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1  | INTRODUC TION

Studies of ecology and evolution often use equipment which has 
been made by the investigators, for a diverse range of applications 
and exhibits a high level of creativity. 3D printing offers an opportu‐
nity to produce equipment which can be shared with the scientific 
community, allowing other investigators to replicate studies with 
more accuracy than before, strengthening the open science move‐
ment (Baden et al., 2015; Pearce, 2014). Furthermore, 3D printing 
offers timesavings over traditional manufacturing methods, as the 
process is largely automated. As well as simple models, 3D printing 
makes it possible to generate complex morphologies accurately, pro‐
duce laboratory equipment and generate models for teaching and 
outreach. 3D printing also removes ethical concerns over using live 
animals for experimental manipulation.

Previous studies that have used models in one form or another 
could be improved using 3D printing (e.g., in Fraisse, Bormans, 
& Lagadeuc, 2015). Many studies might simply benefit from the 
increased consistency of the technique, reduction in costs, and 
ease of production. For some studies, 3D printing would offer the 

opportunity to conduct the research using more life‐like models, 
which may elicit more appropriate responses from the organisms 
involved.

The technique of 3D printing encompasses a range of manufac‐
turing methods (see Table 1, Box 1 for an introduction and Figure 1 
for a generalized workflow), which may be referred to as rapid pro‐
totyping, desktop‐, additive‐, or rapid‐manufacturing. Originating 
with stereolithography (SLA) using a specific photosensitive polymer 
(Wong & Hernandez, 2012), the technology now allows printing with 
a variety of materials with diverse properties (Berman, 2012, see 
Table 1), including soft, flexible materials (Abdollahi, Davis, Miller, 
& Feinberg, 2018). Each 3D printing method has its own advantages 
and disadvantages (see Table 1), but overall the technique offers a 
method of creating objects in a way that is more like organic growth 
than traditional “subtractive” methods. Rather than removing mate‐
rial to create an object, 3D printing builds layers up by adding mate‐
rial as a series of thin slices (Wong & Hernandez, 2012).

In many fields, 3D printing is an established methodology. In med‐
icine, it has been used for almost 20 years to make surgical guides 
used to plan surgery (Cohen, Laviv, Berman, Nashef, & Abu‐Tair, 
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2009; D'Urso, 1999; Gerstle, Ibrahim, Kim, Lee, & Lin, 2014; Rengier 
et al., 2010). Technological developments now allow 3D printing of 
metals (Murr et al., 2012), permitting prosthetics to be custom‐made 
for the patient (Sing, An, Yeong, & Wiria, 2016). 3D printing is used 
in microbiology (Connell, Ritschdorff, Whiteley, & Shear, 2013), tis‐
sue culture, and the development of replacement (Duan, Hockaday, 
Kang, & Butcher, 2013), and bionic (Mannoor et al., 2013) organs. 
In all of these areas, the technique has led to the development of 
new methods (Cohen et al., 2009; Connell et al., 2013; D'Urso et 
al., 1999; Duan et al., 2013; Ebert et al., 2009; Herbert, Simpson, 
Spence, & Ion, 2005; Mannoor et al., 2013; Rengier et al., 2010). 
With falling costs (Hoy, 2013), 3D printing has also become more 
common in Science and Engineering and, its use is rapidly expanding.

There are also many instances where standard equipment does 
not meet the needs of the investigators (Lücking, Sambale, Beutel, 
& Scheper, 2015). However, with some knowledge of CAD soft‐
ware, many bespoke items can be designed and printed in‐house. 
Furthermore, the files can be easily sent to collaborators or included 
with publications. For example, microfluidic devices are commonly 

used for a range of experiments involving processes such as bacterial 
chemotaxis (Ahmed, Shimizu, & Stocker, 2010), pollution monitoring, 
clinical diagnosis, drug discovery, and biohazard detection (Holmes 
& Gawad, 2010; Yazdi et al., 2016). Where printing resolution allows, 
the use of 3D printing to create either molds for Polydimethylsiloxane 
(PDMS) chambers or to directly print the chambers is becoming in‐
creasingly popular (Bonyár et al., 2010; Ho, Ng, Li, & Yoon, 2015; 
Kamei et al., 2015; Kitson, Rosnes, Sans, Dragone, & Cronin, 2012; 
Lee et al., 2014; Yazdi et al., 2016) over the time‐consuming and 
often expensive process of creating a mold using traditional tech‐
niques (Waldbaur, Rapp, Länge, & Rapp, 2011). The ability to quickly 
produce and test designs using the 3D printing process is also highly 
valuable, especially where new devices need to be developed.

