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A B S T R A C T   

The Iraqi Kurdistan Region’s landscapes are the product of a complex merging of the effects of the 
collision between the Arabian and Eurasian plates and various geomorphic processes. A study of the 
Khrmallan drainage basin in the west of Dokan Lake, based on a morphotectonic study is a signif-
icant contribution to our understanding of the Neotectonic activity in the High Folded Zone. This 
study investigated an integrated method of detail morphotectonic mapping and geomorphic 
indices’ analysis for determining the signal of Neotectonic activity, using the digital elevation model 
(DEM) and satellite images. The detailed morphotectonic map, along with extensive field data, 
revealed considerable variation in the relief and morphology of the study area, and eight mor-
photectonic zones were recognized. The presence of a high anomalous value in stream length 
gradient (SL) ranges from 19 to 769, increasing the channel sinuosity index (SI) reaching 1.5, and the 
tendency of basin shifting through the transverse topographic index (T) ranging from 0.02 to 0.5, 
conclude that the study area is tectonically active. The strong relationship between the growth of the 
Khalakan anticline and the activation of faulting is concurrent with the collision of the Arabian and 
Eurasian plates. A hypothesis of an antecedent can be applied to the Khrmallan valley.   

1. Introduction 

The Earth’s landscape is the time-integrated product of tectonics and climate changes, the first product creates topography and 
maintains relief [1–4]. However, the second product facilitates the erosional processes that, gradually, erode highland areas over time 
[5,6]. The landscape represents an important archive of the rates and spatial distribution of these deformations. Quantitative and 
qualitative analysis of such landscapes and unrevealing deformation from the landscape is made feasible through tectonic geo-
morphology [7–9]. 

Fluvial systems are most sensitive in their behavior and evolution, they hold a detailed record of past deformation in their shapes 
and morphology [10]. Anomalous values of geomorphic indices, especially, those concerning tectonics, have, frequently, been used as 
proxies for Neotectonic activity, in a variety of tectonically active areas and environments [7,11–16]. The recent development in 
technology and advances in computer programming languages, Geographic Information Systems (GIS), and remote sensing techniques 
with the availability of topographic data from the (DEM) made tracking these activities easier and more effective [17–30]. 
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Many previous studies highlighted the influences of tectonics in the development of anticlines, faults, effects on the vergency of the 
plunges, and their geometry related to paleo stresses, and stratigraphic sequences, however, none has focused specifically on how to 
detect tectonic activity through morphometric indices [31–43]. 

The current research is a case study of the Khalakan anticline, Khrmallan valley, and the associated alluvial fan, all located in the 
High Folded Zone (HFZ), which is affected by compressive strength, accordingly, influencing the growth of the folds in the Zagros 
Foreland Basin; due to the collision of the Arabian and Eurasian plates [44–47]. This research aims to detect the local tectonic activity 
and track the deformation marker resulting from faulting or folding through remotely sensed data by analyzing the morphometry of 
basins and their drainage networks as a tectonically induced landform [48,49]. Moreover, to determine if there is any uplifting and 
tilting, by producing a detailed morphotectonic map and analyzing morphometric indices of the main drainage basin, farther more this 
study can be used by the decision maker for any plan. Therefore, we conducted a comprehensive morphologic analysis of the 
Khrmallan drainage basin including these morphometric indices: stream length gradient (SL), channel sinuosity (SI), and transverse 
topographic index (T), besides constructing alluvial fan radial profile analysis, visual interpretation, and local field observations. 

2. Geological and seismotectonic setting 

The northeastern part of the Outer Platform of the Arabian Plate is within the Zagros Fold-Thrust Belt (ZFTB) [46]. This belt is 
considered active and is situated within the Arabia-Eurasia collision zone [50–52]. The oblique NE convergence of the Arabian and 
Eurasian plates during the Late Cretaceous is at a rate of 20–24 mm/yr [53,54]. The activity of the compression phase of these two 
plates is studied through various disciplines [55–58]. 

