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An individual’s brain functional organization is unique and can reliably be observed using

modalities such as functional magnetic resonance imaging (fMRI). Here we demonstrate

that a quantification of the dynamics of functional connectivity (FC) as measured using

electroencephalography (EEG) offers an alternative means of observing an individual’s

brain functional organization. Using data from both healthy individuals as well as from

patients with Parkinson’s disease (PD) (n = 103 healthy individuals, n = 57 PD patients),

we show that “dynamic FC” (DFC) profiles can be used to identify individuals in a large

group. Furthermore, we show that DFC profiles predict gender and exhibit characteristics

shared both among individuals as well as between both hemispheres. Furthermore, DFC

profile characteristics are frequency band specific, indicating that they reflect distinct

processes in the brain. Our empirically derivedmethod of DFC demonstrates the potential

of studying the dynamics of the functional organization of the brain using EEG.

Keywords: electroencephalography, dynamic functional connectivity, Parkinson disease, subject identification,

gender classification analysis

1. INTRODUCTION

Due to advances in functional neuroimaging such as resting-state fMRI, there has been an increased
focus on studying FC on an individual basis rather than at a group level (Dubois and Adolphs,
2016). It has recently been shown that FC profiles are highly individual, which emphasizes that
it is indeed possible to draw inference on individual subjects (Finn et al., 2015). Similarly, the
shape of an EEG spectrum qualifies as a statistical signature of a person (Näpflin et al., 2007).
Another recent advance in the field of FC research is the recognition of information contained in
the temporal dynamics of functional connectivity (Hutchison et al., 2013; Allen et al., 2014; Calhoun
et al., 2014; Bassett and Sporns, 2017). This dynamic FC exhibits highly structured spatiotemporal
states in which distinct patterns of FC recur across time and across subjects (Allen et al., 2014).
These states are associated with cognition (Gonzalez-Castillo et al., 2015), consciousness (Barttfeld
et al., 2015), neuropsychiatric disorders (Damaraju et al., 2014), personal traits (Shiino et al., 2017),
and development (Hutchison and Morton, 2015). Furthermore, these FC states, when measured
with fMRI, are associated with distinct EEG spectral signatures (Allen et al., 2018). As illustrated
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by other studies as well, EEG/MEG can be used to substantiate
fMRI FC findings by providing an empirical link to a neural basis
underlying BOLD signal changes (Tagliazucchi et al., 2012; Yu
et al., 2016). Using a modeling approach, Honey and colleagues
showed that the transient synchronization of neural populations
is closely correlated with ultra slow fluctuations in the BOLD
signal (Honey et al., 2007). Furthermore, they showed that
when long time windows are used to calculate FC, the FC
pattern is shaped by the underlying topology (Foster et al.,
2016). Indeed, as pointed out by Allen and colleagues, the
majority of EEG-fMRI integration studies have focused on EEG
amplitude/FC modulations in relation to BOLD signal changes
(de Pasquale et al., 2012; Chen et al., 2013; Liu et al., 2017; Allen
et al., 2018). However, such a comparison is not straightforward
because the relation between EEG power and actual spatial
integration, as measured through spike-count correlations, is
non-linear (Snyder et al., 2015). FC can also be studied using
EEG/MEG exclusively and can be calculated over much shorter
time-scales compared to fMRI (Van Diessen et al., 2015). This
means that information about transient synchronization of
neural populations, lasting between 100 and 300 ms (Varela
et al., 2001), can be observed directly using EEG. Furthermore,
using EEG, synchronization in different frequency bands can
be analyzed separately, whereas in the BOLD signal these are
lumped together. In this study we propose a novel EEG-based
functional neuroimaging method to study the organization of
transient functional connectivity. This method quantifies the
correlation strength between time-varying FC signals, referred
to as dynamic functional connectivity (DFC). Using EEG data
from 105 healthy subjects scanned on two occasions up to 1
year apart, we show that, similar to an fMRI-derived FC profile
(Finn et al., 2015), a DFC profile obtained from one session can
be used to uniquely identify a given individual from a set of
profiles obtained in a second session. Furthermore, we show that
differences betweenmale and female DFC profiles are substantial,
which enables the prediction of a subject’s gender based on
his or her DFC profile. We also show that EEG-derived DFC
profiles are organized according to a highly structured blueprint
that is not only shared among people, but also across both
hemispheres of the brain. Using additional data from a cohort of
81 Parkinson’s disease (PD) patients, we show that our findings
not only generalize to a state of health, but also of disease. Finally,
our results also indicate that DFC could be used to distinguish PD
patients from healthy controls.