3D printing can also significantly reduce the cost of standard lab‐
oratory equipment (e.g., laboratory jacks, retort stands, Eppendorf 
pipettes, and equipment holders), by up to 97% compared to ven‐
dors pricing (Zhang, Anzalone, Faria, & Pearce, 2013). Despite the 
high initial cost of a 3D printer, the cost per unit in materials is low 
(Kitson et al., 2012; Waldbaur et al., 2011). In addition to financial 
benefits, time savings can be dramatic. Electronic files containing all 
the information needed to 3D print equipment can be obtained from 
a number of online sources (Baden et al., 2015; Willermet, 2016, as 
used by Brandley, Johnson, & Johnsen, 2016) and printed immedi‐
ately. Thus, even with next day shipping from equipment vendors, 
downloading and 3D printing is far faster (Zhang et al., 2013). As 
hardware reduces in cost 3D printing becomes accessible to indi‐
viduals and small laboratory groups (Hoy, 2013). Additionally, there 
are now a number of commercial print‐on‐demand 3D printing com‐
panies, allowing researchers with more limited budgets to obtain 
printed models without the cost of buying hardware (e.g., McDougal 
& Shepherd, 2015).

Another blossoming application is the use of 3D models in teach‐
ing and learning, a key part of encouraging the next generation of 
scientists and engaging the public with research. Students with vi‐
sual impairment, and members of the public can explore both large 
(Larkin, personal communication) and microscopic fossils (Kaplan 
& Pyayt, 2015; Rahman, Adcock, & Garwood, 2012; Teshima et 
al., 2010) which can be scaled to be easily held. This approach has 
been used to enable those with visual impairment to learn about 
microscopic planktonic organisms (Teshima et al., 2010), as well as 
cells undergoing mitosis, striated muscle cells, and neuromuscular 
junctions (Kolitsky, 2014). Such models could also be used by stu‐
dents who are unable to use microscopes due to motor impairment. 
Furthermore, to make complex microscopic features accessible bac‐
teria, viruses, proteins, enzymes (Gardner & Olson, 2016), molecules 
(Bara, Heath Turner, Zhang, & Hawkins, 2015), Natural Killer cells 
(from high‐resolution micrographs, Mace, Moon, & Orange, 2015), 
and neurons (McDougal & Shepherd, 2015) have all been 3D printed. 
Compared to digital models and textbooks, models of complex ana‐
tomical structures, such as the human heart (Kaplan & Pyayt, 2015) 
and horses’ feet (Preece, Williams, Lam, & Weller, 2013), provide the 
opportunity for the learner to interact with the subject, permitting 
physical exploration of the structures.

Box 1 3D printing: an introduction
Before 3D printing an object, the technique to be used needs 
to be chosen. Table 1 outlines some 3D printing methods and 
Table 2 outlines some costs and features of 3D printers. 
Important considerations include the layer thickness; whether, 
if the object has cavities; and the minimum feature size re‐
quired. For example, FFD 3D printers can print objects with 
cavities, but produce relatively thick layers and so the model 
will likely have a stepped appearance, especially on curved sur‐
faces. SLA 3D printers have thinner layer thickness so curved 
surfaces are smoother, but they cannot create cavities.
The first step of 3D printing is obtaining a digital model, this 
can be based on CT‐scan, laser scan data, or it could be de‐
signed using a computer (Computer Aided Design, CAD). This 
model is digitally sectioned into thin layers, by the 3D printer 
software and these layers dictate the printer head's path. In 
the case of SLA, the “head” is a laser while for FFD it is a nozzle 
extruding molten plastic filament.
Once the 3D printer has produced the model, there is often a 
level of postprint processing. The model may need to be 
cleaned in alcohol to remove excess resin in the case of SLA. 
Most 3D printers need a scaffold of material to support the 
model during printing, which needs to be removed after print‐
ing. In some cases, the support material is different from the 
final model (e.g., FFD) so can be dissolved, otherwise it needs to 
be cut (e.g., SLA). Powder based 3D printing technologies use 
the surrounding powder to support the model during printing. 
This means that the model will need to be removed and dusted, 
while some powder‐based models may need impregnating with 
binder (glue or similar) to solidify the object completely.
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This review focuses on the advances within Ecology and 
Evolution, and related fields, which have been driven by 3D printing. 
Examples of how 3D printing could be used are provided through‐
out, with the hope of inspiring the reader.

2  | E VOLUTION

2.1 | Morphology and coloration

Understanding both the inter‐ and intra‐specific signals organisms 
convey to one another is a core aim for evolutionary, ecological, 
and behavioral studies. Unpicking relationships between organ‐
isms and the signals that mediate them is often achieved through 
manipulative experiments (Andersson, 1994; Krebs & Davies, 
1993). Here, 3D printed objects offer great benefit as they can be 
produced to specifications not possible with real organisms. An 
illustrative example is animal coloration. The communication of 
an individual's fitness through coloration is common, especially in 
males (Andersson, 1994; Krebs & Davies, 1993; Svensson & Wong, 
2011). Testing the influence of coloration on mating success or 
other interactions is normally done through comparison between 
an individual's brightness and the rest of the population (Crothers 
& Cummings, 2015). However, this process is time consuming and 
may require the capture, and associated stress, of animals. Being 
able to produce 3D printed models of animals, that can be colored 
to account for the species’ visual system, allows direct manipu‐
lation of a visual signal, while maintaining (and controlling) mor‐
phology to encourage responses. This approach has been used 
to investigate the coloration of the poison frog, Oophaga pumilio, 
where brightness was found to be an indicator of more aggres‐
sive males (Crothers & Cummings, 2015). Similarly, Brandley et 
al. (2016) investigated the evolution of the red “hourglass” mark 
of the black widow spider (Latrodectus spp.), which is believed to 
be aposematic (a warning to deter predators). Hand‐painted 3D 

printed models of the spiders received fewer predation attempts 
when models exhibited the red hourglass marking (Brandley et al., 
2016).

