposite influence since it reduces the prevalence and mortality of
various diseases, such as cancer [43,44]. Previous studies have demonstrated that hypoxia
exposure is associated with a loss of appetite and reducing food/energy intake [45,46].
In the present study, after six weeks of hypoxia exposure, ApoE KO mice fed both a HFD
and ND significantly decreased their food and energy intake, and plasma TG, TC, LDL-C
concentrations (Figures 3 and 4). The suppressed food and energy intake by hypoxia
could play a role in regulating these blood lipid profiles. Furthermore, the effects of
hypoxia as a means of intervention on NAFLD development have not been sufficiently
investigated and the precise mechanisms are not clear. Following six weeks of the hypoxia
treatment, even though there were significant decreases in the mRNA expression of Fasn
and Scd1 in ApoE KO mice fed HFD and significant changes in more variables in ApoE
KO mice fed ND (Figure 5), hypoxia exposure did not change hepatic TG and NEFA levels
significantly in ApoE KO mice fed both a HFD and ND. We speculated that the insufficient
dose and/or duration of hypoxia exposure would have an impact on its effects. In addition,
we found that there were no significant changes in hepatic p-AMPKα(Thr172)/AMPKα and
p-ACC(Ser79)/ACCα ratios, no matter whether in the intervention of hypoxia exposure or
shifting a HFD to a ND, and hepatic ACC activity was decreased remarkably in the ND
+ HE group compared with that in the ND + normoxia group (Figure 6). It demonstrates
that the phosphorylation of ACC can be regulated by other factors in hypoxia besides
AMPK activation, such as the phosphorylation of ACC by protein kinase A (PKA) at
Ser1200 which can also inhibit the enzymatic activity of ACC [14]. It is worth noting that
there was a marked increase in the protein expression of ACC and p-ACC(Ser79) in the
ND groups compared with that in the HFD groups, and their changes followed a similar
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trend during the trial. Further studies are required to elucidate the changes and their
molecular mechanisms.

HIF-1 is known as the key oxygen-sensitive transcription factor, regulating most of
the homeostatic responses to hypoxia. Recent studies have reported physiological and
pathological effects of HIF-1 levels on the fatty liver. For example, HIF-1α may inhibit
lipid accumulation by suppressing the SREBP-1c-dependent lipogenic pathway in the
alcoholic fatty liver [47]. The findings were in line with previous reports of cell experiments,
where HIF-1α upregulated the expression of differentiated embryo-chondrocyte expressed
gene 1 (DEC1), a circadian helix-loophelix (HLH) transcription factor, which reduced the
expression of SREBP-1c and its downstream lipogenic genes [47]. It has been consistently
demonstrated that the ablation of HIF-1β promoted lipogenic gene expression (Scd1, Fasn)
in the liver, which suggests that HIF-1 prevents lipid synthesis [48]. Protective effects of
HIF-1 activation against fatty liver disease are further supported by a report in which
HIF-1 promotes mitochondrial β-oxidation and prevents lipid peroxidation by regulating
mitochondrial biogenesis in the liver of HFD-fed animals [49]. Collectively, these results
indicate that HIF-1 serves as a protective factor against the development of fatty liver.
However, the activation of HIF under hypoxia potentially leads to metabolic effects that
are likely dose dependent, i.e., with modest hypoxia the results are beneficial; conversely,
adverse effects will be shown if the exposure is extreme [47,50]. This is also supported by
human studies reporting a deleterious metabolic effect of high altitudes vs. of beneficial
influence of moderate altitude. In our study, the protein expression of HIF-1α was increased
only when hypoxia was performed in the ND group, but not in the HFD group. ApoE KO
mice fed HFD might be less sensitive to hypoxic stimulation, thus there was no difference
in the expression of HIF-1 protein between the HFD + normoxia and HFD + HE groups
(Figure 7). This question needs to be investigated in future studies. In addition, our data
clearly indicated that the combined ND + HE treatment, compared with ND + normoxia
or HFD + HE, enhanced the hepatic protein expression of HIF-1α and DEC1, reduced the
mRNA expression of Srebp-1c and its target genes involved in fatty acid synthesis including
Acc1, Fasn, and Scd1, as well as ACC activity (Figures 6 and 7), which seemed to overwhelm
lipid degradation caused by the induction of PPARα in ApoE KO mice.

