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Abstract

Background: Automated seizure detection from clinical EEG data can reduce the diagnosis time and facilitate
targeting treatment for epileptic patients. However, current detection approaches mainly rely on limited features
manually designed by domain experts, which are inflexible for the detection of a variety of patterns in a large
amount of patients' EEG data. Moreover, conventional machine learning algorithms for seizure detection cannot
accommodate multi-channel Electroencephalogram (EEG) data effectively, which contains both temporal and
spatial information. Recently, deep learning technology has been widely applied to perform image processing tasks,
which could learns useful features from data and process multi-channel data automatically. To provide an effective
system for automatic seizure detection, we proposed a new three-dimensional (3D) convolutional neural network
(CNN) structure, whose inputs are multi-channel EEG signals.

Methods: EEG data of 13 patients were collected from one center hospital, which has already been inspected by

experts. To represent EEG data in CNN, firstly time series of each channel of EEG data was converted into the two-
dimensional image. Then all channel images were combined into 3D images according to the mutual correlation

intensity between different electrodes. Finally, a CNN was constructed using 3D kernels to predict different stages
of EEG data, including inter-ictal, pre-ictal, and ictal stages. The system performance was evaluated and compared
with the traditional feature-based classifier and the two-dimensional (2D) deep learning method.

Results: It demonstrated that multi-channel EEG data could provide more information for increasing the specificity
and sensitivity in cpmparison result between the single and multi-channel. And the 3D CNN based on multi-
channel outperformed the 2D CNN and traditional signal processing methods with an accuracy of more than 90%,
an sensitivity of 88.90% and an specificity of 93.78%.

Conclusions: This is the first effort to apply 3D CNN in detecting seizures from EEG. It provides a new way of
learning patterns simultaneously from multi-channel EEG signals, and demonstrates that deep neural networks in
combination with 3D kernels can establish an effective system for seizure detection.
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Background

An epileptic seizure is a critical clinical problem [1]
and Electroencephalogram (EEG) is one of the most
prominent ways to study epilepsy and capture changes
in electrical brain activities that could indicate an
imminent seizure [2]. The diagnosis of epilepsy relies
on manual inspection of EEG, which is time-consum-
ing and error-prone. Research from Elger and Hoppe
found that only less than half of epileptic seizures
which patients document were able to record accur-
ately, and more than half of the seizures captured in
long-term video EEG monitoring were not reported
[3]. It is of great significance to develop practical and
reliable intelligent diagnosis algorithm for automatic
seizure detection. Although many efforts have been
taken to push the field, we must conclude that seizure
detection analysis has not made its way into the clin-
ical practice yet [4].

The task of seizure detection includes distinguishing
different stages of seizures, which are generally divided
into inter-ictal, pre-ictal and ictal periods [5]. In gen-
eral, the seizure detection procedure is separated into
two parts: feature extraction and classification. There
are numerous technological researches based on artifi-
cial features and machine learning classifiers [6]. On
the one hand, the time-frequency analysis [7], nonlin-
ear dynamics [8], complexity, synchronization [9] and
increments of accumulated energy [10] methods were
used as feature extraction method. On the other hand,
the machine learning classifier includes a Bayes net-
work, traditional neural network and support vector
machine (SVM) etc. In fact, feature-classifier engineer-
ing techniques have been used successfully in seizure
detection tasks [11]. However, the features were
extracted based on a limited and pre-fined set of
hand-engineer operations. Most importantly, given
that seizure characteristics vary among different pa-
tients and may change over time, automatically
extracting and learning informative features from EEG
data is necessary.

Recent advances in deep learning in the past decade
have attracted more attention in detective and predict-
ive data analytics, especially in health care and medical
practice [12, 13]. It is a powerful computational tool
that enables features to be automatically learned from
data. Previous studies have proven the deep multi-layer
perceptron neural network performs better than the
traditional methods such as logistic regression [14] and
support vector machine [15]. Related research has
shown a 13-layer deep Convolutional neural net-
work(CNN) algorithm achieved an accuracy, specifi-
city, and sensitivity of 88.67, 90.00, and 95.00%
respectively in the small Bonn University public data
[16]. The ensemble of pyramidal one-dimensional
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CNN models [17] was proposed to reduce memory
space and detection time. Recurrent convolutional
neural network learned the general spatially invariant
representation of a seizure, exceeding significantly pre-
vious results obtained on cross-patient classifiers [18].
The deep unsupervised neural network such as denois-
ing sparse auto-encoder (DSAE) was used in automat-
ically detecting the seizures timely, but may miss
important information because of sparse strategy [19].
Other technologies such as deep belief network, trans-
fer learning and so on are also applied to seizure detec-
tion [20, 21]. These algorithms based on deep learning
lay the foundation of seizure detection research [22].

