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Myocardial transfection of hypoxia-inducible
factor-1α and co-transplantation of mesenchymal
stem cells enhance cardiac repair in rats with
experimental myocardial infarction
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Abstract

Introduction: Mesenchymal stem cells (MSCs) have potential for the treatment of myocardial infarction. However,
several meta-analyses revealed that the outcome of stem cell transplantation is dissatisfactory. A series of studies
demonstrated that the combination of cell and gene therapy was a promising strategy to enhance therapeutic
efficiency. The aim of this research is to investigate whether and how the combination of overexpression of
hypoxia-inducible factor-1α (HIF-1α) and co-transplantation of mesenchymal stem cells can enhance cardiac repair
in myocardial infarction.

Methods: We investigated the therapeutic effects of myocardial transfection of HIF-1α and co-transplantation of
MSCs on cardiac repair in myocardial infarction by using myocardial transfection of HIF-1α via an adenoviral vector.
Myocardial infarction was produced by coronary ligation in Sprague-Dawley (SD) rats. Animals were divided
randomly into six groups: (1) HIF-1α +MSCs group: Ad-HIF-1α (6 × 109 plate forming unit) and MSCs (1 × 106) were
intramyocardially injected into the border zone simultaneously; (2) HIF-1α group: Ad-HIF-1α (6 × 109 plate forming
unit) was injected into the border zone; (3) HIF-1α-MSCs group: Ad-HIF-1α transfected MSCs (1 × 106) were injected
into the border zone; (4) MSCs group: MSCs (1 × 106) were injected into the border zone; (5) Control group: same
volume of DMEM was injected; (6) SHAM group. Cardiac performance was then quantified by echocardiography as
well as molecular and pathologic analysis of heart samples in the peri-infarcted region and the infarcted region at
serial time points. The survival and engraftment of transplanted MSCs were also assessed.

Results: Myocardial transfection of HIF-1α combined with MSC transplantation in the peri-infarcted region
improved cardiac function four weeks after myocardial infarction. Significant increases in vascular endothelial
growth factor (VEGF) and stromal cell-derived factor-1α (SDF-1α) expression, angiogenesis and MSC engraftment, as
well as decreased cardiomyocyte apoptosis in peri-infarcted regions in the hearts of the HIF-1α +MSCs group were
detected compared to the MSCs group and Control group.

Conclusions: These findings suggest that myocardial transfection of HIF-1α and co-transplantation of mesenchymal
stem cells enhance cardiac repair in myocardial infarction, indicating the feasibility and preliminary safety of a
combination of myocardial transfection of HIF-1α and MSC transplantation to treat myocardial infarction.
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Introduction
Despite substantial therapeutic advances over the past
decade, heart failure, due in large part to myocardial in-
farction (MI), remains a leading cause of morbidity and
mortality worldwide. Stem cell transplantation, as a pro-
mising therapy for patients suffering from myocardial
infarction, has recently been a research priority. It has
huge potential for cardiac regeneration and cardiac func-
tion recovery. However, several meta-analyses revealed
that the outcome of stem cell transplantation is dissatis-
factory. Three to six months after the transplantation of
bone marrow-derived stem cells, left ventricular ejection
fraction (LVEF) was improved by merely 2.53 to 3.66%,
and major adverse cardiac events (MACE) were not sig-
nificantly decreased [1-3]. The low homing rate and lo-
cal survival rate of the transplanted cells, affected by
endogenous and environmental factors in the ischemic
tissue, such as hypoxia, oxidative stress and inflamma-
tion, which may result in apoptosis of transplanted cells
[4-6], restrain the application of this technique. Strate-
gies to improve cardiac homing and engraftment of stem
cells may improve the outcome of this approach [7-12].
One interesting strategy is the combination of cell and
gene therapy [13-16]. Satoshi Sintani et al. reported that
combined intramyocardial CD34+ cells and VEFG2 gene
therapy after MI results in better therapeutic effect than
monotherapy, though the improvement of cardiac func-
tion is still not satisfactory [17].
Hypoxia-inducible factor-1α (HIF-1α) is a major regula-

tor of the hypoxic response after myocardial infarction
[16]. Decreased tissue oxygen causes nuclear accumula-
tion of HIF-1α protein and enhancement of its transcrip-
tional activity through binding to enhancer elements in
target genes, including vascular endothelial growth factor
(VEGF) [18], angiopoietin-1 (Ang-1), angiopoietin-2
(Ang-2), platelet-derived growth factor beta [19], nitric
oxide synthase (iNOS) [20], erythropoietin [21], phos-
phoglycerate kinase [22] and stromal-derived factor-1
(SDF-1). Specifically, the up-regulation of CXCR4 expres-
sion in mesenchymal stem cells (MSCs) mediates a
broad range of biological processes including cell prolif-
eration, survival, migration, adhesion, differentiation, as
well as pro-angiogenesis [23-27].
Therefore, HIF-1α regulates adaptation to hypoxia at

