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Simple Summary: Breast cancer is considered the leading cancer type and main cause of cancer
death in women. In this study, we assess simultaneous 18F-FDG PET/MRI of the breast as a
platform for comprehensive radiomics analysis for breast cancer subtype. The radiomics-based
analysis comprised prediction of molecular subtype, hormone receptor status, proliferation rate
and lymphonodular and distant metastatic spread. Our results demonstrated high accuracy for
multiparametric MRI alone as well as 18F-FDG PET/MRI as an imaging platform for high-quality
non-invasive tissue characterization.

Abstract: Background: This study investigated the performance of simultaneous 18F-FDG PET/MRI
of the breast as a platform for comprehensive radiomics analysis for breast cancer subtype analysis,
hormone receptor status, proliferation rate and lymphonodular and distant metastatic spread. Meth-
ods: One hundred and twenty-four patients underwent simultaneous 18F-FDG PET/MRI. Breast
tumors were segmented and radiomic features were extracted utilizing CERR software following the
IBSI guidelines. LASSO regression was employed to select the most important radiomics features
prior to model development. Five-fold cross validation was then utilized alongside support vector
machines, resulting in predictive models for various combinations of imaging data series. Results:
The highest AUC and accuracy for differentiation between luminal A and B was achieved by all MR
sequences (AUC 0.98; accuracy 97.3). The best results in AUC for prediction of hormone receptor
status and proliferation rate were found based on all MR and PET data (ER AUC 0.87, PR AUC 0.88,
Ki-67 AUC 0.997). PET provided the best determination of grading (AUC 0.71), while all MR and
PET analyses yielded the best results for lymphonodular and distant metastatic spread (0.81 and
0.99, respectively). Conclusion: 18F-FDG PET/MRI enables comprehensive high-quality radiomics
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analysis for breast cancer phenotyping and tumor decoding, utilizing the perks of simultaneously
acquired morphologic, functional and metabolic data.

Keywords: multiparametric 18F-FDG PET/MRI; radiomics; breast cancer; radiomics-based pheno-
typing and tumor decoding

1. Introduction

Breast cancer is considered the leading cancer type and main cause of cancer death
in women. With increasing prevalence due to early diagnosis, alterations in risk factors
and an aging population, early detection and early prediction of prognosis are two key
factors for appropriate patient management [1]. Continuous progress in the understanding
of proteogenomics and its relation to cancer has transitioned into a deeper appreciation
for the importance of tumor decoding and phenotyping toward precision medicine. The
introduction of radiomics as the conversion of the information and features contained
in medical images into quantifiable data and the subsequent mining of these data has
facilitated a new platform for imaging-based, non-invasive tissue characterization [2–4].
Radiomics is based on the hypothesis that the extracted imaging features correlate to
genotypic and phenotypic characteristics of the breast tumor tissue [5,6]. Hence, it is
considered a valuable new tool in the concept of personalized medicine [7].

Over the past 5 years, numerous trials have been performed to assess the value and
validity of radiomics in breast cancer characterization [8–10]. As recently reported in a
rapid review on radiomics and breast cancer, most studies put the focus on breast MRI with
the main emphasis on morphology, contrast enhancement kinetics and restricted diffusivity
as features. While functional features derived from MRI and 18F-FDG PET/CT have been
shown to be valuable in the detection and characterization of breast cancer and lymph node
involvement, only a very limited number of studies investigated the potential of integrated
18F-FDG PET/MRI for radiomics applications in breast cancer [11–14]. Hence, the aim
of this study is to assess simultaneous 18F-FDG PET/MRI of the breast as a platform for
comprehensive radiomics analysis for breast cancer subtype analysis, hormone receptor
status, proliferation rate and lymphonodular and distant metastatic spread.