Dietary intake of a HFD is a risk factor for the development of NAFLD [51,52].
Hepatocytes will accumulate fat when the cellular fatty acids input exceeds the fatty acid
output in the case of a HFD, because the hepatic lipid levels are regulated by the interaction
between liver absorption, synthesis, oxidation, and the export of lipids [53,54]. The plasma
free fatty acids (FFAs) originating from the lipolysis of adipocytes and dietary fat are the
primary source of hepatic lipid deposition in NAFLD [55]. Feeding HFD may lead to
insulin resistance which would increase the rate of lipolysis in adipose tissue, resulting
in elevated serum FFAs. This condition may accelerate the fat accumulation in the liver
and finally reach a pathological state. In the present study, by changing a HFD to a ND
under both hypoxia and normoxia conditions, there were significant decreases in plasma
TG, TC, LDL-C, ALT, and hepatic TG, TC, and NEFA levels. Furthermore, the blood NEFA
showed a similar trend as liver NEFA in the ND groups. The effects of a ND on the lower
exogenous NEFA from adipose lipolysis could account for the lower liver TG level.

De novo lipogenesis (DNL) is a process by which lipids are endogenously synthesized
from dietary sources, such as carbohydrates. SREBP has three isoforms: SREBP-1a, SREBP-1c,
and SREBP-2. The liver predominantly expresses the SREBP-1c isoform together with SREBP-
2. SREBP-1c is mainly involved in de novo FA and TG synthesis by inducing the expression
of lipogenic genes such as Fasn, Acc, and Scd1, whereas SREBP-2 controls cholesterol
homeostasis [56]. On the other hand, mitochondrial fatty acid β-oxidation (FAO) is a major
route of lipid consumption in which FFAs are esterified with CoA, transported into the
mitochondria matrix, and oxidized to generate acetyl-CoA by β-oxidation [57]. As expected,
compared with the HFD group, the ND groups had a marked decrease in the activity of
FASN and a significant reduction in the mRNA expression of Scd1, which can convert
saturated fatty acids to monounsaturated fatty acids. Meanwhile, the protein expression of
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hepatic p-AMPKα(Thr172)/AMPKα and PPARα, the mRNA expression of PPARα’s target
genes, such as Cpt1a, Cpt2, and Mcad, were not significantly different between the HFD and
ND groups. Altogether, the evidence indicated that the dietary intervention with a ND
could regulate hepatic fatty acid metabolism by inhibiting lipid synthesis.

There are no reports about hypoxia exposure improving hepatic fatty acid metabolism
in humans with NAFLD in the current literature. However, in animal studies, chronic
intermittent hypobaric hypoxia has beneficial effects on the body of rats [58,59]. This treat-
ment protects the liver against hepatic damage through the inhibition of endoplasmic
reticulum stress in fructose-fed rats [58] and has anti-diabetes effects through ameliorating
insulin resistance via the hepatic HIF-insulin signaling pathway in type-2 diabetic rats [59].
The results of our present study provided evidence that six weeks of hypoxia exposure
improved the plasma lipid profile, increased the protein expression of HIF-1α in the liver,
and significantly affected hepatic metabolic indices of fatty acid synthesis at the genetic
level in the male ApoE KO mice. In addition, the dietary intake of HFD is a well-established
risk factor for the development of NAFLD. In the present study, by changing a HFD to a
ND, there were significant decreases in plasma TG, TC, LDL-C, ALT, and hepatic TG, TC,
and NEFA levels. Taken together, our results implied a prelusive possibility of using hy-
poxia treatment plus a dietary intervention to treat or prevent NAFLD in humans. Research
on humans is needed to test this hypothesis in the future.

The present study has some limitations. While focusing on the changes of fatty acid
metabolism in the liver, we did not assess other variables of lipid metabolism, for example,
cholesterol metabolism. Future study may expand on the findings of cholesterol metabolism
by addressing the effects and its mechanism. In addition, the liver histological observations
were not performed, such as Oil Red O staining of samples in the study. This information
would add more comprehensive insights. Because female mice and male mice have different
hormone levels and physical conditions, the present study only selected male mice for
the experiment to avoid the sex differences. The current results are not applicable to
female animals.