the systemic, tissue and cellular levels [28,29], includ-
ing enabling transcriptional activation of angiogenesis
genes, improving the recruitment of endothelial progeni-
tor cells to areas of tissue ischemia through an SDF-1-
CXCR4 pathway [30], and affecting the activation of
pro-inflammatory chemokine production by endothelium
through transcriptional modulation of heme oxygenase-1
[31]. Therefore, HIF-1α could be an ideal candidate to
improve cell-mediated cardiac repair. Recently, Inmacu-
lada Cerrada et al. [32] used HIF-1α-transfected MSC
transplantation in a rat model of MI, and improvement
was observed in terms of cardiac function, angiogenesis,
cardiomyocyte proliferation and reduction of fibrotic
tissue. It demonstrated that HIF-1α gene therapy can
enhance cell-mediated therapy for cardiac regeneration.
However, the expression level of HIF-1α in the ischemic
area was not quantified in their study. Since the survival
and engraftment of intramyocardial MSC transplantation
were less than 5% at two weeks after transplantation [4-6],
it is reasonable to deduce that the expression level of
HIF-1α from survived HIF-1α-transfected MSCs (HIF-1α-
MSC) in ischemic myocardium is very low, and enhanced
HIF-1α expression may lead to better results. Moreover,
previous study demonstrated that exogeneous expression
of HIF-1α by using transfection is significantly higher
compared to the endogenous HIF-1α expression [29,33].
Thus, in order to get higher expression of HIF-1α in the
ischemic area instead of just the transplanted cells, we
chose to use intramyocardial transfection of HIF-1α.
Accordingly, we plan to test the hypothesis that exo-

geneous expression of HIF-1α in the ischemic area may
increase the local survival and engraftment of the trans-
planted MSCs, enhance the angiogenesis, and improve
cardiac performance in rats after myocardial infarction.
Furthermore, we try to investigate whether intramyocar-
dial transfection of HIF-1α and co-transplantation of
MSC transplantation has a better capacity of cardiac re-
pair than the transplantation of HIF-1α-transfected MSCs.

Materials and methods
This study conformed to the guiding principles for the
Care and Use of Laboratory Animals published by the
US National Institutes of Health (NIH Publication No.
85–23, revised 1996). All animal protocols were approved
by the Institutional Animal Care and Use Committee of
Zhongshan Hospital, Fudan University, PR China. All sur-
geries were performed under ketamine anesthesia, and all
efforts were made to minimize suffering.

Isolation, culture and transfection of MSCs
Isolation and culture of MSCs were performed as pre-
viously described [34]. In brief, MSCs were harvested
from the femur and tibia of male Sprague-Dawley rats
with a body weight of 80 to 100 g, which were obtained
from the Experimental Animal Center of Fudan Univer-
sity (Shanghai, China). Bone marrow cells were flushed
and cultured with Iscove’s Modified Dulbecco’s Medium
(Invitrogen/Gibco, Frederick, MD, USA) supplemented
with 20% fetal bovine serum (FBS) and penicillin (100
U/ml)/streptomycin (100 μg/ml) at 37°C in humid air
with 5% CO2. After being seeded for two days, MSCs
adhered to the bottom of the culture plates, and the
non-adherent cells were removed by a medium change
at 48 hours. At 80% confluence, cells were harvested
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with 0.25% trypsin and passaged at a ratio of 1:3. The
MSCs (P4) were identified with antibodies against CD105,
CD166, CD45 and CD34 (fluorescein isothiocyanate con-
jugated, FITC).
MSCs were transfected with Ad-null-green fluorescent

protein (Ad-null-GFP) or Ad-HIF-1α-GFP (Genechem
Co. Ltd., Shanghai, China.) for 7 h followed by mainten-
ance in the viral vector-free DMEM for 72 h. The suc-
cessful transduction was judged by the presence of green
fluorescence. Randomly selected microscopic fields (n >8;
400×) at 72 h after transduction were evaluated to
calculate the ratio of green cells to the total number
of cells. These cells were further confirmed by immuno-
staining for HIF-1α in either Ad-null-GFP transfected
MSCs (Ad-NullMSCs) or Ad-HIF-1α-GFP transfected MSCs
(Ad-HIF-1αMSCs).

Assessment of MSCs viability and proliferation
A Cell Counting Kit-8 (CCK-8) (Sigma-aldrich, St. Louis,
MO, USA) based colorimetric assay was used to quantify
cell proliferation. The assay was performed at 12 h, 24 h,
36 h and 48 h on MSCs, Ad-NullMSCs and Ad-HIF-1αMSCs.
All MSCs were incubated with 10 μl of CCK-8 tetrazolium
salt for 2 h, and the absorbance was read using a micro-
plate spectrofluorometer at a 450-nm wavelength. The
number of living cells is directly proportional to the
amount of formazan dye that can only be produced by vi-
able cells and generated by the activity of dehydrogenase.
The proliferation experiments were repeated three times
with each condition tested in triplicate.

MSCs migration assay
To study the effect of HIF-1α on MSC migration, 10,000
cells treated with or without HIF-1α transfection were
seeded in the top chamber of an 8 mm-pore migration
transwell (Corning, Inc. New York, NY, USA), supple-
mented with 600 μl DMEM culture medium containing
0.5% FBS in the bottom chamber. After incubation for
12 hours, the inside of the transwells were wrapped with
a cotton bud to remove non-migrating cells, the mem-
brane was cut and placed on a glass slide with the
bottom side upward, and 4, 6-diamino-2-phenylindole
(DAPI) (Life Technologies Corporation, Carlsbad,
CA, USA.) was added to stain the nuclei and the mi-
grated cells were counted. The assay was performed
in duplicated wells and repeated three times.

Cell labeling
MSCs were stained by using 10 μg/mL 1,1-dioctadecyl-
3,3,3,3-tetramethyl indotricarbocyanine Iodide (DiR, ABD
Bioquest, Inc., Sunnyvale, CA, USA) as previously de-
scribed [35-37]. Cells were then resuspended in growth
media at a density of 25 × 106 cells/mL and then kept on
ice before transplantation.
Animal model of myocardial infarction
The experimental animals used in this study were eight-
week-old female SD rats. Rats were intraperitoneally
anesthetized with ketamine (15 to 20 mg/kg). A mid-
line anterior cervical skin incision was made and the
trachea was exposed by sharp dissection. The trachea
was intubated with an angiocatheter and ventilated
to a rodent ventilator with room air. A 1.5 cm verti-
cal left parasternal skin incision was made, the chest
cavity was entered through the fourth interspace, and
the pericardium was vertically opened. The left anterior
descending coronary artery (LAD) was ligated with a 6-0
polypropylene suture. Ventricle blanching indicated suc-
cessful occlusion of the vessel. Sham-operated animals
served as surgical controls and were subjected to the same
procedures as the experimental animals with the excep-
tion that the LAD was not ligated. Mortality rates during
and after surgery were less than 5% in all groups.

