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Abstract: Internet of Things (IoT) solutions are a concrete answer to many needs in the healthcare
framework since they enable remote support for patients and foster continuity of care. Currently, frail
elderly people are among end users who most need and would benefit from IoT solutions from both a
social and a healthcare point of view. Indeed, IoT technologies can provide a set of services to monitor
the healthcare of the elderly or support them in order to reduce the risk of injuries, and preserve their
motor and cognitive abilities. The main feature of IoT solutions for the elderly population is ease of
use. Indeed, to fully exploit the potential of an IoT solution, patients should be able to autonomously
deal with it. The remote-monitoring validation engineering system (ReMoVES) described here is
an IoT solution that caters to the specific needs of frail elderly individuals. Its architecture was
designed for use at rehabilitation centers and at patients’ homes. The system is user-friendly and
comfortably usable by persons who are not familiar with technology. In addition, exergames enhance
patient engagement in order to curb therapy abandonment. Along with the technical presentation of
the solution, a real-life scenario application is described referring to sit-to-stand activity.

Keywords: exergames; IoT solution; elder care; telerehabilitation

1. Introduction

The ongoing digital transformation in our society has significant impact on several
technological aspects, such that the term Fourth Industrial Revolution has been used for
a few years. As another revolution [1], Internet of Things (IoT) solutions are becoming
increasingly relevant, and their use is consistently growing in several application domains.
Regarding healthcare, the IoT market size was valued at USD 147.1 billion in 2018 [2],
and is expected to reach USD 534.3 billion by 2025, expanding at a compound annual
growth rate (CAGR) of 19.9% over the forecast period [3], and resulting in an estimated
USD 63 billion of savings due to the deployment of medical IoT by 2022 [4]. All this is due
to growing investments in digital technology implementation at healthcare institutions that
address the need for the care of a growing geriatric population [5] coupled with the rising
prevalence of chronic conditions [6]. In addition, the recent outbreak of COVID-19 has
had strong impact on the health system, which had to adapt itself to various needs such
as guaranteeing access to care for patients in forced quarantine or in solitary confinement,
and meeting the needs for social distancing and reduction in access to healthcare facilities.
Medical IoT solutions are an essential tool for responding to patient care needs under safe
conditions. Hence, applications such as telemedicine, remote patient monitoring, and in-
teractive medicine have a precise and crucial position in the fight against the coronavirus,
such that several nations officially recommended their use [7].
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The key benefit of the IoT in the medical domain is connected technology. Devices
are used for assessing patients’ conditions, and monitoring and supporting rehabilitation,
so that a personalized plan of care can be defined and kept updated. This also fosters
continuity of care, enabling a patient to be supervised by a multidisciplinary team even
after dehospitalization. The most ubiquitous of such devices are wearable or robotic de-
vices, for instance, smart bands for data collection related to some physical activity [8] or
other wearables for motion analysis, which can be devoted to specific body-part rehabil-
itation (e.g., shoulders [9] and knees [10]). Even though a deep interest in such devices
is manifested in the healthcare context, wearables, robotic devices, and devices based on
smartphone interaction are not very suitable for the elderly population or for dehospital-
ized and disabled patients. Indeed, to fully exploit the potential of an IoT solution, patients
should be able to deal with it autonomously; however, the presence of wearable devices
or controllers means that some external support may be needed for such activities. Thus,
from the social and healthcare points of view, frail elderly individuals are among end
users who most need and would benefit from easy-to-use IoT solutions. Indeed, frailty
in the elderly corresponds to a broad clinical issue that concerns the physical, cognitive,
and social aspects of the patient, particularly for people over the age of 75 [11]. The study
by Fried et al. [12] defined a phenotype and thereby some characteristic traits of frailty in
the elderly. Specifically, frailty is considered if at least 3 of the following symptoms are
present: unintentional weight loss, fatigue, reduction in muscle strength, slower walking
speed, and decreased physical activity. In cases where fewer than 3 of the symptoms are
detected, one can speak of prefrailty. Frailty, therefore, differs from disability because it is
characterized by a decline in several physiological aspects. Thus, in this sense, disability
manifests itself more as a consequence of frailty itself. For this purpose, IoT technologies
can provide a set of services to monitor elderly healthcare and behavior, and to reduce
the risk of injuries. For instance, Tao et al. studied fall prediction based on human biome-
chanical equilibrium by analyzing data acquired by a Microsoft Kinect sensor installed in
elderly individuals’ homes [13].

