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Abstract 

Background:  Deep learning-based delineation of organs-at-risk for radiotherapy purposes has been investigated to 
reduce the time-intensiveness and inter-/intra-observer variability associated with manual delineation. We systemati-
cally evaluated ways to improve the performance and reliability of deep learning for organ-at-risk segmentation, with 
the salivary glands as the paradigm. Improving deep learning performance is clinically relevant with applications 
ranging from the initial contouring process, to on-line adaptive radiotherapy.

Methods:  Various experiments were designed: increasing the amount of training data (1) with original images, (2) 
with traditional data augmentation and (3) with domain-specific data augmentation; (4) the influence of data quality 
was tested by comparing training/testing on clinical versus curated contours, (5) the effect of using several custom 
cost functions was explored, and (6) patient-specific Hounsfield unit windowing was applied during inference; lastly, 
(7) the effect of model ensembles was analyzed. Model performance was measured with geometric parameters and 
model reliability with those parameters’ variance.

Results:  A positive effect was observed from increasing the (1) training set size, (2/3) data augmentation, (6) patient-
specific Hounsfield unit windowing and (7) model ensembles. The effects of the strategies on performance dimin-
ished when the base model performance was already ‘high’. The effect of combining all beneficial strategies was an 
increase in average Sørensen–Dice coefficient of about 4% and 3% and a decrease in standard deviation of about 1% 
and 1% for the submandibular and parotid gland, respectively.

Conclusions:  A subset of the strategies that were investigated provided a positive effect on model performance and 
reliability. The clinical impact of such strategies would be an expected reduction in post-segmentation editing, which 
facilitates the adoption of deep learning for autonomous automated salivary gland segmentation.
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Background
Target volume and organ-at-risk (OAR) delineation are 
fundamental steps in the radiotherapy treatment plan-
ning process. However, they are time and labor inten-
sive and prone to inter and intra-observer variation. 
Automated deep-learning (DL) based delineation, in 
particular of OARs, has been investigated to address 

the challenges associated with manual delineation [1, 2]. 
Although results have generally been promising, even for 
anatomically complex regions like the head-and-neck [3], 
further improvements are desirable for various reasons, 
including enabling more reliable OAR dose-volume and 
toxicity data, and reducing manual checking and editing 
during on-line adaptive radiotherapy. We investigate the 
potential for improvement in DL segmentation, taking 
the salivary glands as a paradigm. These OARs have long 
been recognized as important in head-and-neck radio-
therapy and insufficient sparing can result in toxicity 
and reduced quality of life [4]. Contouring them can be 
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challenging for technical reasons like low grey-scale con-
trast with surrounding tissue and variation in shape, and 
clinical reasons like inadequate anatomical knowledge. 
Although performance of DL-based delineation (DLD) 
for salivary glands is such that it can be used to create 
clinically acceptable treatment plans [5], it is by no means 
perfect—there have been no reports of salivary gland 
DLD models reaching performances above a Sørensen–
Dice coefficient of ~ 90% [3]. Also, most studies looking 
at improvements to DLD usually only investigate a sin-
gle strategy. In contrast, we wanted to compare the effect 
of multiple individual strategies, and then combine the 
strategies that proved useful in order to see if there was 
any obvious synergism. All strategies that were investi-
gated can be applied to any given DLD model.

Methods
DL model improvement was investigated for left parotid 
and submandibular glands (PG/SMG) using 3D CT data 
(acquired on GE discovery 590RT, helically scanned, 
512 × 512 pixels per slice) from head-and-neck cancer 
(HNC) treatments. There were 683/564 clinically con-
toured left PGs/SMGs. Whenever the right PG/SMG 
was available, it was flipped and added to the dataset 
(based on the assumption of symmetry [6]), result-
ing in a total of 1365/1128 PGs/SMGs. The PG/SMG 
voxel spacing was 1.00 ± 0.08 mm by 1.00 ± 0.08 mm by 
2.49/2.48 ± 0.14/0.16  mm (± indicating standard devia-
tion). Clinical delineation was done by > 10 HNC radia-
tion oncologists and supervised residents. No additional 
curation was performed.