Nevertheless, the deep neural network was well
suited for time series classification [23, 24], it is diffi-
cult to learn the corresponding information of multiple
electrodes simultaneously. One of the multi-channel
analysis is to study different electrodes respectively
and finally integrate them [25]. Another method is
used by two-dimensional (2D) CNN to learn multi-
electrodes, neglecting the relationship between the
electrodes [26]. Therefore, we present CNN for seizure
detection with a three-dimensional (3D) kernel that is
accurate and fully automated to an individual’s need.
This method was originally designed to solve the prob-
lem of ignoring the inter-frame information recogni-
tion of image sequences in the 2D CNN.

In this study, the time series of each channel of EEG
data are transformed into images. All channel images
consequently were combined as 3D images. In addition,
the CNN based on 3D kernels was constructed to per-
form the classification of different epileptic EEG stages
of image datasets. The main contributions of this work
are as follows:

1) An efficient method was proposed to preprocess
raw EEG data into a 3D image form suitable for a
CNN, which integrate multi-channel information;

2) This is the first time that the deep CNN with 3D
kernels was applied into the epileptic datasets. In
addition, we proposed instructive settings to help
the CNN perform well in the seizure detection task.

3) The performance of the 3D CNN methodology was
validated by test data, compared to both 2D CNN
and traditional machine learning techniques that
have been previously evaluated in the literature.

Methods

Data resource and data preparation

Data resource

The data used in this study were collected from epilep-
tic patients in the electroencephalogram room, Depart-
ment of Neurology, the First Affiliated Hospital of
Xinjiang Medical University, 2013~ 2016. The sampling
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frequency was 500 Hz and the electrodes were located
the international 10-20 system. Clinical experts have
labeled every seizure. The specific information of epi-
leptic patients was shown in Table 1.

Different seizures have different signal characteristics,
and the performance of seizure detection is related to the
type of epileptic seizure [27]. So in this paper, the patients’
data with complex partial seizures’ were selected. The ex-
perimental data included 13 patients, the age ranged from
six to 51 years old. One hundred fifty-nine times of sei-
zures were recorded. The average number of seizures per
patient was 12.2. The observation time of each patient
was 24 h and the total seizure time was 9956 s.

Data preparation

Numerous investigations have demonstrated a gradual
transition between the inter-ictal state and ictal state,
which is defined as the pre-ictal stage [28]. Thus, the
seizure detection could be considered as the classifica-
tion of three states. In this study, the EEG data col-
lected from clinical patients were divided into three
stages: inter-ictal, pre-ictal and ictal stage, as depicted
in Fig. 1. The details are as follows respectively:

Pre-ictal state: Segment with an hour duration before each
seizure was defined as the pre-ictal state [29].

Ictal state: Neurophysiology experts labeled the clinical
seizures.

Inter-ictal state: The EEG signal data of each patient
which was neither pre-ictal nor ictal state were de-
fined as the inter-ictal state.

System design
The overall study design consists of typical blocks (see
Fig. 2). Firstly, due to the multiple electrodes, the

Table 1 The details of collected data

ID  Sex Age Channels  State Time  Seizure [T

1 F 36 22 AS—SS  8h 14 654 s
2 F 22 22 AS—SS  48h 12 274 s
3 F 36 22 AS—SS  8h 14 13865
4 F 40 22 AS—SS  24h 6 302's
5 M 6 22 AS—SS  24h 21 453's
6 F 16 22 AS—SS  24h 7 329 s
7 F 16 22 AS—SS  24h 8 254 s
8 F 28 22 AS—>SS  24h 5 400 s
9 F 31 22 AS—SS  24h 9 423's
0 M 51 22 AS—SS  24h 30 1064s
" M 20 22 AS—>SS  24h 19 4072 s
12 M 46 22 AS—SS  24h 6 208 s
13 F 15 22 AS—SS  24h 8 137's

Notes: AS Awake stage, SS Sleep stage, IT Ictal time
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multi-channel EEG time series were constructed as 3D
images by means of the position of electrodes on the
brain. 3D convolutional kernels were tunable to suit
the 3D images input. Moreover, deep CNN automatic-
ally learned the patterns of different stages from the
EEG signal, and then the training model was used to
test in the held-out data. Training and inference phase
for 13 patients were calculated using a high-perform-
ance computer.