2. Material and Methods
2.1. Patients

This retrospective study was approved by the local ethics committee and patient writ-
ten consent was waived due to the utilization of anonymized data. A total of 124 female
patients with newly diagnosed, therapy-naïve breast cancer were included. All patients
met the following inclusion criteria: (1) newly diagnosed, biopsy-proven, treatment- naïve,
hormone receptor-positive (HR+) and/or human epidermal growth factor receptor-2 over-
expression (Her2+) T2 tumor or higher T-stage or (2) newly diagnosed, treatment-naïve,
HR/Her2-negative, i.e., triple-negative (TN) tumor, of any size or (3) newly diagnosed,
treatment-naïve tumor with high molecular risk (T1c, Ki-67 > 14%, HER2 overexpression,
G3). Exclusion criteria were former malignancies in the last 5 years, contraindications
to MRI or MRI contrast agents and pregnancy or breast-feeding. Inclusion criteria were
chosen to set elevated pre-test probability for distant metastases.

2.2. PET/MRI

All 18F-FDG PET/MRI examinations were performed on an integrated 3-Tesla PET/MRI
system (Biograph mMR, Siemens Healthcare GmbH, Erlangen, Germany) and obtained one
hour after injection of a bodyweight-adapted dosage of 18F-FDG (4 MBq/kg bodyweight).
The protocol included a dedicated breast 18F-FDG PET/MR and a whole-body imaging
scan [15]. For this dedicated study, only the PET/MR breast examinations were considered.
These were performed in head-first prone position utilizing a dedicated 16-channel breast
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radiofrequency (RF) coil (Rapid Biomedical, Rimpar, Germany) which was specifically
developed and designed for use in integrated whole-body PET/MR imaging [16]. PET
acquisition was performed simultaneously with MRI data acquisition in prone positioning
with an acquisition time of 20 min/bed position. PET image reconstruction was performed
subsequently, utilizing an iterative ordered-subset expectation maximization algorithm,
3 iterations and 21 subsets, a Gaussian filter with 4 mm full width at half maximum and a
256 × 256 image matrix for the breast and a 344 × 344 image matrix for the whole body.
PET data were automatically attenuation corrected using the implemented 4-compartment
model attenuation map (µ-map) calculated from fat-only and water-only datasets, as
obtained by Dixon-based sequences.

The dedicated breast protocol comprised the following sequences: (1) a transversal fat-
saturated T2-weighted turbo spin-echo (TSE) sequence (2) a transversal diffusion-weighted
echo-planar imaging (EPI) sequence with apparent diffusion coefficient (ADC) mapping,
(3) six repetitions of a transversal 3-dimensional fast low-angle shot T1w (FLASH) sequence
for dynamic contrast-enhanced imaging. A dose of 2ml/kg bodyweight gadoterate meg-
lumine (Guerbet, Dotarem) was injected intravenously after the first FLASH sequence
with a flow of 20 mL/s using an automated injector (Spectris Solaris, MR Injection System;
Medrad, Pittsburg, PA). Subsequent automated image subtraction was performed. Please
see Figure 1 for an example.
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Figure 1. Example of a 63-year-old woman with invasive breast cancer in the right breast, clearly visible on (A) fat-saturated
T2-weighted turbo spin-echo (TSE) sequence, (B) transversal diffusion-weighted echo-planar imaging (EPI) sequence
with (C) apparent diffusion coefficient (ADC) as well as on (D) contrast-enhanced T1w images, (E) PET and (F) fused
PET/MR images.
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2.3. Image Analysis

Two board-certified radiologists with 13 and 5 years of experience in breast imaging
and hybrid imaging and a nuclear medicine physician with 15 years of experience evaluated
the 18F-FDG PET/MRI data. All images were imported into an open-source medical
image viewer (Horos v. 3.3.5, LGPL, Annapolis, MD, USA) for image visualization and
quantitative parameter extraction. Breast lesions were identified on DCE post-contrast
subtracted images and lesion location was recorded.

2.4. Radiomics Analysis

PET/MRI images were imported to dedicated software (ITK-SNAP v. 3.6.0) [17]
for lesion segmentation. A radiologist with 13 years of experience in breast imaging
annotated each lesion on the subtracted second post-contrast time point using a semi-
automated method. Inclusion of cystic/necrotic areas and/or biopsy markers was avoided
during segmentation.