This ZFTB represents the most deformed part of Iraq, it has an NW – SE trend with an extension from the northwestern to southeastern 
parts of Iraq [47,59]. The ZFTB consists of four zones: Suture, Imbricate, High-Folded, and Low-Folded zones [46] (Fig. 1A). The study 
area is framed in the High Folded Zone (HFZ) in the Kurdistan Region of Iraq, west of Dokan Lake (Fig. 1 A, B). The HFZ was formed by the 
Zagros deformation during the Late Cenozoic [59] and uplifted in the Cretaceous, Paleocene, and Oligocene periods [55] and is still 
active [46,58,60,61]. Folds in the HFZ are characterized by NW-SE trending and SW-verging fault-related folds [62]. 

The anticlines in the HFZ are long and narrow, asymmetric, and separated by narrow and shallow synclines. The folds are probably 
controlled by thrust faults [63,64], and most of them are fault-propagated folds and some of them are fault-bend folds, with local 
overturning limbs [39]. Most earthquakes are caused due to the reactivation of preexisting faults within the Late Precambrian 

Fig. 1. The study area (A) is a tectonic map [42]. (B) A Drainage basin boundary with drainage lines. (C) A geological map [105].  
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Basement [65–68]. The study area’s seismicity was considered moderate to high [69]. Documentation about large-magnitude 
earthquakes indicates the activity of these faults [70–73]. 

The exposed rocks in the study area are of the Cretaceous and Neogene ages besides various types of Quaternary sediments. The 
exposed formations from the oldest to youngest are the Qamchuqa, Kometan, Shiranish, Tanjero, Kolosh, Gercus formations, and 
Dokan Conglomerate [31,38,105] or Khalakan formation [42] (Fig. 1C). 

3. Materials and methods 

DEM—Shuttle Radar Topography Mission (SRTM) at a resolution of 1 arc-second (~30 m), and different imageries from Quick Bird 
with 0.5 m resolution, Sentinel 2 imagery, and Rapid Eye with 5 m resolution have been used for visual interpretation and geo-
morphometric analysis, besides the usage of the geological, topographical maps at scales of 1:100,000, and earthquake data for 22 
years ago from 2000 to 2022. Drainage basins and the associated network were generated with the aid of MATLAB base TecDEM 
software [27]. Metadata for the sub-basins, morphometric parameters, and final map preparation were all compiled in ArcGIS 10.5.1. 
Furthermore, a field check was carried out to confirm the observed and detected evidence of active tectonics in the studied area. Three 
geomorphic indices; SL, T, and SI have been analyzed; a detailed methodology is illustrated in (Fig. 2A-D). For calculating SL values, 
the main streamline was overlaid with 20 m contour lines converted from the DEM, and ΔH was assigned with an equal contour 
interval = 20 m following [1,7,14,74] (Fig. 2B). Furthermore, a GIS Toolbox (SLiX), which was suggested by Piacentini et al. [29] was 
used for computing SL values, automatically, but we have not considered these values in our analysis because this method follows the 
regular spacing of stream segments for computing ΔL and this will lead to hiding the anomalous values. 

The T index was calculated for each midpoint of the 1 km segment length of the main streamline, which is at least twice the width of 
the meander belt [75], and the midline of the basin was determined by the river bathymetry tool proposed by Bailey et al. [76]. The T 
index values have magnitude and direction, so these data were plotted on polar diagrams to reveal the migration trends (Fig. 2 D). The 
SI index was calculated by fixing the measured channel distance (thalweg length), whereas the valley distance (straight line) varies 
depending on the sinuosity of the stream [77–79](Fig. 2 C). 

The International Institute for Areal Survey and Earth Sciences (ITC) classification system [80] was used for detailed morpho-
tectonic mapping on a scale of 1:60,000. The first step started from a regional scale based on a conceptual and geomorphological 

Fig. 2. (A) DEM shows the main tributary of the Khrmallan stream with three subsets, (B) finding stream length gradient (SL), (C) finding Channel 
sinuosity index (SI), and (D) finding transverse topographic index (T). 
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approach to have the main units. The second step was manually drawing and classifying the study area on (A0) trace paper covering 
the satellite images of the study area. The third step was field verification and editing of the map, and the last step was digitizing, 
coloring, and extracting the final layout in an ArcGIS environment (Fig. 3). Although the geomorphic indices can be used for mapping 
large areas, our applied method will be applicable for small drainage basins because calculating the SL index in that precise way 
(according to contour spacing), will be difficult for a large number of streams, and drawing such a detail morphotectonic mapping 
based on visual interpretation will need more time and the scale limitation will not allow to draw and differentiate these units 
boundaries. 