A base DL set-up was used, to which specific strate-
gies were applied. For example, the base dataset was used 
every time when the applied strategy had no influence 
on the dataset and the base cost function was used every 
time the applied strategy had no influence on the cost 
function. This was done to keep the effects from different 
experiments as comparable as possible. The base dataset 
comprised 120 cases. Even with this size, the total train-
ing time for all the models in this study was ~ 30  days, 
which is why using the full data set of 1365/1128 PGs/
SMGs in all experiments would not have been feasible. 
For each experiment, 5/6 of the dataset was randomly 
selected to be the train set and the remaining 1/6 of the 
dataset comprised the test set. The specific sizes of the 
sets varied, because for some experiments the base data-
set was supplemented with additional cases (e.g. when 
testing the effect of the amount of training data). Six-fold 
cross-validation was applied so that every fold contained 
samples not appearing in the test set in other folds; thus, 
every case was in the test set at some point during an 
experiment. The base-model was a fully convolutional 
network [7], based on the 3D U-net [5, 8], with dropout 

[9] applied to all convolutional layers, the Sørensen-Dice 
coefficient (SDC) as cost function, Adam [10] as the opti-
mizer and early stopping was applied to prevent over-
fitting; training was stopped when improvement for a 
separate validation set was < 0.001 for at least 4 epochs. 
In all experiments, the validation set comprised a ran-
dom 10% of the train set, which was not used for train-
ing the model. Even though this might have caused some 
models to stop training prematurely, it was assumed that 
the main experimental effect would be observed. SDC is 
defined as:

where tp, fp and fn are the number of true positive, false 
positive and false negative voxels respectively. The mod-
els were built with Keras (https​://keras​.io/) on top of 
TensorFlow (https​://www.tenso​rflow​.org/). The base pre-
processing steps consisted of cropping a region-of-inter-
est (ROI; 64 × 64 × 32/96 × 64 × 64 voxels for SMG/PG) 
centered on the OAR to limit memory usage, applying 
a Hounsfield Unit (HU) window (− 75 to 175 and − 190 
to 310 for SMG and PG respectively) to remove extreme 
values and increase contrast and finally normalizing the 
data, because convergence is reached more easily when 
all input variables have the same range. All values were 
normalized to a range of [0,1] after which the mean 
was subtracted, effectively centering the data around 
0 (Fig.  1). The evaluation of each experiment was done 
using SDC and 3D Hausdorff distance (HD; largest mini-
mal distance from any point from set a to any point from 
set b; units of voxel space). Calculations were done on a 
single GeForce GTX 1080ti GPU. Hyperparameter values 
were chosen based on prior non-exhaustive hyperparam-
eter tuning. The various experiments change different 
elements of the base-model: data quantity, data quality, 
model training and how to use the model for inference.

Data quantity
Effect of set size
More data usually means better model performance, 
but linear increases in amounts of data often result in 
exponentially decreasing increases in model perfor-
mance [11]. Since data of (high-quality) clinical delinea-
tions is often hard to come by, it is relevant to investigate 
whether the effort to collect it is worthwhile. Therefore, 
we trained the base-model multiple times with different 
set sizes: PG = 60–1320 and SMG = 60–1080 in incre-
ments of 60. The small set size of 60 was introduced to 
allow for a more complete examination of the relation-
ship between set-size and model performance.

SDC =
2tp

2tp+ fp+ fn
,

https://keras.io/
https://www.tensorflow.org/
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Effect of traditional data augmentation
Data augmentation can be used to substitute for more 
original data [12]. This consists of applying operations to 
original images in order to create new training images. 
We randomly applied flipping, rotation in all angles and 
adding Gaussian noise (µ = 0, σ = 15) to 60–600 random 
cases from the base train set (one case can be augmented 
multiple times) in increments of 60. These cases were 
then added to the training data.