5. Conclusions

Six weeks of hypoxia exposure did not change hepatic TG and NEFA levels in male
ApoE KO mice. However, at the genetic level, there were significant effects on hepatic
metabolic indices of fatty acid synthesis, especially in the ND + HE group, while HFD
might suppress the beneficial effect of hypoxia on hepatic lipid metabolism in male ApoE
KO mice. Comparatively, the dietary intervention of shifting HFD to ND was more effective
in reducing hepatic lipid accumulation than hypoxia intervention.

Author Contributions: Y.Z. and G.P.M. designed the experiment; Y.W. and J.L. performed experi-
ments and they contributed equally to this work as joint first authors; W.H., L.G. and H.W. helped
with experiments; Y.W. analyzed data; Y.Z. wrote the manuscript; J.W. and M.P. edited and revised
manuscript; G.P.M. and Y.Z. obtained funding. All authors have read and agreed to the published
version of the manuscript.

Funding: This study was supported by the Bilateral Science and Technology Cooperation Programme
with Asia and Sino Swiss Science and Technology Cooperation (Grant No.2019) for the support of JL
and the activities leading to this publication. Moreover, the funding for ApoE KO mice with a high-fat
diet was provided by the Institute of Sport Sciences of the University of Lausanne. Laboratory
experiments were funded by a grant from Exercise and Physical Fitness, the Key Laboratory of
Ministry of Education in Beijing Sport University and Fundamental Research Funds for the Central
Universities (No.20211009, Beijing Sport University).

Institutional Review Board Statement: The study was conducted in accordance with the Declaration
of Helsinki, and approved by the Ethics Committee of the Institute of Sport Sciences of the University
of Lausanne for the ApoE KO mice with high-fat diet experiments; and the Animal Care and Use
Committee of Beijing Sport University for the WT mice and laboratory experiments (2019100A,
November 2019).



Life 2022, 12, 1535 13 of 15

Data Availability Statement: The data used to support the findings of this study are available from
the corresponding author upon request.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Li, Z.; Xue, J.; Chen, P.; Chen, L.; Yan, S.; Liu, L. Prevalence of nonalcoholic fatty liver disease in mainland of China: A meta-

analysis of published studies. J. Gastroenterol. Hepatol. 2014, 29, 42–51. [CrossRef] [PubMed]
2. Younossi, Z.M. Non-alcoholic fatty liver disease—A global public health perspective. J. Hepatol. 2019, 70, 531–544. [CrossRef]

[PubMed]
3. Ahmed, A.; Wong, R.J.; Harrison, S.A. Nonalcoholic Fatty Liver Disease Review: Diagnosis, Treatment, and Outcomes. Clin. Gas-

troenterol. Hepatol. 2015, 13, 2062–2070. [CrossRef] [PubMed]
4. Meex, R.C.R.; Watt, M.J. Hepatokines: Linking nonalcoholic fatty liver disease and insulin resistance. Nat. Rev. Endocrinol. 2017,

13, 509–520. [CrossRef] [PubMed]
5. Targher, G.; Byrne, C.D.; Lonardo, A.; Zoppini, G.; Barbui, C. Non-alcoholic fatty liver disease and risk of incident cardiovascular

disease: A meta-analysis. J. Hepatol. 2016, 65, 589–600. [CrossRef]
6. Abd El-Kader, S.M.; El-Den Ashmawy, E.M.S. Non-alcoholic fatty liver disease: The diagnosis and management. World J. Hepatol.

2015, 7, 846–858. [CrossRef]
7. Montagner, A.; Polizzi, A.; Fouché, E.; Ducheix, S.; Lippi, Y.; Lasserre, F.; Barquissau, V.; Régnier, M.; Lukowicz, C.; Benhamed, F.;

et al. Liver PPARα is crucial for whole-body fatty acid homeostasis and is protective against NAFLD. Gut 2016, 65, 1202–1214.
[CrossRef]

8. Nakamura, M.T.; Yudell, B.E.; Loor, J.J. Regulation of energy metabolism by long-chain fatty acids. Prog. Lipid Res. 2014, 53,
124–144. [CrossRef]

9. Wang, Y.; Nakajima, T.; Gonzalez, F.J.; Tanaka, N. PPARs as Metabolic Regulators in the Liver: Lessons from Liver-Specific
PPAR-Null Mice. Int. J. Mol. Sci. 2020, 21, 2061. [CrossRef]