One hundred and one radiomic features were calculated for each patient with CERR
software [18]. Features were calculated in six classes (22 first order, 26 based on gray-level
cooccurrence matrices, 16 based on run length matrices, 16 based on size zone matrices,
16 based on neighborhood gray-level dependence matrices and 5 based on neighborhood
gray tone difference matrices). CERR has recently been demonstrated to conform to the
Image Biomarker Standardization Initiative (IBSI) guidelines. All images were reduced to
32 gray levels prior to radiomics feature calculations. All dynamic images were normalized
to the pre-contrast phase, resulting in maps of percentage enhancement. To account for
class imbalances present in the data, adaptive synthetic sampling was employed to equalize
class sizes [19]. This prevented subsequent models from potentially classifying all cases as
belonging to the majority class.

2.5. Reference Standard

Tumor histology, tumor and nuclear grade and immunohistochemical status, includ-
ing estrogen receptor, progesterone receptor and HER2, were derived from either final
histopathological results from surgical tumor specimens or, in the case of neoadjuvant
chemotherapy, from pre-treatment image-guided biopsy. All diagnoses were made by a
surgical pathologist specialized in breast cancer according to the 4th edition of the WHO
classification of tumors. Tumor grade was determined according to Elston and Ellis [17].
For immunohistochemistry (IHC), 1.5 µm thick slides were incubated with antibodies
against Ki-67 (Ventana, clone 30-9, ready to use), ER (Ventana, clone SP1, ready to use), PR
(Ventana, clone 1E2, ready to use) or HER2 (Ventana, clone 4B5, ready to use). IHC was
performed with an OptiView Ventana System (Ki-67, ER) or UltraView Ventana System
(PR, HER2) according to the manufacturer’s protocol. Subsequent FISH analyses for ERBB2
(Her2) amplification were performed for tumors scored as 2+. For precise application
of the FISH probe, the tumor areas of 1.5 µm sections were incubated with a ZytoLight
SPEC ERBB2/CEN17 Dual Color Probe (ZytoVision). Signal enumeration was performed
with a microscope (Leica DM6 B, Leica Microsystems CMS GmbH) and results classified
according to ASCO/CAP Guidelines 2018 [20].

Proliferation index Ki-67 was recorded as <15% (low proliferation) or ≥15% (high
proliferation) [21]. In the case of equivocal HER2 status, lesions were additionally evaluated
using fluorescence in situ hybridization and classified as positive when gene amplification
was detected.

Using the dichotomized immunohistochemical evaluation of these three receptors to
derive molecular subtypes [22], breast tumors were classified into luminal A (ER/PR+/HER2−,
Ki-67 < 15%), luminal B (ER/PR+/HER2−, Ki-67 > 15%), HER2+ (ER/PR+, HER2+ and
ER/PR−, HER2+) and triple negative (ER/PR−, HER2−) [23,24].

For N-stage, histopathological samples for lymph node evaluation were present for
all patients (patient-based analysis). In case neoadjuvant chemotherapy was administered
before lymphadenectomy, additional histopathological preparations were evaluated, using



Cancers 2021, 13, 2928 5 of 13

focal fibrosis or focal necrosis as a retrospective indicator for previously vital lymph
node metastases [25,26]. For M-stage, metastases were proven by CT (n = 1) or by CT-
guided/surgical biopsy (n = 6). All of the non-histopathologically proven lesions were
re-evaluated with all follow-up imaging and/or clinical follow-up to exclude malignancy.

2.6. Statistical Analysis and Predictive Model Building

LASSO regression was utilized to determine which radiomic features were of most
importance. LASSO was employed due to its fast nature, its ability to avoid overfitting
and the fact that it can be applied even when the number of features is greater than the
number of cases/samples [27,28]. A maximum of 6 features were selected for each model
to avoid overfitting. If fewer features were determined to be of importance, only those
were forwarded for use in model development. Predictive models were then developed in
Matlab using support vector machines and 5-fold cross validation. With insufficient data to
perform training, validation and testing on distinct datasets, the choice of machine learning
was a pragmatic one. A support vector machine was utilized since they are known to work
well for small datasets, are memory efficient and usually provide good performance [29,30].
Models were developed utilizing the different data types in isolation (ADC, T2, PET,
dynamic phase 1, dynamic phase 2, dynamic phase 3, dynamic phase 4, dynamic phase 5)
and then in various combinations (all dynamic phases aggregated, all MR data aggregated,
all imaging data aggregated). Diagnostic metric sensitivity, specificity, positive predictive
value, negative predictive value and accuracy were calculated for each model.