In such a framework, this paper presents the remote-monitoring validation engineer-
ing system (ReMoVES; numip.it/removes) [14], developed at the Università degli Studi di
Genova. ReMoVES is a telerehabilitation platform that provides a set of IoT-based services
to support motor and cognitive maintenance and recovery through exergames and digital
versions of standard rehabilitation tests, carried out via Microsoft Kinect, Leap Motion,
and a touchscreen. ReMoVES is based on a multiclient/-server architecture that allows for
both the collection of and access to information from different locations. It was designed
for use in rehabilitation centers with the help of clinical staff or even independently in
the patient’s home, thus also enabling continuity of care after dehospitalization. In contrast
to other solutions, ReMoVES is an auxiliary tool that provides therapists with objective data
even when they cannot directly supervise their patients, such as during unattended use at
their homes, along with automated data-processing techniques [15]. The role of exergames
is important when referring to rehabilitative practice. Exergames are video games designed
to promote physical activity, with users performing physical exercises [16]. They recently
gained large popularity and proved to have scientific reliability, thus overcoming their
original goal of mere entertainment. Furthermore, clinical evidence showed positive results
for the preservation and improvement of cognitive functions in elderly populations [17].
In addition, gamification [18] proved to be effective for increasing engagement in activities
in several domains [19]. As a result, it also fosters a motivating environment in order to
keep patient engagement high without inducing boredom or fatigue, which may lead to
frustration and the abandonment of therapy. ReMoVES is currently used in five centers
(hospitals, clinics, and facilities), involving more than 200 patients and resulting in more
than 2000 rehabilitation sessions. Various studies are being conducted that use ReMoVES,
such as those concerning unilateral spatial neglect [20] and systemic sclerosis [21]. Its ease
of use and technical reliability are supported by good emotional feedback provided by
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the patients who practiced ReMoVES exergames, and by the small number of registered
technical failures (7 in 3 years).

The present study is contextualized in the framework of user-generated content (UGC)
analysis. Therefore, it finds applications in research on the use of data science (DS) in
digital marketing (DM). In 2020, nine topics for future research on DS in the DM ecosystem
were defined [22]. Among them, four are in line with this work, i.e., medical-data eHealth;
people: movement, organization, and personalization; the IoT; and new machine-learning
model development.

The main contributions of this work are:

• developing and applying ReMoVES in the context of frail elderly individuals’ care,
meeting the needs of the target population;

• demonstrating the ease of use of the presented solution, which allows for frail elderly
people to autonomously access the provided services;

• proving that the remote monitoring of frail elderly individuals is possible with such a
solution, thus fostering continuity of care;

• showing how off-the-shelf and inexpensive devices, such as the ones employed by
ReMoVES, can be used for the satisfactory monitoring of patients;

• confirming that game-based activity enhances patient engagement, driving them to
also practice the exercises unattended, including in elderly populations;

• showing how technology can foster socialization in elderly populations;
• reporting how ReMoVES simplifies the work of clinical specialists and promotes

the establishment of individualized healthcare plans;
• describing a real-life scenario referring to the well-known sit-to-stand (STS) activity;
• defining the indicators used for the implicit analysis of the game session, which is

involved in designing ad hoc data-processing techniques;
• analyzing the presented data from both qualitative and quantitative points of view

with respect to elderly people and comparing them with results in the literature;
• releasing data from rehabilitation sessions via exergames, and inviting other re-

searchers to leverage on the published database in order to establish the framework
for research activities in such a context.

Following some preliminary applications such as the present one, ReMoVES is now
being applied in several studies involving a large number of patients.

The manuscript is structured as follows. Section 2 briefly recaps the clinical motiva-
tion supporting the present work. In Section 3, other solutions are described, aimed at
showing the technical background of IoT technologies for elderly care, and highlighting
how ReMoVES and the present study differ from them. ReMoVES is described in Section 4
from a technical and an application point of view. The experimental phase is described in
Section 5, focusing on analysis of the rehabilitation sessions of patients practicing the ex-
ergame for the STS. Similar works in the literature are compared to prove the reliability of
the present study. Lastly, Section 6 discusses and concludes the present work.