10. Ohashi, T.; Nakade, Y.; Ibusuki, M.; Kitano, R.; Yamauchi, T.; Kimoto, S.; Inoue, T.; Kobayashi, Y.; Sumida, Y.; Ito, K.; et al.
Conophylline inhibits high fat diet-induced non-alcoholic fatty liver disease in mice. PLoS ONE 2019, 14, e0210068. [CrossRef]

11. Xu, X.; So, J.-S.; Park, J.-G.; Lee, A.-H. Transcriptional Control of Hepatic Lipid Metabolism by SREBP and ChREBP. Semin. Liver
Dis. 2013, 33, 301–311. [CrossRef] [PubMed]

12. Shimomura, I.; Bashmakov, Y.; Horton, J.D. Increased Levels of Nuclear SREBP-1c Associated with Fatty Livers in Two Mouse
Models of Diabetes Mellitus. J. Biol. Chem. 1999, 274, 30028–30032. [CrossRef] [PubMed]

13. Fang, K.; Wu, F.; Chen, G.; Dong, H.; Li, J.; Zhao, Y.; Xu, L.; Zou, X.; Lu, F. Diosgenin ameliorates palmitic acid-induced lipid
accumulation via AMPK/ACC/CPT-1A and SREBP-1c/FAS signaling pathways in LO2 cells. BMC Complement. Altern. Med.
2019, 19, 1–12. [CrossRef] [PubMed]

14. Ha, J.; Daniel, S.; Broyles, S.S.; Kim, K.H. Critical phosphorylation sites for acetyl-CoA carboxylase activity. J. Biol. Chem. 1994,
269, 22162–22168. [CrossRef]

15. Zhu, X.; Bian, H.; Wang, L.; Sun, X.; Xu, X.; Yan, H.; Xia, M.-F.; Chang, X.; Lu, Y.; Li, Y.; et al. Berberine attenuates nonalcoholic
hepatic steatosis through the AMPK-SREBP-1c-SCD1 pathway. Free Radic. Biol. Med. 2019, 141, 192–204. [CrossRef]

16. Marais, A.D. Apolipoprotein E in lipoprotein metabolism, health and cardiovascular disease. Pathology 2019, 51, 165–176.
[CrossRef]

17. Vasquez, E.C.; A Peotta, V.; Gava, A.L.; MC Pereira, T.; Meyrelles, S.S. Cardiac and vascular phenotypes in the apolipoprotein
E-deficient mouse. J. Biomed. Sci. 2012, 19, 22. [CrossRef]

18. Sfyri, P.; Matsakas, A. Crossroads between peripheral atherosclerosis, western-type diet and skeletal muscle pathophysiology:
Emphasis on apolipoprotein E deficiency and peripheral arterial disease. J. Biomed. Sci. 2017, 24, 42. [CrossRef]

19. Tous, M.; Ferre, N.; Camps, J.; Riu, F.; Joven, J. Feeding apolipoprotein E-knockout mice with cholesterol and fat enriched diets
may be a model of non-alcoholic steatohepatitis. Mol. Cell. Biochem. 2005, 268, 53–58. [CrossRef]

20. Schierwagen, R.; Maybüchen, L.; Zimmer, S.; Hittatiya, K.; Bäck, C.; Klein, S.L.; Uschner, F.E.; Reul, W.; Boor, P.; Nickenig, G.; et al.
Seven weeks of Western diet in apolipoprotein-E-deficient mice induce metabolic syndrome and non-alcoholic steatohepatitis
with liver fibrosis. Sci. Rep. 2015, 5, 12931. [CrossRef]

21. Urdampilleta, A.; González-Muniesa, P.; Portillo, M.P.; Martínez, J.A. Usefulness of combining intermittent hypoxia and physical
exercise in the treatment of obesity. J. Physiol. Biochem. 2011, 68, 289–304. [CrossRef] [PubMed]

22. Hara, Y.; Watanabe, N. Changes in expression of genes related to glucose metabolism in liver and skeletal muscle of rats exposed
to acute hypoxia. Heliyon 2020, 6, e04334. [CrossRef] [PubMed]

23. Cartee, G.; Douen, A.G.; Ramlal, T.; Klip, A.; Holloszy, J.O. Stimulation of glucose transport in skeletal muscle by hypoxia. J. Appl.
Physiol. 1991, 70, 1593–1600. [CrossRef]