4. Morphotectonic zones mapping 

High-resolution satellite imagery and the DEM were visually interpreted to delineate the main morphotectonic zones, which mainly 
reflect the articulated, tectonically controlled geomorphological evolution of the study area. Based on the ITC terrain classification 
[80], the study area was divided into eight major units depending on the relief, lithology, process, and genesis of the terrain. 

The main morphotectonic units are described as they appear in the map legend (Fig. 3): 
1. Dokan Lake: This zone represents the area covered by the Dokan dam reservoir. 2. Berm slope: This zone is developed in response 

to the change and fluctuation of water levels and wave actions. 3. Alluvial fan: This zone is representing the recent alluvial sediments 
deposited by the Khrmallan stream after crossing the Khalakan anticline, the shape of the alluvial fan reflects the neotectonic history in 
the area. 4. Active flood plain and terraces: This area is characterized by the lowest aggradation surface found along active stream beds. 
The river terrace levels are traced along both streamsides, but not chronologically separated, due to the scale limitation of the map. 5. 
Dissected erosional glacis: This zone represents the residual ridges and is characterized by the bedding trace of alternating sequences of 
resistant and non-resistant rocks, covered by unconsolidated Quaternary sediments. 6. Dissected back slopes: This zone shows the 
denudational cliffs of the back slopes belonging to the outer homoclinal ridges. 7. Central structural mountain: This zone represents the 
core of the anticline as a high topographic unit occupied by the highly resistant rock of the Qamchuqa Formation and Dokan 
conglomerate. 8. Outer homoclinal structural ridge: This zone represents the homoclinal structure on the northwestern side of the 
basin boundary. This ridge is recognized due to the deferential weathering of the alternating lithology and the effect of subsurface 
thrust faulting of the Khalakan anticline. 

Fig. 3. Detailed complied morphotectonic map of the study area, the red thin line showing the limits of the basin. (For interpretation of the ref-
erences to colour in this figure legend, the reader is referred to the Web version of this article.) 
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5. Results 

5.1. Stream length-gradient index (SL) 

A total of 22 SL values along the Khrmallan stream were computed (Fig. 2B), ranging from 19 to 769. This index is classified into 
three classes [81]: High: SL > 500, Moderate :300 ≥ SL < 500, and Low: SL < 300 (Fig. 4 A, C). Moderate and low values along the 
streamline are related to the occurrence of a geomorphic disequilibrium, while the highest anomalous values (769) (as shown above) 

Fig. 4. (A) Geological map showing; SL index values for the Khrmallan stream and their relationships to bedrock lithology (Formations:1. Kometan 
2. Shiranish, 3. Tanjero, 4. Kolosh, 5. Gercus, 6. Pila Spi,7. Fatha, 8. Injana, 9. Dokan Conglomerate,10. Slope sediments, 11. Alluvial fan sediments) 
[105]. (B) Badwan Waterfall. (C) A graphic plot between the stream long profile and SL values shows a significant change along with these high 
anomalous SL values. 

Fig. 5. (A) DEM shows the calculated T index along the segmented river. (B) Polar plot showing T index along the mainstream channel and showing 
the azimuth of stream deflection from basin midline. 

Table 1 
The magnitude and azimuth direction of each segment of the mainstream.  

Segment Number Da Dd T Azimuth direction 

1 0.9 2.1 0.4 239◦

2 0.1 1.8 0 235◦

3 0.2 2.0 0.1 220◦

4 0.3 2.1 0.1 215◦

5 0.4 2.9 0.1 228◦

6 0.5 3.5 0.1 220◦

7 1.2 3.7 0.3 265◦

8 1.4 2.7 0.5 340◦

9 0.4 1.3 0.3 340◦

10 0.2 0.7 0.3 315◦
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are related to tectonic activity, and can be found in the NW of Khidran town. The constructed longitudinal stream profile in (Fig. 4C) 
also shows irregularities in the form, which means that the profile is no longer in a steady state. 