Implantation of MSCs and Ad-HIF-1α transfection
Female adult SD rats (n = 180) were randomly divided into
six groups. Immediately after ligation of the LAD, the HIF-
1α +MSCs group (n = 30) received 1 × 106 MSCs and 6 ×
1012 plate forming unit (PFU) Ad-HIF-1α resuspended with
40 ul DMEM, respectively; the HIF-1α group (n = 30) re-
ceived 6 × 1012 PFU Ad-HIF-1α and 40 ul DMEM; the
HIF-1α-MSCs group (n = 30) received 1 × 106 Ad-HIF-

1αMSCs and 6 × 1012 PFU Ad-null (Genechem Co. Ltd,
Shanghai, China); the MSCs group (n = 30) received 1 × 106
Ad-NullMSCs and 6 × 1012 PFU Ad-null; and the Control
group (n = 30) received 6 × 1012 PFU Ad-null and 40 ul
DMEM; the SHAM group (n = 30) was subjected to the
same procedure as the experimental animals with the ex-
ception that the LAD was not ligated. Cells and adenovirus
were directly injected into the ischemic border zone of the
myocardium at four different sites (20 μl to each site).

Immunostaining
For HIF-1α staining, MSCs were fixed for 30 minutes with
4% paraformaldehyde and permeabilized for 10 minutes
with 0.2% Triton X-100. Cells were blocked with PBS con-
taining 10% FBS overnight at 4°C and incubated with
mouse monoclonal anti-HIF-1α antibody (Abcam Bio-
chemicals, Cambridge, UK) at a dilution of 1:100. After
thoroughly washing, the cells were incubated with second-
ary antibodies of goat anti-mouse IgG conjugated with
rhodamine (Sigma-aldrich, St. Louis, MO, USA) at a dilu-
tion of 1:500 for 1 h at room temperature. Nuclei were
stained with DAPI.
Opti-mum cutting temperature compound (O.C.T com-

pound) embedded hearts were sectioned into 5 μm slices.
Adjacent sections (taken at the midpoint between LAD
ligation site and apex) were double stained with anti-
bodies against rat CD31 (Abcam Biochemicals,
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Cambridge, UK) and α-SA (α-sarcomeric actinin)
(Abcam Biochemicals, Cambridge, UK). Capillary density
was defined as CD31+ endothelial cells per high-power
field (200×). Five high-powered fields were counted per
section, with 10 sections/heart, and 10 hearts/group.
Angiogenesis in the infarction/peri-infarcted regions was
confined to vessels measuring less than 200 μm in
diameter.
Apoptosis of cardiomyocytes in the border zone was

detected by terminal deoxynucleotidyl transferase dUTP
nick end labeling (TUNEL) staining (Roche, Mannheim,
Germany) at seven days after the surgical procedure. The
number of TUNEL-positive nuclei and the total number
of nuclei in three different fields (×400 magnification)
were counted by a blinded rater in the border zone (n = 5
in each group). Cardiomyocyte apoptosis is expressed as
the ratio of TUNEL-positive nuclei to the total number of
cardiomyocyte nuclei.

Echocardiography
Transthoracic echocardiography (VEVO 770™-230, Visual-
Sonic, Seattle, WA, USA) was performed at one week,
two weeks and four weeks post-infarction in each group.
LVEF and fractional shortening (FS) were measured as
previously described [38]. All measurements were aver-
aged for three consecutive cardiac cycles.

RT-PCR
The total RNA was isolated from the peri-infarcted myo-
cardial tissues at one week, two weeks and four weeks after
surgery (n = 4 in each group at each time point) using TRI-
zol reagent (Life Technologies Corporation, Carlsbad, CA,
USA). The mRNA levels of HIF-1α, SDF-1α, VEGF were
determined by using RT-PCR. The primer sequences of
HIF-1α ([GenBank: NM_024359.1]), SDF-1α ([GenBank:
NM_001033882.1]), VEGF ([GenBank: NM_ 00111033
3.1]) and β-actin ([GenBank: NM_031144.3]) were shown
Table 1 Sequence of the primers used in the study

Gene
symbol

Primer sequence Product size
(base pair)