24. Chiu, L.-L.; Chou, S.-W.; Cho, Y.-M.; Ho, H.-Y.; Ivy, J.L.; Hunt, D.; Wang, P.S.; Kuo, C.-H. Effect of prolonged intermittent hypoxia
and exercise training on glucose tolerance and muscle GLUT4 protein expression in rats. J. Biomed. Sci. 2004, 11, 838–846.
[CrossRef] [PubMed]

http://doi.org/10.1111/jgh.12428
http://www.ncbi.nlm.nih.gov/pubmed/24219010
http://doi.org/10.1016/j.jhep.2018.10.033
http://www.ncbi.nlm.nih.gov/pubmed/30414863
http://doi.org/10.1016/j.cgh.2015.07.029
http://www.ncbi.nlm.nih.gov/pubmed/26226097
http://doi.org/10.1038/nrendo.2017.56
http://www.ncbi.nlm.nih.gov/pubmed/28621339
http://doi.org/10.1016/j.jhep.2016.05.013
http://doi.org/10.4254/wjh.v7.i6.846
http://doi.org/10.1136/gutjnl-2015-310798
http://doi.org/10.1016/j.plipres.2013.12.001
http://doi.org/10.3390/ijms21062061
http://doi.org/10.1371/journal.pone.0210068
http://doi.org/10.1055/s-0033-1358523
http://www.ncbi.nlm.nih.gov/pubmed/24222088
http://doi.org/10.1074/jbc.274.42.30028
http://www.ncbi.nlm.nih.gov/pubmed/10514488
http://doi.org/10.1186/s12906-019-2671-9
http://www.ncbi.nlm.nih.gov/pubmed/31519174
http://doi.org/10.1016/S0021-9258(17)31770-2
http://doi.org/10.1016/j.freeradbiomed.2019.06.019
http://doi.org/10.1016/j.pathol.2018.11.002
http://doi.org/10.1186/1423-0127-19-22
http://doi.org/10.1186/s12929-017-0346-8
http://doi.org/10.1007/s11010-005-2997-0
http://doi.org/10.1038/srep12931
http://doi.org/10.1007/s13105-011-0115-1
http://www.ncbi.nlm.nih.gov/pubmed/22045452
http://doi.org/10.1016/j.heliyon.2020.e04334
http://www.ncbi.nlm.nih.gov/pubmed/32642586
http://doi.org/10.1152/jappl.1991.70.4.1593
http://doi.org/10.1007/BF02254369
http://www.ncbi.nlm.nih.gov/pubmed/15591781


Life 2022, 12, 1535 14 of 15

25. Azevedo, J.L.; O Carey, J.; Pories, W.J.; Morris, P.G.; Dohm, G.L. Hypoxia Stimulates Glucose Transport in Insulin-Resistant
Human Skeletal Muscle. Diabetes 1995, 44, 695–698. [CrossRef]

26. Mackenzie, R.; Maxwell, N.; Castle, P.; Brickley, G.; Watt, P. Acute hypoxia and exercise improve insulin sensitivity (SI2*) in
individuals with type 2 diabetes. Diabetes/Metab. Res. Rev. 2010, 27, 94–101. [CrossRef]

27. Song, K.; Zhang, Y.; Ga, Q.; Bai, Z.; Ge, R.-L. High-altitude chronic hypoxia ameliorates obesity-induced non-alcoholic fatty liver
disease in mice by regulating mitochondrial and AMPK signaling. Life Sci. 2020, 252, 117633. [CrossRef]

28. Musso, G.; Cassader, M.; Olivetti, C.; Rosina, F.; Carbone, G.; Gambino, R. Association of obstructive sleep apnoea with the
presence and severity of non-alcoholic fatty liver disease. A systematic review and meta-analysis. Obes. Rev. 2013, 14, 417–431.
[CrossRef]

29. Kuvat, N.; Tanriverdi, H.; Armutcu, F. The relationship between obstructive sleep apnea syndrome and obesity: A new perspective
on the pathogenesis in terms of organ crosstalk. Clin. Respir. J. 2020, 14, 595–604. [CrossRef]