Preprocessing

Time window selection A sliding window analysis
usually split the raw EEG data into segments for fea-
ture extraction, including overlapping sliding window
and non-overlapping sliding window [30]. Since EEG
signals are non-stationary data, time window should
ensure the stability of data. The overlapping sliding
window can guarantee the continuity of data, but it is
easy to cause information redundancy. Depending on
the pre-experiment, the sliding time window for the
ictal data is 2500 points (5 s), while for the non-onset
period, the sliding time window size is 10 s, and no
overlap occurs.

3D image reconstruction

Since a 3D CNN is built in this work, it is inevitable to
convert the multi-channel EEG signal into a 3D array
(just like the multi-channel image). The conversion
must enable to keep most information from the ori-
ginal data. In total, the procedure was divided into two
major steps. Firstly, the time series were formed into
2D images. In order to suit the CNN kernels, the
image was designed as a square, which resolution is
equal to the number of points (like 5000*5000). And
the image compression was used to reduce the image
down to 256*256 for reducing the complexity of com-
putation. Then the successive relationship of the differ-
ent electrodes was selected according to the adjacent
degree of the electrodes [31], and the corresponding
2D EEG images were fused to form a 3D multi-channel
image. Its structure is [256,256, 22], which is presented
in the Fig. 3.

The proposed 3D CNN structure

The 3D convolution method was proposed in the ac-
tion recognition in video tasks, which is most widely
used as C3D model [32]. Since the CNN based on the
3D kernels has not been used for epileptic classifica-
tion, there is no optimal network architecture for re-
ferring in the literature. Thus, we construct a new
CNN structure with the 3D kernel in this experiment,
as described in Table 2, which is different from the
C3D model and suitable for seizure detection.
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interictal preictal

an hour before

Fig. 1 The single-channel EEG recordings illustrating typical brain states. The typical brain states of epilepsy patients include pre-ictal, ictal and inter-
ictal three states. An hour segment before each seizure was defined as a pre-ictal state. Neurophysiology experts annotated ictal state. EEG data of the
signal that were neither pre-ictal nor ictal defined as inter-ictal states. The figure represents the whole process of brain electrical signal seizure

Feature extraction Convolution neural network is a
type of neural network with spatial invariance charac-
teristics. In addition, the 3D convolution layer has the
ability to collect spatial-temporal information, which
preserves the input signal after every convolution op-
eration. We empirically find that 3 x 3 x 3 convolution
kernel for all layers to work best among the limited set
of explored architectures. The architecture is shown in
Fig. 4. As stated in the experiment, the size of the 3D
convolution kernel is 3*3*3 and the step length is
1*1*1, with the Leaky Rectified Linear Unit (ReLU) ac-
tive function whose coefficient is set to 0.01. The pool
layer uses the maximum pool and the size of 2*2*2.
The step length of the first layer is 2*2*2, and the rest
of the layer is 1*2*2, reducing the attenuation of the
feature. The third layer is directly connected to the
fourth layer to retain the channel characteristic infor-
mation as far as possible, the full connection layer of
4096 units and 2048 units followed. Finally, the soft-
max classifier was used for epileptic classification
tasks. Our model was implemented in Python 2.7 with
Tensor flow 1.6.0.

Reduce overfitting stage For the sake of limited avail-
able datasets, it is important to prevent the CNN from
overfitting and improve the performance of the model.
Firstly, the equal three stage datasets were adopted.
Then the dropout strategy was applied in the both of
the fully connected layers. Dropout strategy makes re-
sults in the dysfunction of the weight of some hidden
layer nodes. Thirdly, considering the size of the epoch,
group normalization proposed by He [33] have re-
placed batch normalization algorithm [34] in 3D CNN.
Group normalization can divide the data into groups,
then calculate the mean and variance in each group. It
improves network generalization ability and accelerates
the model convergence. The comparison results are
shown in Table 3.