2. METHODS

2.1. Subject Information
The data set used in this study comprises three subsets
from different studies conducted at the department of clinical
neurophysiology, Basel University hospital and the Mathematics
and Informatics department of Basel University. The first is
from an ongoing SNFS study, investigating cognitive decline in
Parkinson’s disease (“Computer aided Methods for Diagnosis
and Early Risk Assessment for Parkinson‘s Disease Dementia,”
grant number 159682). Data from both healthy controls as well
as PD patients was used. The other two subsets consist of data

from the SNSF projects (“Improved prediction and monitoring
of CNS disorders with advanced neurophysiological and genetic
assessment,” grant numbers 124115 & 140338). All participants
provided written informed consent in accordance with a protocol
approved by the local ethics committee (Ethikkommission beider
Basel). The 3 data sets used are described next. Data set 1. This
data set consists of data from 33 healthy subjects (15 females,
age 53–76) and 81 PD patients (28 females, age 45–84). EEG
data were registered at baseline and again after 4 weeks and 6
months. At the time this study began, follow-up data from 25
healthy subjects and 57 PD patients was available. Baseline and
6 m data from the 33 healthy subjects and baseline and 4 w data
from the 57 PD patients was used for the subject identification
analysis. In case of the PD patients, we choses to use 4 w data
instead of 6 m data because it is not yet known what influence
a neurodegenerative disease such as PD has on a patient’s DFC
profile. Therefore, taking the shortest time-span between scan
sessions minimizes the possibility of introducing bias.

2.1.1. Data Set 2
EEG data from 40 healthy subjects (30 females, age 20–49) was
registered on 3 occasions over a period of 2 years (baseline, 1y,
2y). Baseline and 1y data from all 40 subjects was used for the
subject identification analysis.

2.1.2. Data Set 3
EEG data from 41 healthy subjects (22 females, age 53–76) were
registered at baseline and again after 3, 15, and 30 months.
Baseline and 15m data were used for the subject identification
analysis. For all 41 subjects a baseline scan was available.
However, due to some dropouts, 15 m data were only available
for 38 subjects. For the remaining 3 subjects 3 m data were
used instead.

In all our analyses only data from healthy subjects were used.
Data from the PD patients were used as an external validation
set. For the analysis of differences between healthy subjects and
PD patients, only data from sets 1 and 3 were used because the
subjects from set 2 were significantly younger compared to the
cohort of PD patients.

2.2. Data Acquisition and Preprocessing
EEG was recorded using a 256-electrode Sensor Net R©.
(Geodesics). First, the correct Sensor Net size was determined
by measuring the subject’s head circumference. Next, the net was
placed over the subject’s head such that the central electrode (Cz)
was located at the crossing of themidline and lateral line. Subjects
were scanned sitting upright and were instructed to sit still.
EEG data from all subjects was acquired using the same protocol,
which consisted of 4 consecutive sessions. In the first sessions
the subject is instructed with an audio cue to alternatingly
open and close his or her eyes. This sessions is followed by
15 min of eyes-closed resting state, and subsequently 5 min of
eyes-open resting state sessions, after which the first sessions is
repeated once more. Total registration duration was around 30
min including instructions. Only data from the 15 minutes eyes-
closed were used in this study. Raw EEG signals were recorded
with a sampling rate of 1,000 Hz and filtered with a high-order,
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linear-phase, finite-impulse response filter (MATLAB: Firls, 0.5–
70 and 50 Hz notch, filter order: 4.8 × sampling rate). Only 170
out of 256 electrodes were used, midline electrodes and electrodes
located in the face and around the neck were excluded (Figure 1).

2.3. Functional Connectivity Calculation
The EEGwas first band-pass filtered after which phase estimation
was performed using the Hilbert transform. The Hilbert
transform was implemented using a 50% overlapping sliding
window approach with 250 ms long windows. It should be
noted that this short window length might approach a critical
length for reliable phase estimation, especially for the δ frequency
band. However, using longer windows up to 4 s had virtually
no influence on the DFC coefficients (results not shown). Next,
the continuous phase signals were divided into 0.25 s long non-
overlapping epochs which resulted in aboutN = 3,600 epochs per
EEG recording. For each epoch, functional connectivity between
pairs of EEG channels was calculated using the phase-lag-index
(PLI, Stam et al., 2007). PLI is based on the asymmetry of the
distribution of phase differences between two signals, and is
calculated according to:

PLI =
1

T

∣

∣

∣

∣

∣

T
∑

t

sign[sin(18(t))]

∣

∣

∣

∣

∣

(1)

T indexes the number of samples per epoch, and 18(t)
represents the phase difference between two signals, for sample
t in radians. This resulted in a symmetric connectivity matrix
of size 170 by 170 per epoch per frequency band. A PLI value
of 0 indicates no functional connectivity, whereas a value of 1
indicates maximal functional connectivity. Next, the between-
electrode FCmatrices are reduced to between-region FCmatrices
of size 22 by 22. Each element, or edge, represents the average
FC strength between two scalp regions for a given time interval.
Based on the lateralization of each scalp region, a distinction
can be made between within-hemisphere edges (LL or RR) and
between-hemisphere edges (LR or RL).

2.4. Dynamic Functional Connectivity
Calculation
Because the FC matrices are symmetric, we first transformed
each 22 by 22 matrix into a 231 long vector by extracting
the upper triangle. Then, for each EEG recording and each
frequency band, a 231 by N matrix of time-varying FC
between all pairs of scalp regions is obtained, where N
indicates the number of epochs. Next, DFC is calculated by
simply calculating Pearson’s correlation coefficients between
all pairs of time-varying FC. In this way, a symmetric
“dynamic FC (DFC)” matrix of size 231 by 231 is obtained
for each EEG recording and each frequency band. Each
element in the DFC matrix represents the correlation strength
between two time-varying FC values, referred to as “DFC
coefficient.” Since the DFC matrices are symmetric, each
matrix is converted to a 26565 long vector by extracting
the upper triangle.