30. Choudhry, H.; Harris, A.L. Advances in Hypoxia-Inducible Factor Biology. Cell Metab. 2018, 27, 281–298. [CrossRef]
31. Ji, W.; Wang, L.; He, S.; Yan, L.; Li, T.; Wang, J.; Kong, A.-N.T.; Yu, S.; Zhang, Y. Effects of acute hypoxia exposure with different

durations on activation of Nrf2-ARE pathway in mouse skeletal muscle. PLoS ONE 2018, 13, e0208474. [CrossRef]
32. Wang, L.; Lavier, J.; Hua, W.; Wang, Y.; Gong, L.; Wei, H.; Wang, J.; Pellegrin, M.; Millet, G.; Zhang, Y. High-Intensity Interval

Training and Moderate-Intensity Continuous Training Attenuate Oxidative Damage and Promote Myokine Response in the
Skeletal Muscle of ApoE KO Mice on High-Fat Diet. Antioxidants 2021, 10, 992. [CrossRef] [PubMed]

33. Li, T.; He, S.; Liu, S.; Kong, Z.; Wang, J.; Zhang, Y. Effects of different exercise durations on Keap1-Nrf2-ARE pathway activation
in mouse skeletal muscle. Free Radic. Res. 2015, 49, 1269–1274. [CrossRef] [PubMed]

34. Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−∆∆CT Method.
Methods 2001, 25, 402–408. [CrossRef] [PubMed]

35. Sehayek, E.; Shefer, S.; Nguyen, L.B.; Ono, J.G.; Merkel, M.; Breslow, J.L. Apolipoprotein E regulates dietary cholesterol absorption
and biliary cholesterol excretion: Studies in C57BL/6 apolipoprotein E knockout mice. Proc. Natl. Acad. Sci. USA 2000, 97,
3433–3437. [CrossRef] [PubMed]

36. Woolcott, O.O.; Gutierrez, C.; Castillo, O.A.; Elashoff, R.M.; Stefanovski, D.; Bergman, R.N. Inverse association between altitude
and obesity: A prevalence study among andean and low-altitude adult individuals of Peru. Obesity 2016, 24, 929–937. [CrossRef]
[PubMed]

37. Simon, M.C.; Liu, L.; Barnhart, B.C.; Young, R.M. Hypoxia-Induced Signaling in the Cardiovascular System. Annu. Rev. Physiol.
2008, 70, 51–71. [CrossRef]

38. Wilson, W.R.; Hay, M.P. Targeting hypoxia in cancer therapy. Nat. Rev. Cancer 2011, 11, 393–410. [CrossRef]
39. Eltzschig, H.K.; Carmeliet, P. Hypoxia and Inflammation. N. Engl. J. Med. 2011, 364, 656–665. [CrossRef]
40. Nath, B.D.; Szabo, G. Hypoxia and hypoxia inducible factors: Diverse roles in liver diseases. Hepatology 2011, 55, 622–633.

[CrossRef]
41. Parathath, S.; Mick, S.L.; Feig, J.E.; Joaquin, V.; Grauer, L.; Habiel, D.M.; Gassmann, M.; Gardner, L.B.; Fisher, E.A. Hypoxia Is

Present in Murine Atherosclerotic Plaques and Has Multiple Adverse Effects on Macrophage Lipid Metabolism. Circ. Res. 2011,
109, 1141–1152. [CrossRef] [PubMed]

42. Furuta, E.; Pai, S.K.; Zhan, R.; Bandyopadhyay, S.; Watabe, M.; Mo, Y.-Y.; Hirota, S.; Hosobe, S.; Tsukada, T.; Miura, K.; et al.
Fatty Acid Synthase Gene Is Up-regulated by Hypoxia via Activation of Akt and Sterol Regulatory Element Binding Protein-1.
Cancer Res. 2008, 68, 1003–1011. [CrossRef] [PubMed]

43. Burtscher, J.; Millet, G.P.; Burtscher, M. Does living at moderate altitudes in Austria affect mortality rates of various causes?
An ecological study. BMJ Open 2021, 11, e048520. [CrossRef] [PubMed]

44. Burtscher, J.; Millet, G.P.; Renner-Sattler, K.; Klimont, J.; Hackl, M.; Burtscher, M. Moderate Altitude Residence Reduces Male
Colorectal and Female Breast Cancer Mortality More Than Incidence: Therapeutic Implications? Cancers 2021, 13, 4420. [CrossRef]