Effect of domain‑specific data augmentation
In the case of CT data, traditional data augmentation 
methods generate images which can be very easily dis-
tinguished from the original dataset (e.g., an original 
CT scan is never flipped without reason). Therefore, 
other data augmentation techniques may be more use-
ful to simulate cases that might be expected to be found 
in the original dataset. We call this approach domain-
specific data augmentation. More technically, the aim is 
to increase the inherent data variance rather than intro-
duce new forms of variance. In order to do this, three 
operations were applied for each augmented case: elas-
tic deformation simulating different anatomies ([13]; 
α = 38/58, σ = 3.8/5.8, affine α = 3.8/5.8 for SMG/PG), 
shifting patient densities by adding a value to all voxels in 
the body contour and shifting OAR densities by adding a 
value to all voxels in the OAR contour. Shifting was done 
by drawing a random value from a Gaussian distribution 
(µ = 0/0, σ = 100/30 respectively). Examples are shown in 
Fig. 2a–d.

Data quality
Effect of data curation
Clinical OAR delineations often contain inaccuracies (e.g. 
PG delineation containing part of the mandible, extend-
ing into skin, containing muscle tissue or missing part 
of the organ). This may be due to insufficient attention 

to detail, low contrast with surrounding tissue, (metal) 
CT-scan artifacts or patient-specific organ deformation. 
Usually, such inaccuracies are relatively minor and may 
not influence treatment plan quality [14] (clinicians being 
aware of the small effect on dose distributions may itself 
be a cause of the inaccuracies), but they can hinder the 
DL model from learning to properly recognize the struc-
ture. Therefore, we investigated the effect of meticulous 
(voxel-level) curation of the clinical contour. A single 
observer performed this task in order to reduce variabil-
ity. Curation took ~ 1 h per gland, whereas clinical deline-
ation usually takes a few minutes for the PG/SMGs. 
Examples of the initial clinical contour and its curated 
version can be seen in Fig.  2e/f. For this preliminary 
analysis, 24 SMGs/PGs were curated. Training and test-
ing on clinical/curated cases was compared. Because of 
the small sample size, we repeated the tests after domain-
specific augmentation of the training data to the size of 
the base train set (n = 90). Each cross-validation fold was 
run 6 times, to account for random weight initialization 
and make the results more reliable. This was facilitated by 
the small set size.

Model training
Effect of cost function
Volumetric SDC can be relatively insensitive to substan-
tial surface-level errors, because their volume is often 
small compared to the entire structure. Because of this, 
it may be that model training stops earlier than desirable 
when the volumetric similarity between the clinical and 
DL delineation overpowers the influence of surface dis-
tance errors. In order to increase the impact of surface 
errors during training, we ran the base experiment using 
a volumetric SDC cost function, while decreasing the 
influence of true positive voxels by factor 2 (SDC(0.5)) 
and 20 (SDC(0.05)). We also trained using a combined 
SDC + HD cost function:

Fig. 1  Overview of the preprocessing steps for the base set-up for a random PG. The clinical contour is depicted in red. The corresponding value 
ranges are given below the images. The steps are identical for the SMG
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where x is the ROI diagonal (maximum possible HD), 
which forces the HD to a range of 0–1. The value of 0.33 
limiting x was chosen empirically to make sure x did 
not nullify the influence of HD. SDC + HD training was 
only done for the SMG, because prior tests showed that 
calculating HD for the PG during training exceeded the 
GPU memory available to us (PG ROI was larger than the 
SMG ROI).

Inference
Effect of patient‑specific Hounsfield unit windowing
In prior tests we found that using a patient-specific HU 
window for inference, instead of a set window across 
the entire patient dataset, might increase model perfor-
mance and reliability. To properly validate if this effect 
holds for different models, we searched for the ‘best’ 
patient-specific window (center: −  100–400 in incre-
ments of 10, width: 100–1000 in increments of 50) used 
to preprocess the data, and picked the window that pro-
vided the highest SDC. We use the term ‘best window’ 

Cost = SDC +
HD

0.33x
,

loosely, because an exhaustive search of all possible 
windows was not performed. This was repeated for 6 
models with different test sets, in keeping with the six-
fold cross-validation in other experiments. Since only 
12 models had to be trained for this experiment (6 for 
each gland), we could use the entire dataset, increasing 
the outcome’s validity.