Classification stage In this stage, each CNN branch can
learn features from different stages. The input of the
several branches is the data processed in 3D image re-
construction stage. After the feature extraction stage and
reduce overfitting stage, the features obtained by each

N subjects

3D image reconstruction

3D convolutional neural network

Z(chann
el)

X(Width)

Fig. 2 Overview of the pipeline used for seizure detection using 3D CNN
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Y(Height)

X(Width)

the value of the signal

b Applying 3D image reconstruction

Fig. 3 2D and 3D image reconstruction for multi-channel EEG. a 2D image reconstruction on a multi-channel time series results in an
image in 2D (multiple frames as multiple channels). b 3D image reconstruction on multi-channel time series results in 3D image
volume, preserving temporal information of the input signal. The z-axis is the channel number, x is the size of the time window, vy is

branch are merged. The outputs of the model are the
predicted category labels.

Training and inference phase A total of 36,000 images
dataset was split into a training dataset (30,000 images),
a validation dataset (3000 images) and a test dataset
(3000 images). The training dataset was used to train the
parameters of the model. The validation samples used to
validate the model. The test dataset was used to evaluate
the trained model.

The classification procedure includes the training
phase and inference (test) phase. In the training
phase, we trained our model using a 10-fold
cross-validation strategy. The dataset is randomly
scrambled and divided into 10 equal parts. One is
selected as the validation dataset to validate the
model, and the rest is the training set to complete
the training process, each fold data was verified. The

Table 2 The parameters of the 3D CNN

aim of this method is to prevent overfitting of the
CNN model during training. In the inference phase,
the independent test data was used to evaluate the
performance of the model.

According to the pre-experiments, we proposed in-
structive settings to help the CNN perform well with
the seizure detection task. The batch size is set as 10,
an epoch iteration is 6000 times, and a total of 200
epochs are trained. The cross-entropy loss function is
selected as the cost function, using the Adaptive Mo-
ment Estimation (Adam) optimizer (initial learning
rate=0.01, p1=0.9, f2=0.999, decay=0). For the
learning rate strategy: if 10 consecutive Epochs, when
the error on the verification set remains unchanged,
the current learning rate will be reduced by 10 times.
Otherwise, the learning rate is divided by 10 after each
40 Epoch. Repeat the above three operations until
training all epochs.

Layer Hidden Layer Related parameters (kernel, kernel size, stride, dropout)

1 Conv3D + LeakyRelLU 64 3%¥3*3 1%1%1
2 Max Pooling 2¥2%2 2%2%2
3 Conv3D + LeakyRelLU 128 3*3*3 1%1%1
4 Max Pooling 2¥2%2 1%2%2
5 Conv3D + LeakyRelLU 256 3%¥3*3 1%1%1
6 Conv3D + LeakyRelLU 256 3*3*3 1%1%1
7 Max Pooling 2%2%2 1%2%2
8 Fully connected 4096

9 Fully connected 2048

Softmax
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Convla
64

Conv3a
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pooll
pool2
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409 2048
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Fig. 4 The architecture of 3D CNN. 3D CNN network has 4 convolution layers, 3 max-pooling layers, and 2 fully connected layers, followed by a
softmax output layer. All conv3D kernels are 3*3*3 with stride 1 in both three dimensions; all pooling layer kernels are 2*2*2. The first fully
connected layer has 4096 output units and the second fully connected layer has 2048 output units

Compared 2D CNN structure

The 2D CNN developed rapidly with the help of com-
puter vision, the representative convolution neural net-
work mainly includes LeNet, AlexNet, Inception,
ResNet, DenseNet, Xception, MobileNet, ShuffleNet,
Capsule network etc. [35]. We constructed the 12
layers 2D CNN structure shown in Table 4 and Fig. 5.
For the feature extraction stage, the most difference
was 2D convolution layer which was applied to collect
EEG image information, and every convolution layer
adopted the batch Normalization to reduce the
changes in the distribution of internal neurons. For the
reduction of overfitting stage, the fully connected
layers applied the dropout strategy with a dropout rate
of 0.5. For the training phase, the setting including
earning rate, epochs and cost function etc. is the same
as the 3D CNN.

System evaluation
To evaluate the seizure detection performance, we used
the metrics in Table 5 [36].