45. Bailey, D.P.; Smith, L.R.; Chrismas, B.C.; Taylor, L.; Stensel, D.; Deighton, K.; Douglas, J.A.; Kerr, C.J. Appetite and gut hormone
responses to moderate-intensity continuous exercise versus high-intensity interval exercise, in normoxic and hypoxic conditions.
Appetite 2015, 89, 237–245. [CrossRef]

46. Debevec, T. Hypoxia-Related Hormonal Appetite Modulation in Humans during Rest and Exercise: Mini Review. Front. Physiol.
2017, 8, 366. [CrossRef]

47. Nishiyama, Y.; Goda, N.; Kanai, M.; Niwa, D.; Osanai, K.; Yamamoto, Y.; Senoo-Matsuda, N.; Johnson, R.S.; Miura, S.; Kabe, Y.;
et al. HIF-1α induction suppresses excessive lipid accumulation in alcoholic fatty liver in mice. J. Hepatol. 2012, 56, 441–447.
[CrossRef]

48. Wang, X.L.; Suzuki, R.; Lee, K.; Tran, T.; Gunton, J.E.; Saha, A.K.; Patti, M.-E.; Goldfine, A.; Ruderman, N.B.; Gonzalez, F.J.; et al.
Ablation of ARNT/HIF1β in Liver Alters Gluconeogenesis, Lipogenic Gene Expression, and Serum Ketones. Cell Metab. 2009, 9,
428–439. [CrossRef]

49. Carabelli, J.; Burgueño, A.L.; Rosselli, M.S.; Gianotti, T.F.; Lago, N.R.; Pirola, C.J.; Sookoian, S. High fat diet-induced liver steatosis
promotes an increase in liver mitochondrial biogenesis in response to hypoxia. J. Cell. Mol. Med. 2011, 15, 1329–1338. [CrossRef]

50. Palmer, B.F.; Clegg, D.J. Ascent to altitude as a weight loss method: The good and bad of hypoxia inducible factor activation.
Obesity 2013, 22, 311–317. [CrossRef]

http://doi.org/10.2337/diab.44.6.695
http://doi.org/10.1002/dmrr.1156
http://doi.org/10.1016/j.lfs.2020.117633
http://doi.org/10.1111/obr.12020
http://doi.org/10.1111/crj.13175
http://doi.org/10.1016/j.cmet.2017.10.005
http://doi.org/10.1371/journal.pone.0208474
http://doi.org/10.3390/antiox10070992
http://www.ncbi.nlm.nih.gov/pubmed/34206159
http://doi.org/10.3109/10715762.2015.1066784
http://www.ncbi.nlm.nih.gov/pubmed/26118597
http://doi.org/10.1006/meth.2001.1262
http://www.ncbi.nlm.nih.gov/pubmed/11846609
http://doi.org/10.1073/pnas.97.7.3433
http://www.ncbi.nlm.nih.gov/pubmed/10725355
http://doi.org/10.1002/oby.21401
http://www.ncbi.nlm.nih.gov/pubmed/26935008
http://doi.org/10.1146/annurev.physiol.70.113006.100526
http://doi.org/10.1038/nrc3064
http://doi.org/10.1056/NEJMra0910283
http://doi.org/10.1002/hep.25497
http://doi.org/10.1161/CIRCRESAHA.111.246363
http://www.ncbi.nlm.nih.gov/pubmed/21921268
http://doi.org/10.1158/0008-5472.CAN-07-2489
http://www.ncbi.nlm.nih.gov/pubmed/18281474
http://doi.org/10.1136/bmjopen-2020-048520
http://www.ncbi.nlm.nih.gov/pubmed/34083346
http://doi.org/10.3390/cancers13174420
http://doi.org/10.1016/j.appet.2015.02.019
http://doi.org/10.3389/fphys.2017.00366
http://doi.org/10.1016/j.jhep.2011.07.024
http://doi.org/10.1016/j.cmet.2009.04.001
http://doi.org/10.1111/j.1582-4934.2010.01128.x
http://doi.org/10.1002/oby.20499


Life 2022, 12, 1535 15 of 15

51. Softic, S.; Cohen, D.E.; Kahn, C.R. Role of Dietary Fructose and Hepatic De Novo Lipogenesis in Fatty Liver Disease. Am. J.
Dig. Dis. 2016, 61, 1282–1293. [CrossRef] [PubMed]