Effect of ensembles
Ensemble methods consist of averaging multiple models’ 
predictions through some voting scheme (i.e. by defin-
ing a voxel as positive only when a minimum number of 
models, the cut-off, predict it to be positive), to provide 
more accurate predictions than that of a single model 
[15]. We tried an ensemble of 11 models and utilized the 
random initialization of model parameters to generate 
them. Different parameter initializations can converge 
at different local optima. Therefore, different models can 
complement each other. The ensembles’ performance 
was compared to the average performance of all stand-
alone models. This process was done 6 times in keeping 
with the sixfold cross-validation in other experiments.

Fig. 2  Example of an original image (a/c) and its domain-specific augmented version (b/d) for a SMG (a/b) and a PG (c/d) and examples of clinical 
(red) vs. curated (yellow) contours for SMG/PG (e/f)
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Effect of all positive interventions on the entire dataset
Finally, the strategies that had a positive effect on model 
performance/reliability were combined in a final model. 
This model was compared to a model trained with only 
the maximum set size as the intervention.

Results
The results can be seen in Fig. 3, Table 1 and Fig. 4. The 
presented results are the combined results of all cross-
validation folds. They demonstrate the following. Increas-
ing set size provides an exponentially decreasing increase 
in model performance for PG/SMG and an increase in 
model reliability for the PG, but not SMG (Fig.  3a/b). 
Overall, both types of data augmentation appear to have 
a similar positive effect on model performance but not 
reliability for both OARs (Fig. 3c–f). However, the trend 
is not completely stable, especially not for the traditional 
data augmentation. Training on curated rather than 
clinical contours, with or without augmentation, did not 
yield better results for either OAR (Table 1). None of the 
cost functions gave better results than the SDC for both 
OARs (Table 1). Using a patient-specific HU window had 
a positive effect on model performance/reliability for 
both OARs (Table  1). Model ensembles appear to pro-
vide better and more reliable predictions than a stand-
alone model (Fig.  4). In general, the best cut-off seems 
to be around the middle; i.e., a simple majority vote 

(here ≥ 6/11) should suffice. To show the combined effect 
of all positive results, a model trained with maximum set 
size was compared to an ensemble of models trained with 
maximum set size, doubled in size by domain-specific 
data augmentation and incorporating patient-specific 
windowing (Fig. 5a/b).

Discussion
Several strategies designed to increase model perfor-
mance and reliability for DL-based salivary gland deline-
ation were explored to facilitate its adoption in clinical 
practice. Consistent with the work of others, we observed 
a positive effect from increasing the amount of train-
ing data [16]. Data augmentation, patient-specific HU 
windowing and an ensemble of models also delivered 
improvements, although the effect of data augmenta-
tion was not completely stable. One possible explana-
tion could be the random nature of the augmentation 
methods we used. Part of the effect of data augmenta-
tion might simply be due to an increase in the amount 
of data, so that more training cases are processed before 
the early stop is triggered. This may have caused some 
models that would have otherwise stopped training pre-
maturely to be able to move past flat optimization land-
scapes. Nevertheless, early stopping was needed to limit 
total training time and avoid overfitting. While various 
traditional methods of data augmentation exist [12], 

Fig. 3  Model performance/reliability measured by SDC/HD per set size (a/b), per number of augmented images with traditional data 
augmentation (c/d) and per number of augmented images with domain-specific augmentation (e/f)
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domain-specific augmentation is usually achieved with 
the use of generative adversarial networks [17, 18]. The 
downside of such networks is that they pose a separate 
DL problem on their own, whereas the method used here 
does not. The results of the patient-specific HU window-
ing may also be important for other imaging applications 
where the specific task may benefit from having more 
optimal contrast. Ensembles have been found to work 

better than stand-alone models before [19], but often 
these approaches change substantial parts of the model 
(e.g., architecture or hyperparameters) to obtain differ-
ent models, while the simple approach used here only 
needs multiple runs/parameter initializations. Figure  6a 
shows an illustrative example of how ensemble methods 
can help make the overall DL framework more reliable. A 
single model (shown in white) is thrown off by the oddly 