Standard measurements including sensitivity, specifi-
city, and accuracy were adopted to evaluate the model.
According to the above performance parameters, the
evaluation indexes are defined as:

Accuracy = TP + FN/TP 4+ TN + FP + FN (1)
Specificity = TN/TN + FP (2)

Sensitivity (recall rate or true positive)
— TP/TP + EN (3)

False negative rate( FNR) = FN/TP + FN
= 1-sensitivity (4)

Table 3 Comparison between batch normalization and group
normalization

Method Batch size=10

Epoch=1 Epoch =50 Epoch =200
BN 74% 84% 89%
GN 79% 87% 90%

BN Batch normalization, GN Group normalization. Bold number represents the
largest number is that column

False positive rate (FPR) = FP/FP + TN
= 1-specificity (5)

Results

In this paper, the 2D CNN model was used to test the
single- electrode EEG data and multi-electrode EEG
data respectively, and the 3D CNN model was tested
for demonstrating the 3D kernels’ effeteness compared
to other methods. The results are shown in Tables 6, 7
and 8.

According to Table 6, the accuracy rate of the net-
work based on the single electrode data test was
89.95%, the FNR was 15.07%, and the FPR was 7.53%.
While the accuracy of the multi-channel was 89.91%,
the FNR was 15.13% and the FPR was 7.57%. It demon-
strated that more channels from EEG data carried
more information and could increase the specificity
and sensitivity in medical analysis.

In Table 7, the accuracy of 3D CNN based on
multi-channel was 92.37%, the FNR is 11.43%, and the
FPR is 6.22%. While the accuracy of the 2D CNN was
89.91%, the FNR was 15.13% and the FPR was 7.57%.
The overall recognition rate of the 3DCNN model was
higher than that of the 2D CNN, and the recognition
rate for the ictal time segment was the highest, followed
by the recognition rate of the pre-ictal EEG data.

Table 8 lists the comparison of the 3D CNN based al-
gorithm with traditional machine learning algorithms as
well as the 2D CNN, all of the above methods were
trained and tested with the data used in this study. Ac-
cording to the results, the method proposed in this
paper not only achieved the best performance but also
reduce the hand—engineered time.

Discussion

People with uncontrolled epilepsy suffer uncertainty
when a seizure occurs, the diagnosis of seizure was a
lack in remote areas because of limited medical ser-
vices [37]. For examining epilepsy patients efficiently,
we hope to develop an automatic seizure detection sys-
tem to guide doctors.
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Table 4 The details of 2D CNN structure
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Layer Hidden Layer Related parameters (kernel, kernel size, stride, dropout)
1 Conv2D + LeakyRelLU+BN 5%5 1
2 Max Pooling 3*3 2
3 Conv2D + LeakyRelLU+BN 33 1
4 Max Pooling 2%2 2
5 Conv2D + LeakyRelLU+BN 128 33 1
6 Max Pooling 2%2 2
7 Conv2D + LeakyRelLU+BN 256 3*3 1
8 Max Pooling 2%2 2
9 Conv2D + LeakyRelLU+BN 256 33 1
10 Max Pooling 2%2 2
11 Fully connected 2048

Dropout 0.5
12 Fully connected 1024

Dropout 0.5

Softmax

Deep learning opens the new gate of intelligent diag-
nosis in medical healthcare, especially in EEG signal
processing. The LSTM network was able to predict all
185 seizures, providing high rates of seizure prediction
sensitivity based on different pre-ictal time window in
the public datasets [38]. The proposed deep learning
approach combined the time-frequency and CNN
achieves a sensitivity of 81.4, 81.2, and 75% in public

dataset [39]. The deep learning applied to the hidden
layer makes the expression of data as specific as pos-
sible so as to obtain a more efficient representation of
EEG signals.

However, most deep learning researches adopt the
2D network, which ignores the fact of multi-channel
signal processing [40], Table 6 shows that the more
channels EEG signal could improve the performance of

: 3
3 ; 3
5 3 3 33 ) 44 L O
) " % % softmax
U Max -
o4 .
) Max pocing 102
pooling L
1 Max
pooling 08

Fig. 5 The architecture of 2D CNN. 2D CNN network has 5 convolutions, 5 max-pooling and 2 fully connected layers with a dropout rate of 0.5,
followed by a softmax output layer. Conv2D kernels are 3*3 with stride Tor 5*5 with stridel; pooling layer kernels are 2*2 with stride 2 or 3*3
with stride 2. The first fully connected layer has 2048 output units and the second fully connected layer has 1024 output units
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Table 5 Obfuscation matrix of prediction results and actual results
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Prediction Total
Object Non-object
Actual Object True Postive(TP) False Postive(FP) TP +FP
Non-object False Negtive(FN) True Negtive(TN) FN+TN
Total TP+ FN FP+TN TP+FP+FN+TN