2.5. DFC Coefficients Types
To allow a more detailed analysis of identification results
we used 2 ways of defining categories of DFC coefficients.
One based on the number of scalp regions and another
based on the lateralization of the functional connections.
Since every DFC coefficient is defined as the Pearson’s
correlation coefficient between two functional connections,
by definition each DFC coefficient involves either 3 or 4
scalp regions. In case of 22 scalp regions shown in Figure 2,
this amounts to 4620 3-region and 21945 4-region DFC
coefficients. Furthermore, we defined 4 categories of DFC
coefficients based on which hemisphere each of the 3 or 4
scalp regions is located: 3025 unilateral within-hemispheric
(LL-LL or RR-RR), 2970 unilateral between-hemispheric (LL-
RR), 13310 bilateral-unilateral (LR-RR or LR-LL), and 7260
bilateral-bilateral (LR-LR).

2.6. Identification Analysis
In our first identification analysis we used the same approach
as Finn et al. (Finn et al., 2015). A database was created that
consisted of all the subjects’ baseline DFC vectors, Dset1 =

[Xi, i = 1, . . . , 105], where Xi is the DFC vector from subject i.
Similarly, a databaseDset2[Yi, i = 1, . . . , 105], consisting of all the
subjects’ follow-up DFC vectors was created. In case of subject
identification based on all five frequency bands, Xi and Yi are
constructed by concatenating the five 26565 long DFC vectors
into a single 132825 long vector. For single-frequency band
identificationXi andYi can either be based on the same frequency
band (within-frequency band) or on different frequency bands
(between-frequency band). To predict a subjects’ identity in
one database based on the other database, Pearson correlation
between pairs of DFC vectors was defined as similarity measures
and was calculated between all pairs of DFC vectors from the two
databases. This resulted in a 14 by 144 similarity matrix where
each element represents the similarity between a DFC vector
from the baseline database and a DFC vector from the follow-
up database. Subsequently, each DFC vector from one database
was assigned the identity of the DFC vector from the other
database that was maximally similar. Identification accuracy
was defined as the percentage of subjects for which his or her
identity was correctly identified. Following the approach of Finn
et al. (2015), we also performed non-parametric permutation
testing to assess the statistical significance of identification
performance. In each iteration, identification as described above
was performed whereby the identity of subjects in one database
was permuted. This permutation procedure was repeated
10,000 times.

2.7. Gender Classification Analysis
In our gender classification analysis we used baseline data from
all 144 healthy subjects. We first investigated the magnitude and
extend of DFC profile differences between males and females by
assessing how many DFC coefficients were statistically different
(t-test) using a significance level of P < 3.76 × 10−7 (P <

0.05 Bonferroni corrected for 132,825 comparisons). Considering
the heterogeneity of our data set with respect to age, male and
female subsets were matched for age by randomly excluding 20
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FIGURE 1 | Our electrodes were grouped according to the topographical localization of the channels and then divided into 22 non-overlapping regions of interest

corresponding to the frontal, central, temporal, parietal and occipital areas (bilaterally) (Hatz et al., 2017).

female. Presented results are obtained by averaging 500 Monte
Carlo repetitions. To determine with which accuracy a subjects’
gender can be predicted based on his or her DFC profile,
we applied feature selection and classification using LASSO
(least absolute shrinkage and selection operator) (Tibshirani,
1996). Again, presented results are obtained by averaging 500
Monte Carlo cross validation repetitions. In each repetition, 80%
of the subjects are assigned to the training data set and the
remaining 20% are assigned to the test data set. Furthermore,
male and female subsets of the training data sets where matched
for age.

2.8. Common DFC Blueprint Analysis
To analyze DFC profile characteristics that are shared among
individuals we constructed an average gender-matched baseline
DFC profile from all 144 healthy subjects. Considering the
heterogeneity of our data set with respect to gender and age, an
average DFC profile was created 500 times by randomly selected
subset of subjects, matched for age and gender. Subsequently the
500 averaged DFC profiles where in turn averaged to obtain a
population averaged DFC profile.

2.9. Influence of Epoch Length on DFC
Information Content
To analyze the influence of epoch length used for PLI
calculations on the reliability of DFC coefficients, we repeated
the identification and gender classification analysis using epoch
lengths ranging from 250 ms up to 32 s. Additionally, we used
the EEG recordings from those healthy subjects included in
the identification analysis to show that with increasing epoch
lengths the test-retest error also increases. The test-retest error
for a given DFC coefficient was defined as the absolute difference
between its values from both recordings. Subsequently, for each
DFC coefficient the errors for all subjects were averaged; the
distributions of all 26,565DFC coefficients are shown in Figure 5.
To illustrate the effect of EEG recording duration, we simulated
shorter durations by simply using only the first N minutes of
each recording for DFC calculation. N was varied between 1
and 10min.