Table 1  Model performance/reliability measured by SDC/HD with/without curation, per cost function and for set window 
versus patient-specific window

Set sizes (SMG/PG) SDC HD

Train Validation Test SMG PG SMG PG

Data quality

Without augmentation

 Train data Test data

 Clinical Clinical 18/18 2/2 4/4 .68 ± .06 .68 ± .05 17.6 ± 1.5 24.7 ± 5.1

 Curated Curated 18/18 2/2 4/4 .66 ± .07 .68 ± .04 23.4 ± 1.3 28.1 ± 4.3

With augmentation

 Train data Test data

 Clinical Clinical 90/90 2/2 4/4 .67 ± .06 .69 ± .06 13.6 ± 1.3 24.8 ± 5.3

 Curated Curated 90/90 2/2 4/4 .67 ± .07 .69 ± .04 12.0 ± 1.5 21.8 ± 4.6

Cost functions

 SDC 90/90 10/10 20/20 .71 ± .06 .71 ± .06 6.9 ± 1.5 17.3 ± 6.4

 SDC(0.5) 90/90 10/10 20/20 .71 ± .06 .71 ± .06 9.0 ± 3.0 17.4 ± 6.8

 SDC(0.05) 90/90 10/10 20/20 .70 ± .06 .71 ± .06 6.6 ± 1.6 16.6 ± 7.0

 SDC + HD 90/90 10/10 20/20 .70 ± .05 7.6 ± 2.4

Patient-specific windowing

 Set window 940/1024 94/114 188/227 .86 ± .07 .85 ± .05 4.5 ± 1.9 8.1 ± 3.8

 Patient-specific window 940/1024 94/114 188/227 .87 ± .05 .87 ± .04 4.1 ± 1.6 7.7 ± 3.8

Fig. 4  Model performance/reliability measured by SDC/HD (a/b) with ensemble methods, including the effect of different cut-offs. Grey lines show 
average (-)/standard deviation(–) of SDC/HD for all stand-alone models in this experiment
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shaped PG, but when a majority vote over multiple mod-
els is held, the DL contour improves significantly.

We did not observe any effect from training on curated 
data, nor from using different cost functions. The lack of 
effect from curation was unexpected [20], and might be 
due to the small set size used in this preliminary analy-
sis. In addition, it is possible that training was harder 
with the curated data, since, in general, it consisted of 
more complex contours than the clinical data (Fig. 2e/f ). 
We can quantify this difference in complexity by the 
mean of the contour circumference divided by its area 
for all slices (https​://matpl​otlib​.org), resulting in val-
ues of 0.35/0.55 for clinical/curated, with lower being 

smoother and higher more complex. Complex features 
are harder to learn and so learning curves may be differ-
ent for curated and clinical data. It is also possible that a 
larger model architecture is necessary for a curated-only 
dataset, to adequately capture more (and more complex) 
features. Further research is needed to test these hypoth-
eses. Although other work [21] has found a positive effect 
of curation the clinical and curated datasets comprised 
different patients, decreasing the validity of the results. 
None of the alternative cost functions provided better 
results than the standard SDC. Apparently, training is 
not hindered by the small influence that surface errors 
have on the cost when using the standard SDC. When-
ever alternative cost functions are explored, it is usually 
to deal with highly unbalanced data [e.g., 22], which we 
don’t have with our single-class approach.