2. Clinical Motivation

As the average age of the global population is growing, the global healthcare system
has to respond to the need of elderly populations [23,24]. Indeed, due to age and related
cognitive impairments, weakness is a major limiting factor related to daily life activities.
For instance, the reduction in torque generation is reported at the level of the elbow, shoul-
der, fingers, and thumb, which worsens due to prolonged physical inactivity. Furthermore,
simple activities, such as standing up, may be affected, causing falling risk and insecure gait.
In addition to cases of psychiatric and neurological diseases, cognitive abilities inevitably
decline in a healthy elderly population, thus leading to severe social and economic impact.

In this context, strength training associated with task-oriented training can intensify
rehabilitation and reinforcement [25].
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The study of Erickson et al. [26] suggested that physical exercise can produce cognitive
improvements (associated with an increase in hippocampal volume) in accordance to [27]
about increased levels of brain-derived neurotrophic factor (BDNF) in response to exercise.

By design, exergames are appropriate for this aim as they require the patient to
produce physical movements in order to complete a task-oriented exercise in response to
visual cues [28]. They are simultaneously able to improve patient engagement and train
multiple cognitive processes [29].

3. Existing Solutions and Differences

The aim of the present section is to introduce information and communication tech-
nology (ICT)/IoT solutions in the context of frail elderly people’s care, highlighting major
points in common and differences between those and ReMoVES.

The interest toward the well-being of the elderly is well-documented in the literature
from environmental [30] and independent-living [31] perspectives. As health issues and
frailty symptoms start arising, it is crucial to take action in effective ways.

Traditionally, a great portion of physical therapy, rehabilitation, and assessment is
based on a clinician’s observations and judgment. Sensor and computing technologies that
can be used for motion capture, performance assessment, and range-of-movement (ROM)
measurements have drastically advanced in the past few years.

In such a context, many works focus on the early detection of frailty to help caregivers
and patients, and address such a problem from several points of view. For instance, the au-
thors of [32] evaluated the acceptability of solutions for detecting signs of frailty on the basis
of techniques and clinical practice described in the literature. Their conclusion was that
minimal clinic interruption, low requirements for resources, and added benefit (e.g., stratify
risk, enhanced understanding of frailty) yield to higher acceptability. Such requirements
are met by ReMoVES since it can be used in combination with other clinical needs, it is
based on off-the-shelf components, and provides therapists with feedback that helps them
in assessing patients’ conditions and defining further steps of the rehabilitation process.

The study in [33] highlighted the importance of frailty detection in a home-based con-
text aimed at supporting the independent living of elderly individuals at home. The local-
to-central unit architecture of ReMoVES and its ease of use were specifically designed to
deliver home-based activities, thus facilitating dehospitalization and promoting continuity
of care.

In [34], a platform for favoring personalized interventions to frail elderly persons
was introduced. It deploys dashboards for doctors and patients, giving them control
of the system and data visualization, respectively. Such a solution has some points in
common with ReMoVES, with particular focus on its application layer that is described in
Section 4.1.

Along with the spread of solutions targeting healthy and active aging, the need for
aligning and combining the informative content obtained by different platforms arises.
On the basis of [35], the information-uniformity issue was tackled in the fundamental study
by Madueira et al. [36]. Indeed, the proposed My-AHA software is able to integrate multiple
healthy and active aging platforms, thus providing a solution to be used in conjunction with
other technologies. Similarly, ReMoVES was designed to be integrated with complementary
devices, for instance, for biometric measurements or medical teleconsultations. In addition,
ReMoVES directly encompasses activities in the form of exergames that can be practiced
by patients.

There are several solutions in the context of exergames for clinical practice, for example,
applications for poststroke [37–40] and Parkinson’s rehabilitation [41,42], and with particular
emphasis on physical activity [43].

Despite the deep interest in such a topic, each solution is focused towards particular
needs, developed independently from the others, and this makes it difficult to compare
them. Furthermore, publications that provide raw data acquired during the execution
of exergames were not found. The poor similarity of such solutions and their high vari-
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ability, already pointed out in [36], along with the substantial lack of available data, limit
the development of assistive computing technologies based on exergames, affecting both
the technical aspect and the scientific innovation of the results. In particular, the possi-
bility of comparing body-tracking methodologies (e.g., articulations to track; frequency),
data-transfer solutions (e.g., client–server architecture or local storage only), and data-log
formats (e.g., JSON or CSV) is hindered. Furthermore, the impossibility of accessing col-
lected data in many studies proposed by other researchers in recent years precludes the use
of big-data processing algorithms.