3. RESULTS

In the first part of this study we used data of 105 healthy subjects
to show that intra-individual differences in DFC profiles are
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FIGURE 2 | DFC calculation. (A) Example of 10 functional connectivity (PLI) time-series calculated for 30 s of EEG using 250 ms long epochs in the θ frequency band.

PLI values range between 0 and 1 and for visualization purposes PLI time-series are stacked on top of each other. (B) Corresponding 10 by 10 symmetric correlation

matrix of the 10 functional connectivity time-series. Each position indicates the Pearson’s correlation coefficient between two PLI time-series, called a dynamic

functional connectivity (DFC) coefficient. L, left hemisphere; FP, fronto-polar; FM, frontal-mid; FL, frontal lateral; CM, central mid; CL, central lateral; TA, temporal

anterior; TP, temporal posterior; PL, parietal lateral; PM, parietal mid; PO, parietal occipital; OC, occipital.

FIGURE 3 | Identification and Gender classification performance. (A) Identification performance across different frequency band combinations, diagonal elements

indicate performance of within-frequency identification and off-diagonal elements indicate between-frequency identification. (B) Within-subject correlation in α1 is only

significantly higher compared to β. Between-subject correlation in alpha1 is significantly lower compared to the other 4 frequency bands (one-tailed paired t-test,

*p < 0.01, **p≪ 0.0001). Boxplots represent median (stripe), 25th and 75th percentiles (box), 1.5 times the interquartile range (whiskers), and outliers (crosses). Box

colors correspond to the ID rate scale of (A). (C) Number of DFC coefficients per frequency band that are statistically significant different between males and females

based on a significance level of α < 3.76× 10−7.

substantial and can reliably be observed, for example, they can act
as an identifiable “fingerprint.” For each subject, a high-density
resting-state EEG was obtained twice over a period ranging from
6 to 15 months. Detailed subject information can be found in
the online material. For each subject, 12 or 15 min of eyes-closed
resting state EEG data were recorded using a 256-electrode EEG
recording device (Electrical Geodesics). Signals from a subset of
170 electrodes were used; midline electrodes and those located
in the face and around the neck were excluded. By bandpass
filtering the EEG recordings, a DFC profile was calculated for

each of 5 commonly used frequency bands (δ: 1–4 Hz, θ : 4–
8 Hz, α1: 8–10 Hz, α2: 10–10 Hz, and β : 13–30 Hz). This
was done because distinct frequency bands exhibit characteristic
changes in response to sensory, motor, and cognitive events
(Engel et al., 2001; Varela et al., 2001; Buzsáki and Draguhn,
2004). It is therefore expected that DFC profiles calculated in
different frequency bands will differ. Next, from the bandpass-
filtered EEG, the instantaneous phases were estimated using
the Hilbert transform with a 50% overlapping sliding window.
Then, for 250 ms long, non-overlapping epochs, Functional
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Connectivity (FC) between all possible pairs of the 170 EEG
channels was assessed using the phase-lag-index (PLI, Stam
et al., 2007). For an EEG recording consisting of N epochs,
this resulted in a series of N symmetric FC matrices of size
170 × 170. Because the localization of EEG sources is in the
order of centimeters (Cohen, 2017), we reduced the 170 × 170
inter-electrode FC matrices to 22 × 22 inter-region FC matrices.
Each element, or edge, represents the time-varying FC strength
between two scalp regions. Thus, given 22 scalp regions, there
are 231 unique edges. Finally, Pearson’s correlation coefficients
were calculated for all edge-pairs in order to obtain a 231 × 231
symmetric dynamic FC matrix where each element represents
the correlation strength between two edge-pairs, referred to as
a “DFC coefficient.” A more detailed description of the DFC
calculation is provided in the section 2. DFC matrices were
calculated for each EEG and for each frequency band such that
each subject has 5 matrices reflecting his or her DFC profile
during a session. Identification was performed using the same
approach as Finn and colleagues (Finn et al., 2015). In brief, 2
datasets were constructed such that each subject had a single DFC
profile in each set. Identification implied that each DFC profile in
one set (“set1”) was assigned the identity of the DFC profile in
the second set (“set2”) that was maximally similar. Similarity was
defined as the Pearson’s correlation coefficient between the two
vectorized DFC profiles. Once all identities had been predicted,
the overall identification rate was calculated as the percentage of
scans for which the predicted identity matched the true identity.
This process was then repeated with the roles of set1 and set2
reversed. Subsequently, identification performance was averaged
over these two attempts.

3.1. Identification of Individual Subjects
3.1.1. All Frequency Bands
First, identification was performed using all DFC profiles
obtained from the 5 frequency bands. The Identification rate
was 89/105 (85%) and 85/105 (81%) based on attempt 1 and
2, respectively. The same permutation test as used by Finn
and colleagues was performed which, across 10,000 iterations,
yielded a maximal identification rate of 6/105 or less than 5%.
Therefore, obtaining 84 correct identifications was associated
with p << 0.0001.