While bright coloration is often considered an honest sexual 
signal, the presence of distinctive colors may result in high preda‐
tion rates, reduced immune response and increased oxidative stress 
(Svensson & Wong, 2011), suggesting a trade‐off between natural 
and sexual selection. For example, individuals in low‐risk environ‐
ments are often more brightly colored than those in high‐risk envi‐
ronments (Endler, 1982). Heinen‐Kay et al. (2015) used 3D printing to 
investigate risk‐moderated coloration in the Bahamas Mosquitofish 
(Gambusia hubbsi). In blue holes (large landlocked sinkholes) lacking 
predatory fish, male G. hubbsi have evolved a brighter orange color‐
ation on their dorsal fin, compared to those in blue holes with pred‐
ators. On the face of it, the simplest method to investigate potential 
trade‐offs would have been to translocate fish between blue holes, 
to observe the effect of coloration on mating success and predation. 
However, this is not only logistically challenging, but also ethically 
questionable. By using 3D printed models of males with and without 
coloration, the potential trade‐off could be easily examined, and re‐
sults indicated that signal diversity can be driven by the interaction 
of natural and sexual selection (Heinen‐Kay et al., 2015).

Another example is the coloration of brood‐parasite eggs. Igic 
et al., (2015) used 3D printing to separate the effects of coloration 
on the rejection of brown‐headed cowbird (Molothrus ater) eggs, by 
American robins (Turdus migratius). Igic et al. (2015) demonstrate how 
3D printing can be used to remove human error when reproducing 
models that would otherwise have to be made by hand, while also 
allowing the flexibility for each batch of eggs to have a unique shape.

3D prints do not always need to be the final model—they can 
also be used to create a mold. This approach was used by Policha 
et al. (2016) to understand the visual and olfactory components of 
flower attraction. Silicone models from 3D printed molds allowed 
the separation of visual and olfactory cues in the Dracula orchid 

F I G U R E  1   A generalized work flow 
of 3D printing. The digital model can be 
obtained from a biological specimen. If the 
model is laboratory equipment or does 
not need to be an exact replica of the 
structure of interest (e.g., Campos et al., 
2015, see below) then the model can be 
generated using Computer Aided Design 
(CAD). Finally, either type of model (i.e., 
CAD or scan based) can be downloaded 
from commercial sites, collaborators, or 
other researcher's publications
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(Dracula lafleuri). This species mimics mushrooms to attract flies, 
which then pollinate the plant. The authors used accurate scent‐free 
silicone models (Figure 2d) to show that flies are attracted to both 
visual and olfactory cues, with a synergistic effect suggesting that 
it is driven by multimodal mimicry of the mushrooms by the plant 
(Policha et al., 2016). Similarly, Campos et al. (Campos, Bradshaw, & 
Daniel, 2015) used 3D printed flower analogues to investigate the 
effect of flower morphology on hawkmoth (Manduca sexta) feeding. 
Using flower mimics from a flat disk to a realistic trumpet shape (see 
Figure 2c), they found support for the theory that flower trumpets 
act as a mechanical guide, despite the printed “flowers” lacking the 
coloration and flexural properties of the real flower (Campos et al., 
2015). Both models produced for these studies would be difficult 
to fashion using traditional techniques, and the studies show how 
CAD and 3D printing allow flexibility in design while facilitating the 
production of multiple identical units.

2.2 | Biomechanics

Biomechanics allows researchers to link form to function, a key part 
of evolutionary biology. Here, 3D printing offers an opportunity to 
produce realistic models of whole or parts of organisms which can 
be used to test theories about shape and function of structures. 
As demonstrated by Policha et al. (2016) with the Dracula orchid, 
exploring organismal function with models using a reductionist 

approach, that is examining component parts, is often useful. Porter, 
Adriaens, Hatton, Meyers, and McKittrick (2015) produced 3D 
printed models to investigate the functional morphology of the sea‐
horse (Hippocampus spp.) tail. Seahorses have a square cross‐sec‐
tion tail, as opposed to the round cross‐section tails which might 
be expected of fish. Hypothetical round cross‐section tails were 
generated using CAD and compared to the square morphology of 
seahorse tails, which was obtained from CT scan data. To compare 
possible functional advantages of square cross‐section tails Porter 
et al. (2015) then 3D printed both tail morphologies and subjected 
them to a series of tests. The authors found that square cross‐sec‐
tion prototype tails (Figure 2f) performed better for grasping and are 
more resistant to crushing than round‐section tails. Improved grasp‐
ing ability of the square cross‐section tail was likely an evolutionary 
advantage for seahorses, which use their tails to hold onto corals, 
algae, and seagrasses (Neutens, de Dobbelaer, Claes, & Adriaens, 
2017; Porter et al., 2015). By examining the tail in this way, Porter 
et al.’s work helps to explain some of the unusual morphology that 
seahorses have evolved.