HIF-1α Sense: 5′- ATGTGACCATGAGGAAATGAGAGAA-3′ 186

Antisense: 5′- ACGTGAATGTGGCCTGTGCA -3′

VEGF Sense: 5′-TGCACCCACGACAGAAGGGGA-3′ 364

Antisense: 5′-TCACCGCCTTGGCTTGTCACAT-3′

SDF-1α Sense: 5′-AGATGCCCCTGCCGATTCTTTG-3′ 118

Antisense: 5′-TGTTGTTGCTTTTCAGCCTTGC-3′

β-actin Sense: 5′-TCAGGTCATCACTATCGGCAAT-3′ 432

Antisense: 5′-AAAGAAAGGGTGTAAAACGCA-3′

SRY Sense: 5′-TCTGCTCCTACCTATGCCAACA-3′ 22

Antisense: 5′-GAGGGAACTCAGTATCCAAACCA-3′
in Table 1. PCR conditions were: 40 cycles of denatur-
ation at 95°C for 30 seconds, annealing at 60°C for 30
seconds and extension at 72°C for 30 seconds. The
PCR products were subject to electrophoresis on 1.5%
agarose gels, scanned and semi-quantitated by using
Image-Quant software (Kodak 1D V3.53).
Quantification of engraftment by real-time PCR
MSCs isolated from male SD rats were injected into
female rats, enabling detection of the SRY gene (lo-
cated on the Y chromosome ([GenBank: FJ168067.1])
as an index of engraftment. Quantitative RT-PCR
was performed at one week and three weeks after in-
jection (n = 5 for each group). The whole heart was
harvested, weighed and homogenized. Genomic DNA
was extracted by using the Purelink genomic DNA
kit (Life Technologies Corporation, Carlsbad, CA,
USA) and quantified with the Quant-it DSDNA assay
kit. Triplicate real-time PCR reactions were per-
formed using 50 ng of the genomic DNA. The
real-time PCR conditions consisted of an initial
denaturation step of 10 minutes at 95°C, followed by
40 cycles at 95°C, for 15 sec, and at 58°C, for 1
minute. A standard curve was generated with mul-
tiple dilutions of genomic DNA isolated from male
hearts to quantify the absolute gene copy numbers.
Fluorescence imaging
Fluorescence imaging was performed at three weeks af-
ter cell injection (n = 5 for each group). Extensive PBS
washing was performed to remove cells adherent to the
epicardium. Hearts were placed in a Carestream In-Vivo
Multispectral Imaging System FX PRO (Carestream
Health, Inc., Rochester, NY, USA) to detect DiR fluores-
cence under 748 nm of excitation and 780 nm of emis-
sion. The exposure time was set at 3 sec and was
maintained during the entire imaging session. Hearts
from the Control group were also imaged to normalize
the noise from background. The fluorescent intensity was
calculated using Kodak MI software 5.0.1. Fluorescence
signals (photon/s/mm2) from a fixed region of interest
(ROI) were measured as previously described [39].
Statistics
Continuous variables with normal distribution were ex-
pressed as average ± standard deviation and compared
by using Holm’s t-test or variance analysis (ANOVA).
Categorical variables were expressed as frequencies and
percentages. For comparisons between different groups,
the chi-square test or Fisher’s exact test was used. A
bi-caudal value of P <0.05 was considered as statisti-
cally significant.
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Results
Transfection efficiency of Ad-null-GFP and Ad-HIF-1α-GFP
in MSCs
Immunostaining showed that the isolated MSCs (P4)
(Figure 1A I) uniformly expressed CD105 and CD166
(see Additional file 1A), but not CD45 or CD34. The dif-
ferentiation assay confirmed the differentiation potentials
of the isolated MSCs into osteoblasts, adipocytes and
chondrocytes (see Additional file 1B). The MSCs with a
fusiform shape were distributed uniformly at 24 h after
transfection with Ad-null-GFP. (Figure 1A II) or Ad-HIF-
1α-GFP (Figure 1A III), and the majority of the cells (94 ±
3.5% and 93 ± 3.8%, respectively) expressed GFP. Immu-
nofluorescence confirmed the expression of HIF-1α in
GFP + cell. It was also found that HIF-1α was not only dis-
tributed in the cytoplasm of MSCs but also concentrated
in the peri-nucleus (Figure 1B).

Effects of Ad-null-GFP and Ad-HIF-1α-GFP on MSCs
After transfection, cell viability and proliferation of each
group were determined (Figure 1A IV). Viability and pro-
liferation rates of Ad-HIF-1αMSCs group were higher than
other groups during the first two days after transfection
(P <0.01), indicating that HIF-1α may improve the cell
viability and proliferation in vitro. Meanwhile, viability
and proliferation rates of the Ad-nullMSCs group 24 h
after transfection decreased compared to the MSCs group
(P <0.01), indicating that the transfection process might
mildly affect the viability and proliferation of MSCs.
The representative photographs of MSC migration

stained with DAPI were shown in Figure 1C. The mi-
gration was significantly increased in the Ad-HIF-1αMSCs
compared to other groups (P <0.01). These results dem-
onstrated that HIF-1α can improve the cell viability, pro-
liferation and motility of MSCs.

Gene expression in the peri-infarcted regions of the heart
After the transplantation of MSCs and transfection ofHIF-1α,
we first evaluated the mRNA expression of HIF-1α in
the peri-infarcted region of the heart via RT-PCR. HIF-1α
mRNA expressions were significantly higher at one week,
two weeks and four weeks post transfection in the HIF-1α+
MSCs group and the HIF-1α group than other groups,
indicating the successful transfection of the HIF-1α gene
(Figure 2A1-A3). Specifically, at one week, two weeks and
four weeks after operation, levels of HIF-1α mRNA in the
HIF-1α +MSCs group increased for 6.4, 2.3 and 2.7 times
over levels in the Control group, respectively. The HIF-1α-
MSCs group showed slight increase in HIF-1α mRNA ex-
pression compared to the Control group at one week and
two weeks after operation (Figure 2A1, A2). Although the
Control group manifested significant increase in HIF-1α
mRNA expression compared to the SHAM group at one
week after operation (Figure 2A1), levels of HIF-1α mRNA
were as low as the SHAM group (Figure 2A2, A3) at both
two weeks and four weeks after infarction, indicating a
temporary increase of HIF-1α due to acute ischemia after
surgery.
We then evaluated two downstream genes whose tran-