3.2. Single Frequency Bands
To test the hypothesis that different information, with respect
to individual subject discriminability, is contained in different
frequency bands, we subsequently tested identification accuracy
based on DFC profiles from single frequency bands (Figure 3A).
In case different information is contained in each frequency
band, identification performance is expected to be lower
when using single frequency bands instead of when using
all 5. Furthermore, performance is expected to be reduced
even more when different frequency bands are used for each
set (see section 2). For within-frequency-band identification,
performance indeed dropped significantly (74%, paired t-test
α1 vs. all frequency bands, t209 = −3.37, P < 0.001).
Furthermore, α1 identification was significantly better compared
to δ, θ , and β (paired t-test α1- δ p = 2.5×10−9, α1-θ p =

0.028, α1-α2 p = 0.078, α1- β p = 0.0017). Furthermore, cross-
frequency-band identification performance was significantly
lower compared to within-frequency-band identification (t-
test within- vs. cross-frequency-band identification, t13 = 8.5,
P < 10−5). To asses whether better α1 performance can
be attributed to higher within-subject correlation and/or lower
between-subject correlation, we compared within- and between-
subject correlations between frequency bands (Figure 3B).
Compared to α1, within-subject correlation was only significantly
lower for β (paired t-test, p < 0.01) whereas between-
subject correlation was significantly higher for all 4 frequency
bands (paired t-test, p ≪ 0.0001). Superior identification
performance for α1 can therefore be attributed primarily to
a relatively low between-subject similarity compared to other
frequency bands.

3.2.1. Gender Differences
In the previous analysis we found that an individual’s DFC profile
is unique, and can as such act as an identifying fingerprint.
In the following analysis we investigated whether the DFC
profile of a patient contains other relevant information. An
important but often neglected topic in neuroscience is sex-
related influences on brain function (Cahill, 2006). Recent
functional and anatomical connectivity studies reported both
morphometric (Gong et al., 2009; Chekroud et al., 2016), as
well as functional connectivity (Tomasi and Volkow, 2012),
differences between the male and the female brain. Our analysis
evaluated sex-related differences, and whether DFC profiles can
be used to predict an individual’s gender. We used the baseline
EEGs from the same 105 subjects as in the previous analysis
and an additional 8 subjects for whom only a single EEG
was available.

As a first step we used a t-test to assess how profound the sex
differences of DFC profiles are. Considering the heterogeneity of
our data set with respect to age, we performed 500 Monte-Carlo
simulations such that in each test the male and female subset
was matched according to age. On the basis of a significance
level of α < 3.76 × 10−7 (0.05 Bonferroni-corrected for 132,825
comparisons), we found that the number of DFC coefficients
that were significantly different between male and female ranged
between 3,531 (13%) and 433 (1.6%) for the β and α1 frequency
band respectively (Figure 3C). Interestingly, for each frequency
band, virtually all of these DFC coefficients were higher for
females. The magnitude of gender differences (male - female)
ranged from−0.21 to +0.12.

The differences in the number of statistically significantly
different DFC coefficients per frequency band indicate that
gender differences are not the same for each frequency band.
However, it is possible that the frequency bands only differ from
each other with respect to gender differences in the magnitude
of these differences. Therefore, we tested the hypotheses that
gender differences are frequency band specific. To this end,
for each frequency band f, we calculated an average male and
average female DFC profile and subsequently subtracted one
from the other in order to obtain a “gender difference DFC
profile” (1DFCf ). To test the hypothesis that gender differences
are symmetric with respect to both hemispheres, we correlated
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FIGURE 4 | Gender differences in the α frequency band. (A) DFC coefficients typically stronger in female brains (left) or male brains (right). For visualization, both sets

represent the top 99 percentile of DFC coefficients for which the gender difference is largest. Text on the circle represent all 231 functional connections and we made a

distinction between unilateral (LL and RR) and bilateral (LR) connections. Except for connections between cross-hemisphere homologs (LR), connections are ordered

such that the left and right half are mirror images. Each line represents a DFC coefficient and its color distinguishes between the 4 lateralization based categories.

Additionally, on the outer circle we used a bar for each connection to summarize in how many DFC coefficients it was involved. Furthermore, each bar is divided in a

blue and a red part indicating the number of 3-region and 4-region DFC coefficients, respectively. (B) In the barplots the same data is plotted as the incidence of scalp

regions in the set of DFC coefficients, averaged over both hemispheres. L, left hemisphere; R, right hemisphere; FP, fronto-polar; FM, frontal-mid; FL, frontal lateral;

CM, central mid; CL, central lateral; TA, temporal anterior; TP, temporal posterior; PL, parietal lateral; PM, parietal mid; PO, parietal occipital; OC, occipital.

1DFC with its mirrored version (see section 2). Correlation
coefficients ranged from 0.9 (α1) to 0.94 (δ) which indicates that
gender differences are indeed symmetric. We next determined
for which DFC coefficient categories, and for which involved
brain regions, the gender differences were most prominent. We
restricted our analysis to those 1DFCδ coefficients for which the
magnitude of gender difference were in the bottom 1 and top 99
percentile (Figure 4).

To allow a more detailed analysis of the identification results,
we used 2 ways of defining categories of DFC coefficients: one
based on the number of regions involved in a DFC coefficient,
and the other based on the lateralization of the regions involved.
Another distinction can be made based on the number of regions
a DFC coefficient is based on, which is either 3 or 4 regions.
Lateralization is categorized according to which hemisphere
each of the 3 or 4 brain regions is located: unilateral within-
hemispheric (LL-LL or RR-RR), unilateral between-hemispheric
(LL-RR), bilateral-unilateral (LR-RR or LR-LL), and bilateral-
bilateral (LR-LR).