In the Neotropical buch‐cricket (Acanthacara acuta), the sound 
produced by the wings is amplified by an unusual extension of the 
pronotum (the dorsal covering of the thorax), which forms a cham‐
ber over the wings. To explore the function of this chamber, 3D 
printed models have been used to replicate the chamber (Jonsson 
et al. 2017), which is hypothesized to work as a Helmholtz resonator 

TA B L E  2   A range of different 3D printers, their cost (as of February 2019) and features

Technology Type Manufacturer Printer Cost (USD)
Build volume 
(mm)

Maximum 
resolution 
(µm) Connectivity

FFD Desktop Prusa 
Research

Original Prusa 
i3 MK3

$999 250 × 210 ×  200 50 USB

DIY/kit Creality Ender 5 $329 220 × 220 × 300 50 USB, SD card

Desktop Sindoh 3DWOX 1 $1,499 210 × 200 × 195 50 USB, 
Ethernet, 
Wi‐Fi

Desktop Qidi Tech X‐ONE 2 $279 140 × 140 × 140 50 NS

SLA Desktop ELEGOO Mars $349 120 × 68 × 155 50 USB

Desktop Photon ANYCUBIC $519 115 × 65 × 155 30 USB, SD card

Professional B9Creations B9Creator v1.2 $4,595 104 × 75 × 203 30 USB

Professional Formlabs Form 2 $3,499 145 × 145 × 175 30 USB, 
Ethernet, 
Wi‐Fi

Binder Jetting Industrial 3D systems ProJet CJP 
660Pro

$50,000‐$100,000 254 × 381 × 203 10 Ethernet, 
Wi‐Fi

Material 
Jetting

Industrial Stratasys Object 
Eden260VS

$50,000‐$100,000 255 × 252 × 200 20 Ethernet

Industrial 3D systems ProJet 
3500HD MAX

$50,000‐$100,000 298 × 185 × 203 20 Ethernet, 
Wi‐Fi

Powder 
binding

Industrial EOS P396 >$250,000 340 × 340 × 600 60 Ethernet

Industrial EOS Formiga P110 $100,000‐$250,000 200 × 250 × 330 60 Ethernet

Notes. NS: not stated.

Data from www.aniwaa.com, 3D printers with the highest customer rating for each technology were chosen.

http://www.aniwaa.com
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(Morris & Mason, 1995). By changing the material properties of the 
chamber (photopolymer resin in the 3D model, instead of insect 
cuticle), Jonsson et al. (2017) showed that the morphology of the 
structure alone is responsible for the amplification of sound. Surface 
texture can also be modeled well by 3D printing. In an examination 

of ice formation on surfaces, 3D printing was used to replicate sur‐
face textures of blue mussels, (Mytilus edulis), Antarctic sea urchin 
(Sterechinus neumayeri), and sub‐polar butterclams (Saxidomas nut‐
talli) (Figure 2a). MehrabaniRay, Tse, and Evangelista (2014) found 
that the ridges and bumps present on all tested surfaces reduced 

F I G U R E  2   Examples of 3D printed objects from the studies described in the text. (a) Top, Butterclam shell (Saxidomas nuttalli), and 
below textured 3D print replicating surface structure to test ice formation (Mehrabani et al., 2014). Reproduced with permissions from 
PeerJ. (b) Left, a dead female Emerald Ash Borer (Agrilus planipennis) decoy used to bait traps and on the right a 3D printed model. Below, 
the real decoy and model mounted on a trap (Domingue et al. 2015). Reproduced with permissions from Journal of Pest Science. (c) Top, a 
hawkmoth (Manduca sexta), using its proboscis to probe a flower, and below a CAD model of the 3D printed “flowers” used by Campos et al. 
(2015). Reproduced with permissions from Functional Ecology. (d) Flower of the Dracula Orchid (Dracula lafleuri) and silicone model used to 
separate visual and olfactory cues (Policha et al., 2016). Reproduced with permissions from New Phytologist. (e) Top left, an Environmental 
Scanning Electron Microscope image of bonnethead shark (Sphyrna tiburo) skin. Scale bar 100 µm. Top right, a digital model of a denticle. 
Bottom left, SEM images of 3D printed denticles embedded in membrane. Bottom Right, a single 3D printed denticle approximately 1.5 mm 
in length (Wen et al., 2014). Reproduced with permissions from Journal of Experimental Biology. (f) Top, Micro‐CT scan images of a seahorse 
(Hippocampus spp.) tail. Middle, a 3D printed model based on the micro‐CT scan. Bottom, a 3D printed hypothetical tail structure. These 
models were used to assess how the square cross‐section of the seahorse tail grips and resists crushing compared to the round cross‐section 
(Porter et al., 2015). Reproduced with permissions from Science
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ice formation at −20°C, but the role of surface texture was limited 
to approximately 6%. Such 3D models have the advantage of having 
the same material properties, allowing only the variable under inves‐
tigation to be modified.