scriptional activities are directly modulated by HIF-1α,
SDF-1α and VEGF. Similarly, both SDF-1α and VEGF
mRNA levels were significantly higher at one week, two
weeks and four weeks post transfection in HIF-1α +
MSCs group and HIF-1α group than other groups
(Figure 2B1-B3, C1-C3). Specifically, at one week, two
weeks and four weeks after infarction, levels of SDF-1α
mRNA in HIF-1α +MSCs group increased for 2.6, 2.6
and 2.3 times over levels in Control group, respectively
(Figure 2B1-B3), while levels of VEGF mRNA increased
for 3.8, 3.7 and 3.8 times (Figure 2C1-C3), suggesting that
overexpressed HIF-1α increased the expression of SDF-1α
and VEGF. The mRNA level of VEGF in the HIF-1α-
MSCs and MSCs group increased for 2.3 and 0.5 times,
respectively, over levels detected in Control group at one
week after infarction (Figure 2C1). Although the Control
group manifested a two-fold and three-fold increase in
SDF-1α and VEGF mRNA expression compared to SHAM
group at one week after operation (Figure 2B1, C1), by two
weeks and four weeks after infarction, levels of SDF-1α
and VEGF mRNA were as low as SHAM group, which
is consistent with the expression pattern of HIF-1α
(Figure 2B3, C2-C3).

The cell engraftment in the recipient hearts
Frozen sections were detected under a fluorescence mi-
croscope. More engrafted MSCs, which were originally
stained with DiR (red) before transplantation, were ob-
served in HIF-1α +MSCs group and HIF-1α-MSCs group
than that of MSCs group (Figure 3A). Likewise, fluores-
cence imaging revealed more red fluorescence in hearts
from the HIF-1α +MSCs group and the HIF-1α-MSCs
group (Figure 3B) compared to the MSCs group, indicat-
ing that exogeneous HIF-1α expression may improve the
survival rate of MSCs. Optical density showed approxi-
mately a 0.26-fold and 0.33-fold increase in the HIF-1α +
MSCs group and the HIF-1α-MSCs group compared to
the MSCs group (Figure 3C). However, no difference
was found between the HIF-1α +MSCs group and the
HIF-1α-MSCs group.
To further quantitatively compare the survival rate of

transplanted MSCs in the myocardium between different
groups, quantitative PCR for the male-specific SRY gene
was performed at one week and three weeks after cell in-
jection. PCR results indicated that all of the three groups
experienced a huge decrease of engrafted MSCs during
the three weeks (Figure 3D). The survival rate of the
transplanted MSCs declined from 7.4% to 1.5% in the
HIF-1α +MSCs group, from 7.8% to 1.4% in the HIF-1α-



Figure 1 Effects of HIF-1α on MSCs in vitro. A) Hypoxia-inducible factor-1α (HIF-1α) improved the viability and proliferation of mesenchymal stem
cells (MSCs). (I) Phase contrast image of MSCs, (II) Ad-nullMSCs, (III) Ad-HIF-1αMSCs, (IV) A Cell Counting Kit-8-based colorimetric assay to quantify the MSCs via-
bility and proliferation. B) MSCs were stained with anti-HIF-1α antibody (red) and 4, 6-diamino-2-phenylindole (DAPI) (blue). No HIF-1α was detected in
MSCs group and Ad-nullMSCs. C) MSC migration assay showed HIF-1α improved the motility of MSCs. □P <0.01 vs. Ad-nullMSCs, ■P <0.01 vs. MSCs.
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Figure 2 The quantitative analysis of mRNA expression of HIF-1α, SDF-1α and VEGF. A1, A2, A3: mRNA expression levels of hypoxia-
inducible factor-1α (HIF-1α) in peri-infarcted region at one week, two weeks and four weeks after operation in each group, respectively. B1, B2,
B3: mRNA expression levels of stromal cell-derived factor-1α (SDF-1α) in the peri-infarcted region at one week, two weeks and four weeks after
operation in each group, respectively. C1, C2, C3: mRNA expression levels of vascular endothelial growth factor (VEGF) in the peri-infarcted region
at one week, two weeks and four weeks after operation in each group, respectively. The expression levels were normalized to the Control group.
☆P <0.01 vs. HIF-1α- mesenchymal stem cells (MSCs) group, △P <0.01 vs. MSCs group, *P <0.01 vs. Control group, ※P <0.01 vs. SHAM group,
▲P <0.05 vs. MSCs group, #P <0.05 vs. Control group, §P <0.05 vs. SHAM group.
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MSCs group, and from 6.6% to 0.7% in the MSCs group.
However, the HIF-1α +MSCs and HIF-1α-MSCs groups
still exhibited enhanced cell engraftment relative to the
MSCs group at both one week (7.4% vs. 7.8% vs. 6.6%, P =
0.001) and three weeks (1.5% vs. 1.4% vs. 0.7%, P <0.05)
after cell injection (Figure 3D).

The migration of MSCs into the infarction area
At three weeks after cell transplantation, hearts from six
animals in each group were harvested and cryosectioned
for histological analysis. Under a fluorescence micros-
cope, engrafted MSCs were detected not only in the
peri-infarcted region where cells were originally injected,
but also widely distributed in the infarction region. More
engrafted MSCs were detected in the infarction region
of hearts from the HIF-1α +MSCs group compared to
the HIF-1α-MSCs and MSCs groups (Figure 4A), indi-
cating the migration of transplanted MSCs to the ische-
mic region of the infarcted heart can be enhanced by
exogeneous HIF-1α expression.