In case of the DFC coefficients, which were typically
much stronger for females, we found that the majority were
either unilateral within-hemispheric (LL-LL or RR-RR) or
bilateral-bilateral (LR-LR) 4-region DFC coefficients. These DFC
coefficients mainly involved parietal and occipital regions. On
the other hand, DFC coefficients that were typically stronger
for males were primarily bilateral-unilateral (LR-RR or LR-LL)

3-region DFC coefficients and involved primarily frontal as well
as central mid, and occipital regions.

3.2.2. Gender Classification
Based on the sheer number and magnitude of gender differences,
it is reasonable to expect that an individual’s gender can be
determined based on his or her DFC profile. In the next section,
we evaluated if this is indeed possible. Since not all DFC
coefficients are gender-dependent, we use LASSO (least absolute
shrinkage and selection operator) to evaluate if a small subset
of DFC coefficients is also sufficient for gender classification.
We used Monte-Carlo cross-validation where in each iteration
LASSO was applied to 80% of the data in order to fit a regression
model betweenDFC coefficients and gender indicated by 0 (male)
or 1 (female). This regression model was then used to predict the
gender of the left-out 20%. Prediction performance was assessed
as the area under the ROC curve (AUC) of the 500 Monte-Carlo
repetitions. On average, 30 (range: 12–103) DFC coefficients
were selected to fit the regression model. Median classification
performance was AUC = 0.93 (range: 0.6–1). In total, 3152 DFC
coefficient were selected by Lasso in at least 1 of 500 repetitions.
As could be expected based on the results described in the
previous section, DFC coefficients from the δ (27%) and β (23%)
frequency bands were chosen more frequently than the other 3
frequency bands (16% each).
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FIGURE 5 | Influence of epoch length and frequency band. (A) Identification rates based on different epoch lengths. Epoch lengths ranged from 250 ms to 32 s. (B)

Shorter epochs improve gender classification performance. Results from 500 Monte Carlo cross-validation repetitions are shown. Boxplots represent median (stripe),

25 th and 75th percentiles (box), 1.5 times the interquartile range (whiskers), and outliers (crosses). (C) Epoch length is inversely related to DFC coefficient estimation

accuracy. (D) EEG duration is also inversely related to the duration of the EEG. Boxplots represent the distributions of differences in DFC coefficients between Rest1

and Rest2, averaged over 105 subjects for the α1 frequency band (26565 DFC coefficients).

3.2.3. A Shared DFC Blueprint Among Individuals and

Hemispheres
We further investigated the common properties of DFC
organization. To this end we collapsed healthy subjects’ DFC
matrices into a single average DFC matrix (DFC). Naturally, a
DFC was created for each frequency band separately. Similarly
to our gender differences analysis, we here also calculated
Pearson’s correlation coefficients between DFC profiles of the
different frequency bands, as well as between DFC and their
mirrored versions. Correlation coefficients between frequency
bands ranged between 0.90 (δ vs. β) and 0.99 (α1 vs. α2).
Furthermore, the further apart two frequency bands were, the
lower the correlation between DFC profiles. This indicates that
there is a common blueprint shared among frequency bands

on top of which frequency-band-specific characteristics are
superposed. Conversely, correlation coefficients between DFC
profiles and their mirrored version are above 0.995 for each
frequency band, which indicates that both hemispheres share the
same blueprint. To study this common blueprint in more detail
we first evaluated DFC in terms of the different DFC coefficient
categories. Considering the strong similarities betweenDFC from
the different frequency bands, we restrict the following analysis to
the α1 frequency band. We found that 3-region DFC coefficients
are generally stronger compared to the 4-region DFC coefficients
(Figure 6, t 26563 = 87.8, P≪0.001). Similarly, unilateral within-
hemispheric (LL-LL and RR-RR) DFC are stronger compared
to the other 3 categories (Figure 6, t 26563 = 46, P ≪ 0.001).
Next, we determined which DFC coefficients were in the top
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FIGURE 6 | Common DFC profile characteristics in the α1 frequency band. (A) Strongest DFC coefficients (left) and weakest DFC coefficients (right) in the group

averaged DFC profile. For visualization DFC coefficients in the top 99 and bottom 1 percentile are shown. Text on the circle represent all 231 functional connections and

we made a distinction between unilateral (LL and RR) and bilateral (LR) connections. Except for connections between cross-hemisphere homologs (LR), connections

are ordered such that the left and right half are mirror images. Each line represents a DFC coefficient and its color distinguishes between the 4 lateralization based

categories. Additionally, on the outer circle we used a bar for each connection to summarize in how many DFC coefficients it was involved. Furthermore, each bar is

divided in a blue and a red part indicating the number of 3-region and 4-region DFC coefficients, respectively. (B) In the barplots the same data is plotted as the

incidence of scalp regions in the set of DFC coefficients, averaged over both hemispheres. L, left hemisphere; R, right hemisphere; FP, fronto-polar; FM, frontal-mid;

FL, frontal lateral; CM, central mid; CL, central lateral; TA, temporal anterior; TP, temporal posterior; PL, parietal lateral; PM, parietal mid; PO, parietal occipital; OC,

occipital. (c) Differences between the several DFC coefficient categories based on the average DFC profile of 7 all healthy individuals. Boxplots represent median

(stripe), 25th and 75th percentiles (box), 1.5 times the interquartile range (whiskers), and outliers (crosses). Box colors and legend indicate DFC coefficient category.