Another use of 3D printing is to produce low cost, highly accurate 
objects for calibration. Many studies use cameras to record and fa‐
cilitate later analysis, and cameras must be calibrated beforehand for 
measurement data to be meaningful. Koehler, Liang, Gaston, Wan, 
and Dong (2012) investigated deformation of dragonfly wings during 
flight to better understand the aerodynamics, structural dynamics, 
and control of the wing. By 3D printing their calibration rig (with a 
resolution of 25 µm), the calibration points could be placed accu‐
rately, permitting the exacting calibration required for this study.

2.3 | Fluid dynamics

Biological fluid dynamics is an area that is being changed dramatically 
with the use of 3D printing. The complex geometries of sponges and 
corals have been 3D printed to enable investigations of the fluid flow 
around organisms without the need to culture or remove them from 
their habitats (Kruszyński & van Liere, 2009). 3D printed models 
could also be used to examine the flow of fluids through organisms, 
such as the machined steel models of sponges used by Vogel (1974), 
by offering more realistic and easily modified 3D models. Complex 
internal structures, for example sponge canals, or vertebrate nasal 
passages, can be replicated in clear plastics (or resins) for visualiza‐
tion, and Particle Image Velocimetry (PIV, Stamhuis, 2006) can be 
used to quantify fluid flows to provide an understanding of form 
and function for both external and internal structures. In other in‐
stances, the size of an organism may present difficulties, both for the 
production of life‐sized models and conducting research. Padisák, 
Soróczki‐Pintér, & Rezner, (2003) used PVC‐U and modeling material 
to create scaled‐up models of microscopic planktonic organisms (real 
size 40–200 µm, model sizes 5–35 cm) to investigate the effect of 
morphology on sinking rate. These construction methods resulted in 
greatly simplified models, much like Furbish and Arnold's (1997) use 
of beeswax and pins to produce models (2–6 cm) of foraminifera (real 
size ~150–1200 µm). As suggested by Fraisse et al. (2015), studies of 
microscopic plankton could be improved by using 3D printed, bio‐
logically realistic models, based on highly accurate CT or SEM images.

As well as enabling production of scaled models of microscopic 
structures, 3D printing can be used to recreate small structures while 
providing the opportunity to manipulate their shape. Shark skin has 
small tooth‐like projections (denticles), which have been studied 
since the 1970s for applications in industry, as they are thought to re‐
duce drag and have antifouling properties (Oeffner & Lauder, 2012; 
Pu, Li, & Huang, 2016). Wen, Weaver, and Lauder (2014) used 3D 
printed shark skin (Figure 2e) to examine water flow over denticles, 
finding that they reduce drag compared to a flat surface, leading to a 
predicted increase in swimming efficiency under certain conditions. 
In this instance, 3D printing allowed manipulation of the surface (i.e., 
denticle distribution and flexibility of the “skin”) and removed ethical 
issues of using real skin. Wen et al.’s (2014) findings were echoed by 

Lauder et al. (2016), who also demonstrated the ability of 3D printing 
to accurately produce objects which are microscopic (10 by 15 µm).

3D printed models can be used to test or ground‐truth computa‐
tional models and to perform experiments which would not be other‐
wise possible. An example is the recreation of the airways of Scincus 
scincus. This species of skink spends its life below the sand, moving in 
a fish‐like manner, hence its common name “sandfish lizard.” Despite 
breathing while under the sand, Stadler et al. (2016) found no evidence 
of sand inside dissected sections of the animals’ airways. They theo‐
rized that the airways had morphological adaptations, possessing aero‐
dynamic properties which limited sand ingress. To test this, Stadler et 
al. (2016) used computational and 3D printed models. As the airways 
are small delicate structures they scaled the airways up (changing the 
working fluid to maintain the ratios of forces acting on the model) and 
used larger particles of sand. While the 3D printed models were not 
able to fully recreate the inhalation and exhalation velocities seen in 
vivo, 50% of the tests resulted in no sand being present inside of the 
model airways, lending support to the computational models.

As evidenced above, 3D printing can be used to produce models 
that would simply not be possible using other methods. As we have 
seen 3D printing allows the production highly complex and detailed 
models that can be used for research. Printed models of extinct or‐
ganisms, for example, can be used to measure efficiency of flight or 
swimming, helping us to understand behavior and function of pre‐
historic creatures (e.g., swimming methods of plesiosaurs, Muscutt 
et al., 2017).