3. Results
3.1. Patient Population and Breast Lesion Characteristics

The mean age of the 124 patients was 54 years (range 31–86 y). Fifty-five patients
were pre-menopausal, 12 peri-menopausal and 57 post-menopausal. Malignant lesions
comprised 109 invasive ductal cancers, no special type (NST), 7 invasive lobular carcinomas
(ILC) and 8 other types. Of the 125 treatment-naïve, biopsy-proven breast cancers, 92 were
ER+ (74%), 88 were PR+ (71%), 21 were HER2+ (17%), 111 were high proliferation with
Ki-67 greater than 15% (90%). Seventeen cancers were classified as luminal A (14%), eighty-
two as luminal B (66%), five as HER2-enriched (4%) and nineteen as TN (16%). Five cancers
were classified as G1 (4%), 67 as G2 (54%) and 52 as G3 (42%). A total of 49 patients
showed lymph node metastases (40%) and a total of seven patients distant metastases
(6%). Please see Table 1 for all patient details. A selection of the best results achieved
for each assessed parameter is shown in Table 2. For detailed results of radiomic-based
classifications for every prediction, including detailed numbers of dedicated sequences
(T2, ADC, dynamic 1-5, all dynamics (DCE), all MR, PET and all MR + PET), see Online
Supplements Tables S1–S9 for diagnostic metrics and Tables S10–S18 for radiomics features
utilized in the models.

Table 1. Patients characteristics.

Total Patients 124 (Mean Age 54 y; Range 31–86 y)

Menopause Status

Pre 55 (44%)

Peri 12 (10%)

Post 57 (46%)

Tumor Volume (cm3)—Median (IQR) 7.27 (3.29–13.74)

Histologic Subtype

NST 109 (88%)

Lobular invasive 7 (6%)

other 8 (6%)
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Table 1. Cont.

Total Patients 124 (Mean Age 54 y; Range 31–86 y)

Molecular Subtype

Luminal A 17 (14%)

Luminal B 82 (66%)

HER2-enriched 5 (4%)

Triple negative 19 (16%)

Ki-67 Mean: 40, range 3–97%

Negative (<15%) 13 (10%)

Positive (>15%) 111 (90%)

Tumor Grade

G1 5 (4%)

G2 67 (54%)

G3 52 (42%)

N-status

Positive 49 (40%)

Negative 75 (60%)

M-status

Positive 7 (6%)

Negative 117 (94%)

Table 2. Selection of best mean classification accuracies achieved for prediction of each assessed imaging biomarker.

Radiomics Analysis to Predict Best Results by AUC Sensitivity Specificity PPV NPV Accuracy

Subtype
(luminal A versus luminal B) All MR 0.978

(0.950–1.000)
94.6

(87.9–98.2)
100.0

(96.0–100.0)
100.0

(95.9–100.0)
94.7

(88.1–98.3)
97.3

(93.7–99.1)

Subtype (luminals vs. others) PET 0.950
(0.922–0.979)

83.5
(74.6–90.3)

93.2
(86.5–97.2)

92.0
(84.3–96.7)

85.7
(77.8–91.6)

88.5
(83.2–92.6)

ER Status (negative vs. positive) All MR and PET 0.870
(0.818–0.923)

90.1
(82.1–95.4)

65.9
(55.0–75.7)

73.2
(64.0 -81.1)

86.6
(76.0–93.7)

78.2
(71.4–84.0)

PR Status (negative vs. positive) All MR and PET 0.879
(0.826–0.932)

84.1
(74.8–91.0)

83.9
(74.8–90.7)

83.1
(73.7–90.2)

84.8
(75.8–91.4)

84.0
(77.8–89.0)

HER2
(negative vs. positive) All DCE 0.972

(0.955–0.989)
84.9

(76.6–91.1)
93.2

(86.5–97.2)
92.8

(85.7–97.0)
85.7

(77.8–91.6)
89.0

(83.9–92.9)

Proliferation
(high vs. low) All MR and PET 0.997

(0.992–1.000)
99.1

(95.1–100.0)
92.7

(86.0–96.8)
93.2

(87.1–97.0)
99.0

(94.7–100.0)
95.9

(92.4–98.1)