5.2. Transverse topographic index (T) 

To reveal possible patterns of ground tilting in the studied area, we examined the lateral stream migrations from the basin midline; 
quantitatively. According to Cox [75] (Fig. 2D), the computed values of the T-index range from 0.02 (perfect symmetry) to 0.5 
(asymmetry) (Fig. 5 and Table 1). The high T-index value (0.5) shows shifting in a perpendicular direction to the drainage basin axis 
around the Kany Watman anticline NW plunge area (Fig. 5A, B). The shifting tendency of the vector plot on the polar graph from SW to 
NE shows the level of tectonic asymmetry, assuming that the dip of the bedrock has negligible influence on the migration of stream 

Fig. 6. (A) Satellite image showing (SI) values along Khrmallan stream. Note the changes in river sinuosity at the indicated locations (1 and 2). (B) 
Graphical plot of sinuosity index values and stream distance from A to B. 
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channels according to the field observation. 

5.3. Channel sinuosity index (SI) 

According to Schumm [104] (Fig. 2C), the calculated SI values were divided into three classes (SI:1–1.05 is Straight, SI:1.06–1.30 is 
Sinuous, and SI:1.31–3 is Meandering). Fig. 6 A, B shows that the sinuosity is increasing as the stream adjusts its pattern to maintain the 
constant gradient over the slope of the changing valley floor. This was recognized when the stream reaches the NW plunge of the 
growing anticline and crosses the Khalakan anticline. 

6. Neotectonics evidence in the Khrmallan valley 

Despite the clear geomorphic analysis response to the tectonic signal, some observed evidence along the Khrmallan valley appears 
to represent a system that has evolved and reflects a very complicated system, indicating Neotectonic activity in the study area. 

The crossing of the Khrmallan stream over the Khalakan anticline, forming a typical water gap and acting as an antecedent stream, 
is a good indication of Neotectonic activity [82,83] (Fig. 7A). The presence of a deep incised V-shape valley without any fluvial de-
posits in the gorge, while the availability of fluvial terraces in the bank of the stream before and after passing the gorge with wide and 
U-shaped valley is indicating that the uplifting rate is greater than the depositional rate (Fig. 7B, C). Another evidence can be rep-
resented by the overlying of the Dokan Conglomerate to the Kometan Formation in angular unconformity along the overturned NE flak 
of the Khalakan anticline and showing a recent tilting (Fig. 7D). The availability of migrated Knickpoints on the upstream side of the 
major knickpoint shows the rate of geomorphic response to tectonic and climatic perturbation (Fig. 7E). The growing set of hanging 
synclines and anticlines in the horizontally laying Dokan conglomerate over the main anticline can be represented as evidence of 
Neotectonic activity in the area (Fig. 7F). 

Furthermore, the associated alluvial fan of the Khrmallan stream was analyzed, and four radial profiles and two cross profiles have 
been constructed (Fig. 8 A-C). The radial profiles have different slopes degree and the transverse profiles show a convex curve with 

Fig. 7. Field evidence of the tectonic activity in the studied area. (A) Water gap crossing Khalakan anticline, (B) a Narrow V-shaped cross-section in 
the knickpoint place, (C) Two-stage of terraces downstream of the gorge, (D) Dokan conglomerate (DC) angularly overlying Qamchuqa formation, 
(E) migrated nick point in the upstream side of the waterfall, (F) Hanging syncline over Kany Watman anticline. 
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steep breaks due to the existence of deep new and old incised stream channels (Fig. 8C). The profiles of the main incised stream 
channels; from the apex to the toe of the fan and the fan radial surface’s profile were correlated and clearly showed the overall 
convergent geometry downstream, which is a good indication of Neotectonic activity in that area. 

7. Discussion 

A detailed geomorphological investigation through qualitative analysis of three geo-morphic indices and detailed morphotectonic 
mapping indicated that Neotectonic activity is prevailing in the Khrmallan drainage basin, and this activity plays a key role in the 
changing of geomorphometric properties of the drainage basin and surrounding area. 

Determining tectonic activity through a geomorphological signal and using remotely sensed data represent one of the recent fo-
cuses of the researchers, and correlating with other disciplines will improve the research quality. 

The compiled morphotectonic map demonstrates a strong correlation between stratigraphic and tectonic activity and reflects a 
complex and dynamic adjustment of the Khrmallan drainage system induced by Neotectonic activity, because of the scale limitation we 
couldn’t draw some landforms like landslides, erosional and depositional form. 