52. Jensen, V.S.; Hvid, H.; Damgaard, J.; Nygaard, H.; Ingvorsen, C.; Wulff, E.M.; Lykkesfeldt, J.; Fledelius, C. Dietary fat stimulates
development of NAFLD more potently than dietary fructose in Sprague–Dawley rats. Diabetol. Metab. Syndr. 2018, 10, 4.
[CrossRef] [PubMed]

53. Nomura, K.; Yamanouchi, T. The role of fructose-enriched diets in mechanisms of nonalcoholic fatty liver disease. J. Nutr. Biochem.
2012, 23, 203–208. [CrossRef] [PubMed]

54. Fu, C.; Liu, L.; Li, F. Acetate alters the process of lipid metabolism in rabbits. Animal 2018, 12, 1895–1902. [CrossRef]
55. Bradbury, M.W. Lipid Metabolism and Liver Inflammation. I. Hepatic fatty acid uptake: Possible role in steatosis. Am. J. Physiol.

Liver Physiol. 2006, 290, G194–G198. [CrossRef]
56. Raghow, R.; Yellaturu, C.; Deng, X.; Park, E.A.; Elam, M.B. SREBPs: The crossroads of physiological and pathological lipid

homeostasis. Trends Endocrinol. Metab. 2008, 19, 65–73. [CrossRef]
57. Houten, S.M.; Violante, S.; Ventura, F.V.; Wanders, R.J. The Biochemistry and Physiology of Mitochondrial Fatty Acid β-Oxidation

and Its Genetic Disorders. Annu. Rev. Physiol. 2016, 78, 23–44. [CrossRef]
58. Yuan, F.; Teng, X.; Guo, Z.; Zhou, J.-J.; Zhang, Y.; Wang, S. Chronic intermittent hypobaric hypoxia ameliorates endoplasmic

reticulum stress mediated liver damage induced by fructose in rats. Life Sci. 2014, 121, 40–45. [CrossRef]
59. Tian, Y.-M.; Liu, Y.; Wang, S.; Dong, Y.; Su, T.; Ma, H.-J.; Zhang, Y. Anti-diabetes effect of chronic intermittent hypobaric hypoxia

through improving liver insulin resistance in diabetic rats. Life Sci. 2016, 150, 1–7. [CrossRef]

http://doi.org/10.1007/s10620-016-4054-0
http://www.ncbi.nlm.nih.gov/pubmed/26856717
http://doi.org/10.1186/s13098-018-0307-8
http://www.ncbi.nlm.nih.gov/pubmed/29410708
http://doi.org/10.1016/j.jnutbio.2011.09.006
http://www.ncbi.nlm.nih.gov/pubmed/22129639
http://doi.org/10.1017/S1751731117003275
http://doi.org/10.1152/ajpgi.00413.2005
http://doi.org/10.1016/j.tem.2007.10.009
http://doi.org/10.1146/annurev-physiol-021115-105045
http://doi.org/10.1016/j.lfs.2014.11.019
http://doi.org/10.1016/j.lfs.2016.02.053

	Introduction 
	Materials and Methods 
	Animals 
	Body Weight, Food and Energy Intake 
	Plasma Lipid Profiles 
	Hepatic Lipid Contents, Plasma ALT and AST Levels 
	Real-Time Quantitative PCR Analysis 
	Western Blotting 
	Activities of FASN and ACC 
	Statistical Analysis 

	Results 
	Changes in Plasma Lipid Profiles, ALT, AST Levels and Hepatic Lipid Profiles between WT and NAFLD Model 
	Changes in Body Weight, Food and Energy Intake 
	Changes in Plasma Lipid Profiles, ALT, AST Levels and Hepatic Lipid Profiles 
	Changes in Hepatic PPAR Protein Expression, mRNA Expression Levels of Genes Involved in Mitochondrial Fatty Acid Oxidation and Synthesis, and Activities of FASN and ACC 
	Changes in Hepatic p-AMPK(Thr172)/AMPK and p-ACC(Ser79)/ACC Ratios 
	Changes in Protein Expression of HIF-1, DEC1 and SREBP-1, and mRNA Expression of Srebp-1c 

	Discussion 
	Conclusions 
	References