Figure 3 Effects of HIF-1α on MSC engraftment in the border zone. A) Engrafted mesenchymal stem cells (MSCs) stained with DiR (red)
were detected one week, two weeks and three weeks after cell injection. The samples were stained with anti-α-SA antibody (green) and 4,
6-diamino-2-phenylindole (DAPI) (blue). B, C) Three weeks after cell injection, five hearts from three groups were harvested and imaged for
detection of red fluorescence. The optical density (photon/s/mm2) from a fixed region of interest (ROI) was measured. D) Donor male cells persistent
in the female hearts were detected by quantitative PCR for the SRY gene one week and three weeks after cell injection.▲P <0.05 vs. MSCs group,
△P <0.01 vs. MSCs group. HIF-1α, hypoxia-inducible factor-1α.
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Sections were then stained for CD31 and counter-
stained with DAPI. Confocal microscopy was per-
formed for detection of transplanted cells. It was de-
tected that some engrafted MSCs were co-localized with
the angiogenic marker CD31 (Figure 4B), suggesting that
the transplanted cells may enhance angiogenisis.
Vascular density measurement
To assess the angiogenic effect of constitutive HIF-1α
expression and MSC transplantation, we measured vascu-
lar density in the peri-infarcted (border zone) region adja-
cent to the infarction (Figure 5) and within the infarction
region of the left ventricle (Figure 6) at four weeks after



Figure 4 Migration and differentiation of engrafted MSCs after cell injection. A) Migration of mesenchymal stem cells (MSCs) at four weeks
after cell injection from the border zone to infarcted region. Engrafted MSCs stained with DiR, which were injected originally in the peri-infarcted
region, were detected in the infarcted region. The figures demonstrated MSCs engrafted in the infarcted region. B) Engrafted MSCs contribute to
the angiogenesis three weeks after cell injection, in the peri-infarcted region of hearts of hypoxia-inducible factor-1α (HIF-1α) + MSCs group.
Engrafted MSCs were stained with DiR (red) before cell injection. The arrow indicates CD31+ engrafted MSCs stained with DiR. Samples were
stained with anti-CD31 antibody (green) and 4, 6-diamino-2-phenylindole (DAPI) (blue).
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coronary ligation. We excised hearts and performed im-
munohistochemical staining with antibody against CD31
to detect endothelial cells. In the peri-infarcted area (Figure
5A, B), the capillary density observed in the hearts from
HIF-1α +MSCs group (1,364 ± 128/mm2) was significantly
higher than that of HIF-1α group (1,226 ± 140/mm2;
P <0.05), HIF-1α-MSCs group (989 ± 110/mm2, P <0.01),
MSCs group (849 ± 111/mm2; P <0.01), and Control group
(630 ± 97/mm2; P <0.01). The capillary density of the HIF-1α
group was significantly higher than the HIF-1α-MSCs,
MSCs and Control groups (P <0.01). The capillary density
of the HIF-1α-MSCs group was higher compared to the
MSCs (P <0.05) and Control groups (P <0.01). Within the
site of infarction (Figure 6A, B), the capillary density of the
HIF-1α +MSCs group (978 ± 114/mm2) was also signifi-
cantly higher than that of the HIF-1α (812 ± 91/mm2;
P <0.01), the HIF-1α-MSCs (640 ± 94/mm2; P <0.01),
the MSCs (573 ± 82/mm2; P <0.01), and the Control
groups (469 ± 53/mm2; P <0.01). The capillary density
of the HIF-1α group was significantly higher than the
HIF-1α-MSCs, MSCs and Control groups (P <0.01).
The capillary density of the HIF-1α-MSCs group was
higher compared to the MSCs and Control groups
(P <0.01). Grossly and microscopically, no angioma
formation was observed in any treated animals or
controls. The increased capillary density was mainly



Figure 5 Capillary densities at the peri-infarcted border zone in each group. A) More capillary densities were detected in the hypoxia-
inducible factor-1α (HIF-1α) + mesenchymal stem cells (MSCs) group than other groups. (I) HIF-1α + MSCs group, (II) HIF-1α group, (III) HIF-1α-
MSCs group, (IV) MSCs group, (V) Control group. B) The number of CD-31-stained capillary was expressed as the number/mm2. &P <0.05 vs.
HIF-1α group, ☆P <0.01 vs. HIF-1α-MSCs group, △P <0.01 vs. MSCs group, *P <0.01 vs. Control group, ▲P <0.05 vs. MSCs group.
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limited to the area around the infarcted and peri-
infarcted area.

Cell apoptosis in the infracted area
Apoptotic extent was assessed via TUNEL staining. The
number (as a percentage of the total) of cardiomyocytes
showing apoptosis in the border zone was compared
among groups (Figure 7, n = 5 in each group). The
percentage of apoptotic cells was reduced in the HIF-1α +
MSCs group (18.08 ± 4.59%) when compared to the HIF-1α-
MSCs (24.43 ± 5.68%, P <0.05), MSCs (27.53 ± 4.90%, P
<0.01) and Control groups (35.51 ± 4.03%, P <0.01). The
HIF-1α group (20.36 ± 4.88%) showed decreased cell apop-
tosis compared to the MSCs (P <0.01) and Control groups
(P <0.01). The HIF-1α-MSCs group showed less cell apop-
tosis when compared to the Control group (P <0.01).