99 and bottom percentile. As expected we found that unilateral
within-hemispheric (LL-LL and RR-RR) as well as 3-region DFC
coefficients were overly represented in the 99 percentile, and
virtually absent in the 1 percentile (Figure 6). Conversely, the
opposite was found for unilateral between-hemispheric and 4-
region DFC coefficients (Figure 6). When analyzing the 1 and
99 percentile subsets in more detail, we found that functional
connections involving frontal and parietal regions appeared
most frequently in the subset of strongest DFC coefficients
(Figure 6). On the other hand, in the subset of weakest DFC
coefficients, functional connections involving, and especially
between, temporal-anterior and parietal-lateral regions appeared
most frequently.

3.2.4. Influence of Epoch Length on DFC Information

Content
For very long time-windows, functional connectivity patterns
closely resemble structural connectivity patterns (Foster et al.,
2016). However, when functional connectivity is calculated for
shorter time windows the dynamics of functional connectivity
is revealed which enables analyses such as the one presented
in this study. A question arises about what the effect of
increasing epoch length is on the amount of information
contained in the DFC coefficients. To this end, we repeated the
subject identification and gender classification analyses using

7 additional epoch lengths to calculate functional connectivity:
500 ms, 1, 2, 4, 8, 16, and 32 s. Increasing the epoch length
resulted in lower identification rates (Figure 7) as well as lower
gender classification performance (Figure 7). This means that
with decreasing epoch lengths the DFC coefficients can be
estimated with higher accuracy, as expressed by the smaller
differences (RMSE) in DFC coefficient values between Rest1 and
Rest2 (Figure 7). Another factor that is expected to play a role
in accuracy of which the DFC coefficients can be identified is
the duration of the EEG recording. To test the hypotheses that
shorter EEGs also result in reduced accuracy, we calculated DFC
profiles with 250 ms long epochs, using truncated EEGs ranging
from 1 to 10 min. We observed that shorter EEGs, and hence less
data, indeed result in decreased accuracy (Figure 7).

3.3. External Validation: Parkinson’s
Disease Patients
As a stronger proof of generalizability we applied our subject
identification and gender classification models on a completely
independent validation set consisting of resting state EEGs
from 81 patients diagnosed with Parkinson’s disease (PD). Of
these 81 patients, 58 had 2 EEGs recorded over a period
of 4 weeks. Identification based on all 5 frequency bands
resulted in an identification rate of 79%, which is in accordance
with the 82% that was achieved using the 105 HC subjects.
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FIGURE 7 | Differences in DFC profiles from PD patients and healthy subjects. Each bar indicates the number of occurrences of each of the 22 scalp regions in the

set of DFC coefficients that are statistically different between PD patients and healthy subjects. Bar colors correspond to frequency bands. L, left hemisphere; R, right

hemisphere; FP, fronto-polar; FM, frontal-mid; FL, frontal lateral; CM, central mid; CL, central lateral; TA, temporal anterior; TP, temporal posterior; PL, parietal lateral;

PM, parietal mid; PO, parietal occipital; OC, occipital.

Additionally, an identification rate of 80% was achieved when
identification was based on the joint set of 163 healthy subjects
and PD patients.

We next applied the gender classification models from the
analysis described in the “Identification and gender classification

using all frequency bands” section to the 81 PD patients as well.
The models trained on the data from healthy subjects could also

successfully discriminate between males and females: AUC =
0.89± 0.02.

Finally we investigated if DFC could also distinguish between
PD patients and healthy subjects. Considering the sex-related
differences in DFC coefficients, and the fact that we have almost
twice as many male as female PD patients, we restricted our

analysis to those DFC coefficients that were not significantly

different in our gender analysis (p > 0.05). This yielded
a total of 41616 DFC coefficients for which we assessed
differences between PD patients and healthy subjects using a
t-test. P-values below 1.2 × 10−6 (0.05 Bonferroni-corrected for
41,616 comparisons) were considered statistically significant. We

also excluded a subset of healthy subjects from this analysis
because they were much younger than the PD patients. Only
13 DFC coefficients survived Bonferroni correction (5, 4, 3,
and 1 from the δ, θ , 1, and β frequency band respectively).
All of these DFC coefficients were higher for healthy subjects,
and all except 1 involved either a left or right occipital
region (Figure 7).