3  | PALEOBIOLOGY AND CUR ATION

Reproducing fossil material is traditionally achieved using molds and 
casts (Waters, 1983), which often involves high temperatures (Benton 
& Walker, 1981) or chemicals (Purnell, 2003; Spjeldnaes, 1963), 
which can be harmful and may damage delicate specimens (Bristowe, 
Parrott, Hack, Pencharz, & Raath, 2004; Purnell, 2003). In compari‐
son, scanning and 3D printing of fossil material has far fewer risks. In 
an early example of 3D printing in this field Bristowe et al. (2004) cre‐
ated models of the thin bones of the dinosaur Coelophysis rhodesiensis 
to avoid damaging the fragile fossil. However, as the technology avail‐
able at the time was limited to Fused Filament Deposition (FFD) 3D 
printing (Table 1) with paraffin wax, the prints were easily damaged. 
Such delicate paraffin wax bones could now be printed using alterna‐
tive methods and materials to produce more robust models. In some 
instances, scanning and 3D printing has allowed nondestructive rec‐
reation of remains that only exist as cavities in a stone matrix, such as 
Clark’s , Adams, Lawton, Cruickshank, and Woods (2004) print of the 
negative space of a cavity to recreate the skull of a mammal‐like rep‐
tile (dicynodont). Without Magnetic Resonance Imaging (MRI), there 
would be no way to visualize the complex skull from the inaccessible 
cavity, but from this scan 3D printing offers an opportunity to have a 
physical replica which can be held and observed.

Mitsopoulou et al. (2015) used computational models and sta‐
tistical methods to recreate missing bones from an incomplete 
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skeleton of the extinct dwarf elephant (Palaeoloxodon tiliensis) using 
3D printing. Another example is the Lapedo child's skull, which was 
broken into many pieces and had undergone taphonomic distortion 
in the 24,500 years since its burial (Almeida et al., 2007). The skull 
was digitally reconstructed then 3D printed twice; one of the skulls 
was placed on display and the other used for facial reconstruction 
(Almeida et al., 2007).

In the past, models have been a major point of interaction with 
both the public in museums and for teaching. These models are often 
expensive and can be fragile. 3D printed models are often robust 
and can be made in‐house relatively quickly and cheaply. These 
models can be printed in color, and dependent on the method a 
range of colors can be offered and prints can include multiple col‐
ors and transparent material (Begolo, Zhukov, Selck, Li, & Ismagilov, 
2014; Sitthi‐amorn et al., 2015), so that internal details can be seen 
(Blackburn, 2017). These accurate models can be interactive, such as 
a model of a flint axe (Galvin, 2017), allowing people to understand 
more about an object (in this case how it was constructed).

Niven, Steele, Finke, Gernat, and Hublin (2009) envisaged the use 
of 3D printing as an opportunity for museum collections to expand 
the number of exhibits they hold by repairing skeletons, or by com‐
bining pieces of specimens already present in collections with 3D 
printed pieces. For example, the Quagga (Equus quagga quagga) skel‐
eton on display in the Grant Museum of Zoology (University College 
London) has a 3D printed left leg replacing a missing limb, created 
by CT scanning the right leg and mirroring the data (Larkin & Porro, 
2016). This approach is also being used to replace forelimb bones 
missing from a recently deceased Fin Whale, Balaenoptera physalus 
(Larkin, personal communication). By using a photogrammetric scan 
of the forelimb of a different specimen it has been possible to ap‐
propriately scale and print replacement bones for mounting with 
the real skeleton (Larkin, personal communication). Alternatively, 
scanned animals from other collections might be printed in a mu‐
seum so that more locations have copies of specimens. By diversify‐
ing their natural history collections, museums can facilitate research 
and allow visitors to experience more (Niven et al., 2009).

Using 3D printed models reduces damage to fossils by: not re‐
quiring climate (temperature and humidity) controlled display cases 
making them both easier and cheaper to display (Almeida et al., 
2007); the fossils do not have to be transported to and from mount‐
maker's studios; and 3D prints prevent over handling of the fossils, 
while allowing the creation of custom well‐fitting support structures 
(Mallison, 2011). Instead of mounting the fossil material, lighter 3D 
printed replicas can be used, which require fewer mounts. As the 3D 
print can be drilled into, more esthetically pleasing internal support 
structures can be built. 3D printing can also allow replicas of sci‐
entifically important but normally inaccessible parts of specimens 
such as the palate or inner ear bones to be placed on display (Larkin, 
personal communication) and for use in research.