Figure 6 Capillary densities in the infarction region in each group. A) More capillary densities were detected in the hypoxia-inducible factor-
1α (HIF-1α) + mesenchymal stem cells (MSCs) group than other groups. (I) HIF-1α +MSCs group, (II) HIF-1α group, (III) HIF-1α-MSCs group, (IV)
MSCs group, (V) Control group. B) The number of the CD-31-stained capillary was expressed as the number/mm2. ◇P <0.01 vs. HIF-1α group,
☆P <0.01 vs. HIF-1α-MSCs group, △P <0.01 vs. MSCs group, *P <0.01 vs. Control group, #P <0.05 vs. Control group.
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Cardiac performance after myocardial infarction
In the clinical setting, the prevention of progressive
heart failure as a result of myocardial infarction is of
great importance. To this end, we assessed the car-
diac function after myocardial infarction one week,
two weeks and four weeks after myocardial infarction
by echocardiography. LVEF and FS evaluated by echo-
cardiograph are shown in Table 2. At one week and
two weeks after LAD ligation, markedly decreased
LVEF and FS were detected with no significant
difference among groups, corresponding to post-
infarction myocardial failure. At four weeks after infarc-
tion, higher LVEF and FS were observed in the HIF-1α +
MSCs group compared with the HIF-1α (P <0.05), HIF-1α-
MSCs (P <0.05), MSCs (P <0.01) and Control groups
(P <0.01), indicating that the combined HIF-1α and MSCs
intramyocardial injection can significantly improve the
cardiac function. No significant differences of LVEF and
FS were observed among the HIF-1α, HIF-1α-MSCs,
MSCs and Control groups.



Figure 7 Cardiomyocyte apoptosis in each group. A) Hypoxia-inducible factor-1α (HIF-1α) and mesenchymal stem cell (MSC) intramyocardial
injection decreased cardiomyocytes apoptosis one week after infarction. Apoptosis nuclei stained by terminal deoxynucleotidyl transferase dUTP
nick end labeling (TUNEL) (red), total nuclei were labeled with 4, 6-diamino-2-phenylindole (DAPI) (blue). Cardiomyocytes were stained with anti-
α-SA antibody (green). (I) HIF-1α +MSCs group, (II) HIF-1α group, (III) HIF-1α-MSCs group, (IV) MSCs group, (V) Control group, VI. SHAM. B) Apop-
tosis Index. ★P <0.05 vs. HIF-1α-MSCs group, △P <0.01 vs. MSCs group, *P <0.01 vs. Control group, ※P <0.01 vs. SHAM group, ▲P <0.05 vs. MSCs
group, #P <0.05 vs. Control group.
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Discussion
Bone marrow-derived MSCs have become therapeuti-
cally important agents because of their multilineage po-
tentials, immuno-modulatory properties and ability to
localize specifically to injured sites, to reduce scar tissue
formation and to increase neovascularization [4,40].
Although many MSC transplantation studies have shown
beneficial effects in treating ischemic injury, it is cur-
rently limited by the poor engraftment of implanted MSCs
due to the harsh microenvironment in the ischemic region



Table 2 Assessment of LV function (EF and FS) by echocardiography

Group Baseline 1 W 2 W 4 W

EF (%)

Control 91.61 ± 5.79 32.16 ± 5.05 30.72 ± 3.19 25.87 ± 5.58

MSCs 90.51 ± 6.70 34.97 ± 5.87 32.23 ± 8.52 27.26 ± 6.38

HIF-1α-MSCs 91.07 ± 6.23 35.31 ± 7.46 33.10 ± 8.12 29.23 ± 8.63

HIF-1α 92.12 ± 5.54 35.57 ± 6.82 32.94 ± 7.38 30.99 ± 9.00

HIF-1α +MSCs 91.95 ± 6.71 37.18 ± 8.07 38.25 ± 5.72 40.96 ± 8.91&★△*

FS (%)

Control 64.71 ± 2.28 16.48 ± 2.64 15.17 ± 1.80 12.60 ± 2.61

MSCs 63.64 ± 2.21 17.42 ± 3.20 16.51 ± 5.38 13.38 ± 4.52

HIF-1α-MSCs 64.07 ± 2.89 17.57 ± 4.09 16.64 ± 4.17 14.35 ± 4.07

HIF-1α 64.92 ± 2.94 17.86 ± 3.85 16.53 ± 3.91 15.62 ± 4.05

HIF-1α +MSCs 64.45 ± 3.15 18.88 ± 5.69 19.42 ± 3.27 21.04 ± 4.10&★△*

&P <0.05 vs. HIF-1α group, ★P <0.05 vs. HIF-1α-MSCs group, △P <0.01 vs. MSCs group, *P <0.01 vs. Control group. EF, ejection fraction; FS, fractional shortening;
HIF-1α, hypoxia-inducible factor-1α; MSCs, mesenchymal stem cells.
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[4,5]. Thus, additional strategy is required to enhance
the therapeutic efficiency of cell therapy by improving
cell homing, survival, engraftment and repair capacity
of transplanted cells. One promising strategy may be
the combination of cell and gene therapy.
Our results demonstrate that intramyocardial injection

of Ad-HIF-1α combined with MSC transplantation was
potent to promote angiogenesis, and led to improved
cardiac performance after myocardial infarction in the
rats. Our study also showed that overexpression of HIF-1α
after Ad-HIF-1α transfection allows for supranormal
levels of HIF-1α mRNA in peri-infarcted myocardium.
Consistent with previous studies [29,33], we found that
in the SHAM group, without hypoxia, the mRNA level
of HIF-1α was extremely low (Figure 2A1-A3). While
in the Control group, which presented the endogenous
HIF-1α expression under hypoxia conditions, the mRNA
level of HIF-1α was significantly increased. The mRNA
levels of HIF-1α in the HIF-1α +MSCs and HIF-1α
groups were expressed at much higher levels than that
of the MSCs and Control groups due to the exogeneous
HIF-1α expression. However, the HIF-1α mRNA was
much lower in the HIF-1α-MSCs group compared to
the HIF-1α +MSCs and HIF-1α groups. The HIF-1α ex-
pression level in the HIF-1α-MSC group depends on the
numbers of engrafted MSCs, which have very low sur-
vival rates as evidenced by our data. In contrast, the
injected virus could transfect any cell type in the in-
farcted area, which may explain the observed differences
of HIF-1α expressions among different groups.
We found that the SDF-1α mRNA expressions were also