Grade (grade 1 vs. grade 2 vs.
grade 3) PET 0.771

(0.693–0.849)
66.2

(53.7–77.2)
78.1

(66.9–86.9)
73.8

(60.9–84.2)
71.3

(60.0–80.8)
72.3

(64.2–79.5)

Nodal Status (0 vs. 1, 2, 3) All MR and PET 0.810
(0.740–0.881)

63.8
(51.3–75.0)

82.2
(71.5–90.2)

77.2
(64.2–87.3)

70.6
(59.7–80.0)

73.2
(65.2–80.3)

Distant Metastases (0 vs. 1) All MR and PET 0.999
0.997–1.000)

98.3
(94.0–99.8)

98.3
(94.0–99.8)

98.3
(94.0–99.8)

98.3
(94.0–99.8)

98.3
(95.7–99.5)

3.2. Radiomics Analysis to Predict Subtype

The differentiation of luminal A versus luminal B cancers as well as luminals ver-
sus other subtypes both achieved high AUCs, with 11/12 image parameters yielding
AUCs > 0.90 for luminal A versus luminal B and 5/12 for luminals versus others (Figure 2).
While the highest AUC and accuracy for differentiation between luminal A and B were
achieved by all MR sequences (AUC 0.98; accuracy 97.3%), the highest values for differen-
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tiation between luminals and other subtypes were achieved by PET imaging only (AUC
0.95; accuracy 88.5%).
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3.3. Radiomics Analysis to Predict the Hormone Receptor Status, HER2 and Proliferation Rate

The best results in terms of AUCs for prediction of ER status were achieved by a
combination of all MR sequences and PET (0.87) followed by dynamic imaging only (all
DCE) without PET, T2 or ADC, comprising an AUC of 0.84 and highest NPV of 88.1.
Comparably, the highest AUC for prediction of PR status was also achieved based on all
MR sequences combined with PET (AUC 0.88), followed by all dynamics (AUC 0.84). The
highest AUCs > 0.90 and corresponding accuracies for prediction of HER2 status were
achieved by all DCE (AUC 0.97; accuracy 89%) with comparable values achieved by all
MR with (AUC 0.96; accuracy 89%) and without PET (AUC 0.95; accuracy 88.5%). Overall,
the highest AUCs of all assessed parameters were achieved for prediction of Ki-67 with
eight out of 10 imaging datasets yielding AUCs of ≥ 0.90 and the best results for all MR
and PET with an AUC of 1.00 and 95.9% accuracy. Please see Figure 3 for corresponding
AUC curves.

3.4. Radiomics Analysis to Predict Grading and Metastatic Disease

Prediction of grading was analyzed as grade 1 versus grade 2 versus grade 3. When
compared to prediction of subtype and hormonal status, the results for the prediction of
grading were fair to moderate, with AUCs ranging from 0.65 to 0.78. The best and overall
comparable results for prediction were achieved based on all dynamics, all MR and PET as
well as all MR and PET (respective AUCs 0.76, 0.76, 0.77 and 0.75; Figure 4a).

Fair to moderate results were achieved for prediction of lymph node metastases,
which was classified as negative lymph node versus positive. While the lowest AUCs were
shown for the late phase dynamic phase (AUC 0.58), the highest AUCs, with 0.80, were
based on the combined information of all MR and PET with comparable results for ADC
imaging only (0.80; see Figure 4b). Considering an overall small number of patients with
distant metastases (n = 7), all analyzed imaging sets with or without PET achieved excellent
AUCs > 0.96 (see Figure 4c).
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4. Discussion

In this study, we assessed the performance of a radiomics-based algorithmic analysis
of simultaneous 18F-FDG PET/MRI datasets for non-invasive prediction of breast cancer
phenotyping and tumor decoding. Our results underline the strength of multiparamet-
ric 18F-FDG PET/MRI as a valuable platform to determine an extensive set of imaging
biomarkers of breast cancer. Furthermore, while our findings indicate that the combined
analysis of multiparametric MRI and PET data provides the highest accuracy and predictive
power for the most assessed imaging biomarkers, the results also underline the strength of
multiparametric MRI only without PET to generate comparable accuracies.