The analysis of geomorphic indices of the Khrmallan drainage basin reflects the significance of the Neotectonic activity. 
The SL index analysis along the Khrmallan stream shows an anomalous value (knick-point) on the elevation of (600–620) m above 

sea level and is recognized in the field as a (10 m) high “Badwan waterfall” near Khidran town (Fig. 4) which is related to the tectonic 
activity of Khalakan anticline. 

Furthermore, the SL values were combined with a longitudinal stream profile (Fig. 4C), for showing the sensitivity of the drainage 
basin to tectonic deformation [84–88]. From the stream profile shape, we note the presence of a sharp Knick point adjacent to the 
Khalakan anticlinal axis. The analysis met our expectations through the SL index analysis and the narrow and deep valley in that area 
indicates that the high rate of incision is associated with the tectonic uplift of the khalakan anticline through activation of thrust faults 

Fig. 8. (A) Satellite image illustrating the associated alluvial fan of Khrmallan stream, the coloured lines with number show old incised stream 
channels. (B) Cross-section profile along A-B and C-D lines, the coloured arrows refer to the incision locations. (C) Altimetric and spatial 
arrangement of the alluvial fan’s old incised stream profiles as compared with the mainstream profile, (s) denote the slope of the profiles. 

L.H. Abdullah et al.                                                                                                                                                                                                   



Heliyon 9 (2023) e13187

10

reported by Ref. [42]. 
To determine whether the anomalous SL values in the main profile are attributable to lithological control [89]or tectonic controls 

[7,8], the cross-validation was done by combining lithology, and SL values (Fig. 4A, C). The SL values show a significant variation 
within one lithological unit. Therefore, we suggest that these knickpoints are not related to the lithological change. 

The possibility of the ground tilting of the drainage basin and lateral shifting tendency were detected through T index analysis, the 
Khrmallan stream course shows a 90⁰ bending from the flowing NW ward parallel to the Khalakan anticlinal axis to the NE ward. The 
shifting tendency of a stream in the active tectonic region is confirmed by [90–93], This can be probably caused by the combination of 
a set of growing folds and reactivation of faults [37,39,43,94,95]. 

The channel morphology and sinuosity were analyzed through the SI index, which shows a change in valley floor slope as the first 
response to back-tilting and most probably due to the tectonic activity of the Khalakan anticline. The effect of fold and domal uplifting 
on increasing the sinuosity values of the channel pattern adjustment to maintain the equilibrium has been also reported by other works 
[1,88,96–102]. 

Through all these analyses, it is clear that the Khalakan anticline is still active and growing and coincides with the hypothesis of the 
antecedent stream and fold growing [38,40]. The recorded seismological activities in the area and surrounding contribute to a clearer 
understanding of these tectonic activities. This may be because of the activation of blind thrust faults as previously confirmed by 
Berberian [50] and De Vera et al. [103]. The study provides new insight into the relationship between remotely sensed data and 
detecting Neotectonic activity in any area and the reliability of this work will be impacted by using high-resolution data and field 
checks. 

8. Conclusions 

The sum and combination of the obtained results allowed us to conclude that the integration of morphotectonic analysis with 
geoinformatics and remote sensing technology can detect the ongoing surface and subsurface Neotectonic activities over the 
Khrmallan drainage basin. 

Detailed morphotectonic analysis and extensive Neotectonic activity in the area were comprehensively studied for the first time. 
Meanwhile, the outcome of this investigation can help the decision maker about any future planning like the classification of landscape 
based on tectonic activity, and may also serve as a structural framework facilitating local planning of infrastructures. We determine the 
Neotectonic activity of the Khrmallan drainage basin and the activity of these movements is still ongoing and leading to the growth of 
Khalakan anticline, and acting as an antecedent stream (Fig. 9). 

In summary, we analyzed the morphotectonic growth of the Khrmallan drainage basin and the existence of Neotectonic activity, are 
matched our expectation that the main ZFTB as a consequence of oblique convergence between the Arabian and Eurasian plates, has 
played an important role in shaping the study area during a multi-stage de-formational evolution. Future studies on the Quaternary 
chronology of the river deposits might confirm and enrich our conclusions. 

Fig. 9. A simple conceptual model showing the evolution of Khrmallan valley and growing of Khalakan anticline (for morphotectonic unit’s colour 
refer to (Fig. 3). (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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