significantly increased in the HIF-1α +MSCs and HIF-1α
groups than in that of other groups (Figure 2B1-B3). Pre-
vious research found that the SDF-1α/CXCR4 axis medi-
ated the migration and homing of bone marrow-derived
cells and endothelial progenitor cells in vivo [30,41-43].
Consistent with these findings, we found that more MSCs
survived and engrafted in the infarcted hearts in the
HIF-1α+MSCs and HIF-1α-MSCs groups than in the MSCs
group. Enhanced angiogenesis, better blood flow and the
beneficial effect of several cytokines may contribute to the
improvement of the ability of MSCs to survive in hypoxic
environments, the migration to the ischemic fibrotic tissue
from the border zone, and the angiogenesis in the is-
chemic area. Since more MSCs survived in the infarcted
hearts in the HIF-1α +MSCs and HIF-1α-MSCs groups,
we speculated that the combined therapy may further en-
hance the angiogenesis at the peri-infarcted and infarct
regions compared to the HIF-1α group, partly due to the
MSC-dependent paracrine mechanism.
The mRNA levels of VEGF, regulated directly by HIF-1α,

were expressed at much higher level in the HIF-1α +
MSCs and HIF-1α groups compared to other groups
(Figure 2C1-C3). It partly explained why a marked in-
crease in capillary density in the peri-infarcted and infarc-
ted regions was observed in these two groups. Sufficient
blood flow as a result of increased blood vessel formation
might be instrumental in preventing the loss of cardio-
myocytes in these zones over time, preservation of con-
tractility in the border zone adjacent to the infarct, and
suppression of post-infarction cardiac failure during left
ventricular remodeling [29].
Our findings suggest that myocardial deterioration

after infarction in the HIF +MSCs group may be limited
not only as a result of stimulation of angiogenesis through
a VEGF-related pathway, but also through additional HIF-
1α-mediated local adaptations to low oxygen tension, and
significantly improved microenvironment and increased
survival, engraftment and repair ability of MSCs. Further-
more, our research demonstrated that the HIF +MSCs
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group showed better capacity for cardiac repair in terms
of the expression of certain important cytokines, such as
VEGF,、SDF-1α, pro-angiogenesis, anti-apoptosis and res-
toration of heart function than the HIF-MSCs group. Our
report suggests the possibility of using the combination of
cell and gene therapy to improve the cardiac repair, with-
out reported side effects, such as fragile and immature
vessels and angioma formation [44,45].
Additionally, our study demonstrated that HIF-1α +

MSC treatment was superior to HIF-1α transfection alone
in terms of pro-angiogenesis, anti-apoptosis and the cap-
acity for cardiac function repair. Consistent with previous
references [46,47], our study showed that MSCs contrib-
ute to the angiogenesis and anti-apoptosis, which may be
partly due to the MSC-dependent paracrine mechanism
and their potential for trans-differentiation [48-51].
Although we demonstrated that the cell survival

rate was higher in the HIF-1α +MSCs and HIF-1α-
MSCs groups when compared to the MSCs group,
the engraftment of cells decreased significantly in all
three groups. One hypothesis that may explain the
drop-off in engraftment and survival rate is that the
exogenous HIF-1α may have been degraded or metab-
olized. In our future study, Western blotting will be
used to track the amount of HIF-1α available to cells
over time in vivo in order to clarify the role of
HIF-1α in cardiac repair. Furthermore, several studies
recently demonstrated encouraging results via the use
of biomaterials, such as a dendrimer-type bio-
reducible polymer or facial amphipathic bile acid-
conjugated polyethyleneimine, to aid the localization
of therapeutic genes to the target cells, thus improv-
ing the transfection efficiency and enhancing the car-
diac repair [52,53]. Application of such biomaterials
in gene therapy holds promise as a potential novel
therapy for the treatment of myocardial ischemia and
infarction.
So far, the low engraftment of transplanted cells is

still the major obstacle to the wide application of stem
cell transplantation to treat MI. A series of studies have
demonstrated several potential strategies to optimize
stem cell engraftment, such as using tissue-engineered
collagen-based scaffolds to provide a suitable micro-
environment to support cell attachment and prolifera-
tion [54,55], or using dynamic three-dimensional culture
techniques to enhance MSCs’ properties and increase
therapeutic potential [56,57]. Recently, our team found
that magnetic targeting enhanced the retention of mag-
netized stem cell in a rat model of myocardial infarc-
tion, suggesting that magnetic targeting offers new
perspectives for enhancing the cell retention and subse-
quent functional benefit in heart diseases [58]. And in
our future study, we plan to combine physics and bio-
logical methods to optimize the engraftment rate.
Conclusions
We demonstrated that intramyocardial transfection of
HIF-1α and co-transplantation of mesenchymal stem cells
enhanced cardiac repair in an experimental model of MI,
in correlation with increased ability to induce angioge-
nesis, reduced apoptosis, and increased survival and en-
graftment of MSCs, thus having transformative impact on
the treatment of patients suffering from severe myocardial
ischemia.
Additional file

Additional file 1: Identification and differentiation assay of MSCs.
A. Identification of MSCs. MSCs uniformly expressed CD105 and CD166,
but not CD45 or CD34. B. Differentiation assay showed the differentiation
potentials of the isolated MSCs into osteoblasts (alizarin red), adipocytes
(oiled red) and chondrocytes (alcian blue).
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