Each row of the matrix represents the instances in a predicted class while each column represents the instances in an actual class

the network. We proposed the 3D image reconstruc-
tion approach to relate multi-channel information, just
like in video processing [41]. In addition, the group
normalization, as well as the oversampling techniques
were applied to overcome the overfitting of the limited
datasets [42]. Compared with the 2D CNN shown in
Table 7, our strategy achieved a mean accuracy of
more than 90%. It demonstrated that there was a reli-
able and automatic seizure detection system. This is
the first study to introduce 3D kernel CNN’s for seiz-
ure detection.

To evaluate our approach, we have measured the
proposed algorithm against three studies using the
same data, summarized in Table 8. The first method
[43] extracted pre-defined features from the EEG data
and use conventional machine learning techniques to
classify epileptic stages. This requires much time and it
is possible that some information is fully or partly
missed in the selected features. The next two deep
learning method including 2D CNN and 3D CNN have
introduced before, which could learn data patterns
automatically. On average, the proposed 3D CNN
method performs better than 2D CNN in terms of
the multi-channel information, and it outperforms
the hand-engineered method with less time and high
accuracy. A recent competition on Kaggle held the
seizure detection contest, the top three winner algo-
rithms [44] includes the hand —engineered and deep
learning methods, but they relied on complex fea-
tures selected. Therefore, the method presented here
can be run on an online platform and tested on

more data, satisfying the power, resource, and

computation that can be implemented in the wear-
able device.

However, limitations of this work have to be admit-
ted. Firstly, this method, all deep learning technology
requires sufficient data to train the model and the de-
sign of the network is much harder to guarantee to be
optimal. Maybe other research gets better performance
just tuning the small parameters. Secondly, few clinical
experts in one center labeled the model data. Thirdly,
the experiment just involves the EEG data type, which
neglects other data types from a multi-scale perspec-
tive. In order to have a more generalizable clinical val-
idation, the methods should be tested on an extensive
and multi-center dataset. Further relevant information
sources can be readily incorporated into the deep
neural networks, such as video, weather patterns, bio-
markers, or clinical notes [45, 46]. Detection algorithm
which incorporates these additional inputs and the
data types is the focus of ongoing work.

Conclusion

This study proposed a new approach for epileptic EEG
classification, which constructed the 3D CNN for
multi-channel EEG data. The main advantage of the
method is fully utilizing the multi-channel signal infor-
mation without hand-engineered. The 3D CNN model
outperformed the previously heuristic detectors. To
our best knowledge, this study is the first try of using
3D CNN algorithm for seizure detection. Therefore, it
may serve as a benchmark for new work exploring
deep learning enabled seizure detection in terms of
multi-channel EEG data. Further studies need to carry

Table 6 Classification result based on 2DCNN model using single and multi-channel

Prediction Accuracy Specificity Sensitivity
Inter-ictal Pre-ictal ictal
Single channel Inter-ictal 813 124 63 87.53% 90.65% 81.30%
Pre-ictal 92 864 44 90.20% 92.1% 86.40%
Ictal 95 34 871 92.13% 94.65% 87.10%
Multi channel Inter-ictal 822 119 59 88.13% 91.10% 82.20%
Pre-ictal 107 838 55 89.20% 91.90% 83.80%
Ictal 71 43 886 92.40% 94.30% 88.60%
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Table 7 Classification results based on 2D and 3DCNN model using multi-electrode

Prediction Accuracy Specificity Sensitivity
Inter-ictal Pre-ictal ictal
3D CNN Inter-ictal 861 81 58 90.73% 93.05% 86.10%
Pre-ictal 77 894 29 92.57% 94.15% 89.40%
Ictal 62 36 902 93.83% 94.15% 90.20%
2D CNN Inter-ictal 822 119 59 88.13% 91.10% 82.20%
Pre-ictal 107 838 55 89.20% 91.90% 83.80%
Ictal 71 43 886 92.40% 94.30% 88.60%

out to validate this algorithm in the multi-center data-
set. We expect more advances in signal processing,
network design, model validation to shape the future
of automatic seizure detection.
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