The effects of all strategies seemed to diminish when 
the model performance was already quite good. For 
example, when the entire dataset was used, applying 
an ensemble of PG models only increased average per-
formance by + 0.01 compared to + 0.04 for a set size of 
120 cases. This could help to explain why, to the best of 
the authors’ knowledge, there is no literature reporting 
SDCs above 0.9 for SMG/PG segmentation. Inter-/intra-
observer variability and the inaccurate data associated 
with it, may put an upper limit on the achievable SDC. 
For instance, if part of the mandible is included in some 
PG contours in the train set whilst not in others, the 
model learns to average over it. If both types of patients 
are then present in the test set as well, the model’s pre-
diction can never accurately match the clinical contour in 
all cases making it very unlikely that an average SDC of 1 
will ever be possible. Nonetheless, model reliability still 

Fig. 5  Model trained with the maximum set size (MSS; blue) versus an ensemble of models trained with the maximum set size, doubled in size by 
domain-specific data augmentation and with patient-specific windowing applied (CE; red) for SMG/PG

Fig. 6  a Illustrative example of the effect of using an ensemble for an 
oddly shaped PG; different cut-off levels depicted by shades of blue 
(low = light, high = dark), clinical delineation is in red. b An inaccuracy 
(indicated by the yellow arrow) in the clinical contour (red) causing 
the SDC to be lower than when the DL contour (blue) would have 
been compared to the actual ground-truth

https://matplotlib.org
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seemed to increase, even if base performance was already 
quite good. This is important for clinical implementation, 
because clinicians will more often be able to use the con-
tours without having to edit them. We expect that these 
considerations about the need for high-quality data apply 
to all applications of deep learning for segmentation, 
both within the biomedical domain and outside of it. 
However, we want to be careful extrapolating our other 
findings to various forms of DL-based radiotherapy seg-
mentation, because effects may well differ between struc-
tures due to variation in size, density and contrast with 
surrounding tissues. For instance, the result of using the 
strategies applied in this study may be different for much 
larger and better visible structures like the lungs or much 
smaller structures like the optic chiasm.

The SDC is the most prevalent outcome metric in bio-
medical segmentation. However, it can be influenced by 
multiple factors. DL models can be influenced by ran-
domly splitting the dataset into training and test sets, 
random weight initialization, random dropout and ran-
domness of the training sequence. Between studies, dif-
ferences in SDCs can be influenced by the quality of the 
contours (see above and Fig.  6b), patient characteristics 
(larger organs give higher SDCs because of the larger 
proportion of true positives) and imaging characteristics 
(smaller voxel spacing gives larger organs in voxel space). 
For all these reasons, inter-study SDC comparisons can 
be problematic, unless for example, a well curated, open-
access dataset is used and intra-study variations are 
accounted for by cross-validation and multiple runs per 
fold to account for random weight initialization. Even so, 
effects of randomness are diminished, but never elimi-
nated. These considerations, except for voxel spacing and 
organ size (not every metric is influenced by structure 
size), hold for any metric used to evaluate DL models 
as we have implemented them. Furthermore, SDC alone 
may not be sufficient to adequately represent model per-
formance, since, for example, the HD is not always low 
when SDC is high. Therefore, it may be relevant to report 
HD and SDC.

The main limitation of this work is considered to be 
the possible influence of random effects on model per-
formance. Even with cross-validation and, where possi-
ble, multiple initializations of the same fold, there is no 
guarantee that results are not influenced by completely 
random effects. Other limitations include not account-
ing for an interaction effect between number of epochs 
(which may occasionally have been limited too much 
by early stopping) and the independent variable in an 
experiment. Lastly, patient-specific HU windowing was 
based on the SDC. However, the SDC is not available 
in situations of de-novo contouring, and so if it is to be 
used in practice, further research is necessary to map 

CT-scan characteristics to the ‘best’ HU window for 
segmentation in that scan.

Conclusions
In summary, several techniques to increase DL model 
performance and reliability for salivary gland seg-
mentation were investigated. A positive effect was 
observed from increasing set size, data augmentation, 
patient-specific HU windowing and a model ensemble. 
Generally, effects appeared to become smaller when 
base-model performance was already quite high. This 
suggests there may be an upper limit for performance 
governed by data ‘quality’. Nevertheless, model reliabil-
ity appears to increase regardless of base performance, 
implying less post-segmentation editing when these 
techniques are clinically implemented and facilitat-
ing the goal of using DLD for autonomous automated 
segmentation.
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