As Koehl (2003) suggests, it is often quicker to make a physical 
model than to develop a computer simulation. The process of mak‐
ing physical models can now be even more accurate, as 3D print‐
ing based on CT scans allows increased realism, particularly as the 

use of models in research has traditionally been something of an art 
form. For example, physical modeling has been used in the assess‐
ment of how suitable feathers seen on preserved fossils of dinosaurs 
(Microraptor gui) could have been suitable for gliding or flight (Koehl, 
Evangelista, & Yang, 2011). The models of M. gui used were originally 
made from foam with a wire skeleton, then updated to a steel and 
aluminum skeleton with polymer clay “flesh,” with feathers inserted 
to the foam or clay. By using 3D printing to create accurate skeletons 
it should be possible to build more realistic models that allow for 
more natural placement of feathers.

4  | ECOLOGY

Models of organisms or their parts are an excellent way to disentan‐
gle covarying factors (Koehl, 2003). In some instances, 3D‐printed 
models need not be biologically accurate. This has been exploited, 
for example, to isolate the influence of shape, color, odor, and chemi‐
cal rewards in plant pollination. While flower nectar is an attract‐
ant and reward (Thomson, Draguleasa, & Tan, 2015), some nectar 
also contains caffeine, which both a stimulant and toxic to most 
organisms. While flower nectar is an attractant and reward, many 
plants produce nectar that is toxic or repellent to some floral visitors 
(Adler, 2000). Investigating this counterintuitive pairing in nature 
had proved almost impossible and previous studies reported mixed 
results. However, Thomson et al. (2015) used 3D prints to mimic the 
function of a flower's anther and stamen in collecting and depos‐
iting pollen. They printed small hoppers that deposited dye onto a 
bee when it brushed under the hopper to reach the nectar. By add‐
ing sticky tape, the hopper could also collect previously deposited 
dyes from the bees. Honeybees (Bombus impatiens) were presented 
with jars containing nectar with different caffeine concentrations. 
By measuring the amount of dye transferred, the authors found that 
the higher the caffeine content of the nectar the more bee visits 
(Thomson et al., 2015), possibly due to the improvement in memory 
formation provided by caffeine (Wright et al., 2013).

4.1 | Conservation and monitoring

As we have shown, realistic models can be used in many areas 
of research, but they also have great potential for management 
and conservation. Current methods of capturing Emerald Ash 
Borers (Agrilus planipennis), an invasive species in North America, 
commonly use sticky traps baited with a dead female to attract 
males (Domingue et al., 2015). To produce the bait, females must 
be caught, killed, and mounted with pins. Simplified 3D printed 
models of a female Ash Borer (Figure 2b) have now been success‐
fully used to bait traps, and have the advantage of being cheaper, 
longer lasting, and are able to be mass‐produced (Domingue et al., 
2015). While work is still needed to look at the larger‐scale effi‐
cacy of these traps, we can easily envisage the use of similar mod‐
els to attract animals, for instance, to camera traps as a method of 
monitoring populations.
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Watson and Francis (2015) trialled the use of 3D printed ABS 
(Acrylonitrile Butadiene Styrene), a commonly used plastic, to pro‐
duce models for studies of thermal ecology. Models are used to estab‐
lish the distribution of environmental temperatures experienced by an 
organism, if it experiences no thermal regulation. Copper models are 
often used for this, but they are often poorly detailed, and are time 
consuming and difficult to construct. Copper models are produced 
using a paraffin wax mold of the animal, which is then electroplated, 
and the wax melted and drained. Copper tubing is often substituted 
for a detailed model but makes a poor substitute (Bakken & Angilletta, 
2014). With reduced costs per model (albeit initial setup is more 
expensive), higher biological accuracy, reduced production times 
(1.55 hr compared to 29.83 hr for copper models) and robust nature of 
the models, Watson and Francis (2015) suggest that 3D printed mod‐
els for thermal studies have considerable advantages over traditional 
copper models, especially as the performance of both models is equal.

As of 2016, there has been a population explosion of ravens 
(Corvus corax) in the Mojave Desert. The increased numbers of 
predatory ravens are negatively impacting the populations of newly 
hatched Desert tortoises (Gopherus agassizii), a vulnerable species 
(IUCN, 2016). 3D‐printed model tortoises that emit aerosol ir‐
ritants when attacked are being used to condition the ravens not 
to eat the tortoises, thereby reducing predation (Shields, Personal 
Communication), this is a ground‐breaking use of 3D printing in a 
conservation effort. 3D printing has also been used to help recreate 
coral reefs. The Great Barrier Reef is experiencing widespread coral 
bleaching and coral death (Wolff, Mumby, Devlin, & Anthony, 2018), 
but advances in 3D printing are enabling the production of coral 
shaped objects, 1 m in height (Sustainable Oceans International, 
2012). These large‐scale 3D printed forms replicate the complexity 
of natural coral, providing organisms such as fish with suitable habi‐
tats while corals colonize the external surfaces.

In addition to producing items used directly in research or for 
teaching, 3D printing can also be used to create mock‐ups of ex‐
pensive or delicate equipment to test positioning or attachment 
methods. Chan et al. (2016), used 3D printed ABS models of GPS 
tags to test methods of attachment to Red Knots (Calidirs canutus). 
This allowed the authors to test attachment methods without the 
risk of losing expensive GPS tags. While traditional methods can be 
used for mock‐ups, 3D printing uses less material (due to the additive 
method, Gardner & Olson, 2016) and can produce accurate replicas 
quickly and easily.