Improved understanding of the association of tumor heterogeneity and personalized
therapy of breast cancer has induced a transition from the previously mainly pathology-
driven classification to a molecular level of phenotyping and tumor decoding. The im-
portance of understanding tumor heterogeneity, the associated discrepancy of clinical
subtype and molecular classification and the corresponding challenges of optimal treat-
ment definition were underlined in recently published results of the Neoadjuvant Breast
Registry Symphony Trial (NBRST). As tumors were classified by gene expression array
with the molecular subtyping profile BluePrint as well as the MammaPrint prognostic
profile, direct comparisons of treatment response according to conventional clinical versus
molecular classification could be performed. With almost 20% of clinical “luminal“ pa-
tients being re-classified in a different subgroup, the results highlight the importance of
MammaPrint/BluePrint for accurate identification of subtype biology and correct allocation
of effective treatment to appropriate patients [31].

Over the past few years, a number of publications have investigated the potential of
radiomics-based analyses for determination of different genomic and phenotypic character-
istics of breast cancer as well as more fundamental features such as grading or metastatic
spread [9,10,32]. Leithner et al. published a study focused exclusively on DCE-MRI for the
differentiation of two important tumor characteristics, by means of molecular subtype and
receptor status. According to their data, the best results for differentiation of luminal A
versus luminal B amounted to an accuracy of 84.2%. Even better results were achieved in a
more recent study by Leithner et al. where the radiomic analysis was exclusively based on
diffusion weighted imaging or ADC data (apparent diffusion coefficient) [33]. Similarly,
our results also showed an excellent accuracy of 92.3% based on all DCE-MRI sets, which
could be further improved to an accuracy of 97.3%, when T2 weighted imaging and ADC
were added into the analysis. Aside from the molecular subtype, the receptor status is
another important factor for therapy management of breast cancer. While Leithner et al.
chose a broader approach (hormone receptor positive versus negative) with rather limited
success of determination (accuracy 68.1%), Li et al. recently published results which are
comparable to ours. Our analysis yielded good differentiation of ER and PR positivity,
reaching similar AUC values of 0.87 for ER (0.89, Li et al.) and 0.88 for PR [3]. Considering
the different treatment options of breast cancer in accordance with their hormone receptor
status and molecular subtype with varying associations with risk factors for incidence,
response to treatment and risk of disease progression, our results demonstrate the potential
for non-invasive whole-tumor tissue classification. Two further known prognostic factors
associated with tumor aggressiveness, proliferative activity, disease spread rates and risk
of recurrence are human epidermal growth factor receptor 2 (HER2) and Ki-67 overexpres-
sion [34,35]. Hence, pretherapeutic determination of HER2 and Ki-67 values is crucial for
treatment planning, in particular regarding the administration of HER2 protein-targeting
drugs. In our study, two datasets achieved similarly high results, (1) all DCE and (2) all MR
and PET. Both datasets showed excellent AUCs of 0.97 (all DCE) and 0.96 (all MR and PET),
with an equivalently high diagnostic accuracy of 89%. Bitencourt et al. recently published
data on 311 patients, revealing even higher accuracy rates of 97.4% when combining MRI
and clinical features for analysis [35]. This improvement in results after the inclusion of age,
estrogen receptor status, lesion type and tumor size underlines the importance of clinical
features. Comparable to a recent publication by Fan et al., our results for determination of
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Ki-67 overexpression underline the strength of utilizing multiparametric data [34]. Our
results reveal a continuous increase in AUC values when adding T2 and ADC data (AUC
0.95) to exclusive DCE data (AUC 0.91), which is further improved when metabolic infor-
mation based on PET is added (AUC 0.99). This indicates that different radiomic signatures
are embedded in different morphologic, functional and metabolic datasets and a more
comprehensive imaging platform may enable more precise analyses. Our results underline
that non-invasive breast cancer phenotyping and tumor decoding prior to treatment are
feasible. Whereas pre-treatment biopsy can only provide a snapshot of tumor biology and
thus might not be representative of the molecular tumor heterogeneity, potentially causing
therapy resistance and treatment failure, simultaneous 18F-FDG PET/MRI comprehen-
sive radiomics analysis can overcome this limitation through non-invasive whole-tumor
assessment. More accurate tumor phenotyping is particularly relevant in the setting of
the increased use of neo-adjuvant cytotoxic, endocrine and targeted therapies, as tumor
biology might be subject to change over time and with treatment, and monitoring under
therapy can provide indicators for efficient treatment adaptation when needed [36].