4. DISCUSSION

In practice PLI and other functional connectivity measures are
typically estimated by averaging over trials and/or time(Aydore
et al., 2013). Here we propose an alternative method of
functional connectivity analysis.We demonstrate that correlation
coefficients between pairs of functional connectivity time-
series contain meaningful information about the functional
organization of the brain. First, we demonstrated that an
individual’s DFC profile is unique and reliably observable which
makes it possible to use it to identify an individual from
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a large group of subjects. Second, we also demonstrate that
an individual’s DFC profile is highly gender-specific, which
makes it possible to determine a subject’s gender solely based
on his or her DFC profile. Third, we show that there is
a general blueprint for DFC organization that is not only
shared among individuals, but also between left and right
hemispheres. These observations are in accordance with our
current understanding of functional brain organization, namely,
that there is an intrinsic standard architecture for functional
brain organization on top of which task- (Cole et al., 2014)
and individual-specific characteristics (Finn et al., 2015) are
superposed. Furthermore, this architecture is also shared between
left and right hemispheres which agrees with observations
that similar bilateral functional networks develop independently
(Tyszka et al., 2011). Fourth, our results also generalize to
a population of PD patients, and furthermore indicate that
there are specific changes in DFC profiles from PD patients.
This observation in particular is promising because it suggests
that DFC can be used to study neurodegenerative diseases.
Last, we showed that DFC coefficients dependent on the
frequency band used to calculate PLI values. A large body of
research links specific patterns of oscillations to perceptual,
cognitive, motor, and emotional processes (Cohen, 2017). It
is therefore reasonable to expect that DFC profiles calculated
based on different frequency bands are associated with different
neuronal processes.

4.1. DFC Coefficient Interpretation
A DFC coefficient is defined as the correlation strength between
two PLI time-series. First, it is important to recognize that PLI
calculated over a period of several hundreds of milliseconds
cannot reflect an intrinsic property of the brain’s functional
organization. This is because the magnitude of epoch length
and the typical duration of phase-locking are the same (Varela
et al., 2001). Consequently, duringmost epochs the instantaneous
phases of two signals only cross once, twice, or not at all.
Assuming that only 1 phase-crossing occurs, the resulting PLI
value only depends on when during this epoch the phase-crossing
took place. Naturally, in such a scenario a single PLI value
is determined by chance. However, if two PLI time-series are
positively correlated, it means that the phase crossing in both sets
of signals repeatedly occur around the same time. Hence, a DFC
coefficient can best be understood as a measure of the timing
relationship of the phase crossings between sets of EEG signals.
Contrary to single PLI values calculated over short epochs, it
is reasonable to assume the timing relationship between phase-
crossing does reflect an intrinsic property of the brain.

Our observation that the majority of DFC coefficients are
stronger in females fits to other studies demonstrating stronger
anatomical (Gong et al., 2009) as well as functional connectivity
(Tomasi and Volkow, 2012). However, we also found a subset
of DFC coefficients which were stronger in males. This is in line
with observations that some functional connections are stronger
in females while others are stronger in males (Biswal et al., 2010).
If our hypothesis of higher DFC coefficients reflecting shorter
time-intervals between phase-crossings is correct, differences
in brain size might also partly explain differences in DFC

coefficients between the sexes (Hänggi et al., 2014). Why gender
differences are most profound in the δ (1–4 Hz) and β (13–
30 Hz) frequency bands, and least profound in the α1 (8–
10 Hz) frequency band, might be explained by the opposite
pattern observed in our subject identification analysis, where
between-subject DFC correlations were lowest in the α1 (8–
10 Hz) frequency band. However, caution is warranted when
trying to find a physiological interpretation for a measure of
statistical dependence between EEG signals. A method such
as DFC might indicate which EEG features are relevant for
deeper investigation. For example, it would be interesting to
use an effective connectivity approach, such as direct causal
modeling (Friston, 2011), to better understand the mechanism
of brain connectivity.

4.2. Additional Considerations
The development of our DFCmethod is an empirical extension of
existing FCmethods, and therefore based on several assumptions
such as the use of epochs, averaging over 22 scalp regions, PLI as
functional connectivity measure, and choice of frequency bands.
However, it is not straightforward that these assumptions are
valid, let alone optimal, when studying the dynamics of FC. For
example, one could argue that for 250 ms-long epochs, it does
not make sense to use PLI as a FC measure. Nevertheless, we
showed that our DFC method provide meaningful information
about an individual. Therefore, our DFCmethod can best be seen
as the starting point of developing theoretically sounder methods
to study the dynamics of phase interactions.

We deliberately used minimal pre-processing, in the form
of band-pass filtering, and also used the complete resting
state EEG recording. A common approach in quantitative
EEG analysis is to let one or more EEG experts select parts
of an EEG recording which are then used for subsequent
analysis, instead of using the complete recording. Although
this might prevent the results being negatively influenced
by various artifacts, it also obscures the process of how
the results are obtained. Furthermore, it enables cherry-
picking of EEG data such that better results are obtained.
However, it goes without saying that careful selection of high-
quality EEG data should remain part of any quantitative
EEG analysis, especially when used to draw inference on
individual subjects.

5. CONCLUSION

These results underline the potential of EEG-based DFC as
a tool to investigate brain functioning on both a population
and individual level. This could in turn lead to the discovery
of new “neuromarkers” for cognitive behavior, psychiatric
conditions, and cognitive decline in neurodegenerative diseases.
Furthermore these results underline the validity of phase-
based functional connectivity methods such as PLI, be it as
an intermediate step for a more advanced quantification of
functional brain organization.
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