4.2 | Limitations

There are limitations of using 3D printed models for research due to 
their static nature. These problems are no different to the limitations 
experienced by models made using traditional manufacturing tech‐
niques. Some of these problems could be overcome by employing 
3D printed shells into which robotics could be mounted. Robots are 
beginning to be used in studies of animal behavior (see Frohnwieser, 
Murray, Pike, & Wilkinson, 2016 for a review), and this simple adap‐
tation may yield interesting results. Using models in a manipulative 

experimental approach allows greater control over specific elements 
such as size of ornamentation, coloration, movement, or removal of 
olfactory cues (e.g., Heinen‐Kay et al., 2015), but this is at the po‐
tential cost of realism. Therefore, a balance must be struck between 
absolute realism (which can only be achieved by using an organism), 
and manipulative control over specific elements important for the 
study. 3D printing can be of great benefit to such studies allowing 
models to be created with differences which would not be physi‐
cally or ethically possible with live animals. There are, though, ca‐
veats to using models, including the potential that other factors are 
involved, for example signals, which are not manipulated through 
the use of models. As such, the observed responses may not be as 
"true" as when using an organism. However, by the same token, this 
method does provide the ability to precisely change only one ele‐
ment, which cannot be guaranteed with treatments or manipulations 
involving organisms. Observational or correlational studies can be 
used to address similar questions but rely only on natural variation. 
Observational studies may require more time and can suffer from 
confounding variables or reverse causation but do allow for testing 
in a biologically meaningful manner which might be lacking in the 
laboratory. For observational studies, 3D printing can be used to 
produce equipment. One practical limitation of 3D printing is the 
size of the object which can be printed. Most 3D printers have a rela‐
tively small print size (see Table 2). Objects larger than this print size 
can be made by incorporating joining features (e.g., sockets and pins) 
into the 3D prints or include positions for traditional fasteners (e.g., 
screws or nuts and bolts) to be used. These features can be added 
into the CAD drawings of parts, and some software allow for the in‐
clusion of threaded holes to make assembly easier and faster. Large 
3D prints often have lower resolution due to limitations of current 
scanning and printing methods, while smaller models can be printed 
at higher resolution but may be more expensive as a result.

Despite the advantages of 3D printing, many of the materials 
used in this process have not undergone testing for durability or 
toxicology. Where testing has occurred it often indicates leaching 
of chemicals from the materials. In one example, leached chemicals 
had a negative impact on the growth of zebrafish (Danio rerio) em‐
bryos (Oskui et al., 2016). It seems prudent to suggest that materials 
likely to be in contact with living organisms need to be well re‐
searched first, given the release of chemicals from the 3D print may 
affect an animal's behavior or even lead to death. Additional con‐
cerns center on environmental impact, and while some feedstock 
used in 3D printing is recyclable (such as thermoplastic polymers 
used in FFD 3D printing, Table 1), others such as photopolymers 
(used in SLA 3D printing) are not. There are, however, continual 
developments, for example, the toxicology of some models can 
be reduced with increased ultraviolet light treatment (Oskui et al., 
2016) and new printable plastics that are recyclable are in devel‐
opment (Mohammed, 2016). Additional problems with 3D printed 
equipment in the laboratory include the lack of guarantee and pos‐
sibility of a short lifespan, but if costs are low, this can be solved by 
reprinting the object. With sensible precautions, 3D printing can 
make many beneficial changes to the way we produce objects.
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5  | TAKE HOME MESSAGES

1.	 3D printing enables the rapid production of items for low 
unit cost by commercial suppliers, or if many experimental 
pieces are to be printed then this can be done in‐house. 
Printed items can be models of delicate bones, complex bi‐
ological structures, microfluidic chambers, labware, or even 
hypothetical ancestral structures. 3D printed models can remove 
the reliance on the use of museum‐preserved specimens.

2.	 A major limitation to the adoption of 3D printing is the initial cost 
of the printer, but this is falling. The cost of CT or laser scanning 
any structure to be modeled can also be high, but with suitable 
CAD software, many items can be approximated to a reasonable 
degree and custom items designed.

3.	 The impact of 3D printing on the environment is only just being 
studied. Many materials are not recyclable, and some plastics 
may release chemicals into the environment. The amount of 
chemicals released and the effects these may have is unknown.

4.	 Sharing of 3D models online is creating a large repository of ob‐
jects that can be downloaded and printed, allowing anyone with a 
3D printer to produce them. This can facilitate replication of ex‐
periments in a way never before possible.

5.	 The overarching advantage of 3D printing is the freedom given to 
researchers, allowing them to print custom objects, quickly and at 
relatively low cost. The application of 3D printing in Ecology and 
Evolution has begun but the technique offers many more oppor‐
tunities for the future.
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