Apart from more recently introduced genomic and phenotypic characteristics, three
features, grading, lymphonodular status and distant metastatic spread, are well-established
biomarkers for prognosis. Comparable to previous publications, our prediction results for
grading and lymph node metastases fell short in their diagnostic accuracy [8,34]. Similar to
previously published results by Demircioglu et al. from an MRI-based study, our results
for grading amounted to an AUC of 0.78 (0.74, respectively) and 0.80 for lymph node
metastases (0.71) [8]. Only the determination of distant metastases achieved excellent AUC
values of 0.96. While these results may in part result from the lack of radiomic signatures in
the assessed imaging data for these particular characteristics, they may also be biased due
to a heterogeneous and uneven patient cohort, reflected in the small number of patients
with grade 1 tumors as well as distant metastases.

Whilst radiomics-based analyses of breast cancer have become a well-investigated
research focus over the past few years, the majority of studies were based either on mam-
mographic or MR-based imaging [3,8,34,35,37]. Only a few studies included PET-based
data in their analysis, with Krajnc et al. and Huang et al. demonstrating promising results
in recent publications [13,38]. Krajnc et al. used 18F-FDG PET/CT imaging combined
with data preprocessing and radiomics analysis to characterize breast tumors. Notably,
their predictive models achieved good results in breast cancer detection (AUC 0.82) and
identification of triple-negative tumors (AUC 0.82), yet determination of luminal A/B
subtype and the individual receptor status yielded low performance, with AUCs ranging
from 0.46–0.68 [13]. Their results underline the potential of PET-based metabolic data for
radiomic signature derivation and indicate that CT-based data may not provide a suffi-
ciently comprehensive platform for breast cancer assessment. This potential shortage was
addressed in a study by Huang et al. who used retrospectively fused PET- and MRI-derived
features to decode breast cancer phenotypes and prognosis [14]. Unsupervised clustering
based on PET and MRI radiomic features created three subgroups which showed significant
associations with tumor grade, overall stage, subtypes and disease recurrence [14]. While
their analyses revealed promising and partially comparable results for tumor grading and
subtype differentiation to our study, two important differences lie in the retrospective
fusion of PET and MRI data (versus simultaneous acquisition) and the exclusive focus
on DCE-MRI data (versus additional T2 or diffusion weighted imaging as presented in
our study).

While our study reveals promising results regarding the potential of 18F-FDG PET/MRI
as a platform for radiomics-based analyses of breast cancer, limitations of the current study
should be addressed in future trials. Small numbers in the minority class for some outcomes,
including luminal A cases, suggest that these results need to be regarded as preliminary.
Radiomics studies are known to benefit from large patient cohorts as well as multicen-
ter analyses, hence these two important aspects should be approached in prospective
study set-ups.
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5. Conclusions

To the best of our knowledge, our study is the first to demonstrate that simultaneous
18F-FDG PET/MRI facilitates a comprehensive platform for highly accurate, non-invasive
tumor phenotyping and decoding. Although radiogenomics-based tissue analysis is un-
likely to replace invasive tissue sampling in the foreseeable future, it bears the potential
to provide imaging biomarkers as auxiliary parameters for patient stratification. Radio-
genomic characteristics derived from multiparametric PET/MRI studies may promote
understanding and therapy monitoring of tumor biology of the whole tumor instead of
focal invasive tissue sampling which is known to provide erroneous and inaccurate as-
sessment. With increased understanding of the importance of correct subtyping of breast
cancer in regard to chemosensitivity [39], it will be interesting to see whether imaging-
based analysis will be able to measure up to multigene classifier testing and potentially
even add value due to whole-tumor analysis in the future.

Overall, when putting our results into perspective with previous publications on
MRI-, PET/CT- or retrospectively fused PET/MRI-based studies, it becomes apparent
that some assessed tumor characteristics seem to benefit from the added information of
simultaneously obtained multiparametric MRI and PET data. Nevertheless, our results
also underline the potential and strength of multiparametric MRI data only for high-quality
radiomics analysis of breast cancer.
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