For the above reasons, the present paper highlights the potential of ReMoVES rather
than comparing it with other solutions, in addition to describing its solid practical back-
ground. ReMoVES is used in several healthcare facilities, and doctors and therapists claim
it is a very important tool, allowing for delivering more accurate measurements than what
humans can collect without the need for uncomfortable and hard-to-use devices such as
wearables and robotics.

The authors of the present manuscript aspire to sensitize the scientific community on
the aforementioned issues, and invite other researchers to leverage the published database
in order to establish a framework for research activities related to the use of exergames for
rehabilitation, and to lay the groundwork for a direct comparison with systems similar to
ReMoVES.

4. Materials and Methods

The present section goes over the materials and experimental setting of this manuscript.
First, Section 4.1 introduces all of ReMoVES’ components and layers, describing how
they were developed and their functionalities. Then, the setting of the experimental
phase is presented in Section 4.2, along with study indicators that are of interest from a
clinical point of view (Section 4.3). Such an application is only an example of the possible
deployment of ReMoVES. All available activities are practiced by patients, but STS is
the most comprehensive and investigated for clinical treatment.

4.1. ReMoVES Architecture

ReMoVES was developed by the Electrical, Electronics and Telecommunication En-
gineering and Naval Architecture Department (DITEN) of Università degli Studi di Gen-
ova [14]. The proposed IoT system provides a personalized rehabilitation program that
can be performed at home by the patient, while the therapist can track training perfor-
mance and effectiveness from any Internet-connected device. By developing game-based
rehabilitation tools that are tailored to the therapy goals of different patient categories, mul-
tidimensional rehabilitation teams can be provided with more meaningful performance
data. Among others, the monitoring of eventual compensation movements allows for
the evaluation of whether an exercise is correctly performed.

Several IoT architectures for telemedicine systems and e-health were proposed in
the literature [44–46], but the most compliant with ReMoVES is the one composed of four
layers shown in Figure 1.

These levels work closely together, and ensure the archiving, processing, monitoring,
and proper evaluation of patients’ rehabilitation performance. The four-layer architecture
divides the connection part from the server/cloud part. It is important to define the correct
role of the latter because the physical server used in ReMoVES plays a fundamental role in
the correct processing and management of the entire IoT system.

A detailed description of the four layers follows referring to the used technologies
and devices.
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Figure 1. Architecture of remote-monitoring validation engineering system (ReMoVES). Each layer
is depicted in the corresponding position.

4.1.1. Sensor Layer

The bottom layer is the sensor or perception layer and consists of the patient client.
It deals with the management of so-called “things” (i.e., sensors connected to the sys-
tem). ReMoVES employs off-the-shelf devices, i.e., Microsoft Kinect V2, Leap Motion,
and a touchscreen, resulting in a low-cost solution for telerehabilitation. These devices
are installed and connected to a computer, and through simple body gestures or touches
(in the case of touchscreen), the patient interacts with the game shown on the screen. Pa-
tient movements are recorded without requiring the intrusive use of video cameras, which
require specialized methods for tracking the user’s body, and are heavy and errorprone.
After the patient finishes the game session, raw information is generated from tracked data
and sent to the upper level. A brief description of the included sensors in the platform
is provided. The real-scenario application here refers to full-body activity; so, exergames
delivered via the Kinect sensors are described, furnishing particular details about the game
used for the performance assessment of frail elderly people.

Microsoft Kinect V2: A motion-sensing input device based on a time-of-flight cam-
era to build a depth map of the environment. It can simultaneously track in 3D up to
25 fundamental joints (Figure 2) of the framed human body. It offers a wide field of view
(70◦ × 60◦) and recognition up to 4.5 m from the device [47]. Data from the tracked user’s
body are recorded at a frequency of 10 Hz. Several studies demonstrated that the Microsoft
Kinect V2 can validly obtain spatiotemporal parameters [48,49]. Microsoft Kinect is also a
satisfactory tool for rehabilitation due to its low cost and adequate spatial accuracy (with
an order of magnitude of centimeters) [50].

Exergames based on Microsoft Kinect have a significant field of application in assistive
technologies for the elderly, such as in reducing fall risk, improving physical performance,
and reversing the deterioration process in frail and prefrail elderly persons [51].

Leap Motion: Explicitly aimed at the recognition of hand gestures, it calculates the po-
sition of the fingertips and the orientation of the hand. Its deployment in ReMoVES is
devoted to hand-district rehabilitation exergames.

Touchscreen: Required for interacting with the subset of exergames for cognitive
assessment. The monitor is positioned on a table with an angle to the plane of a few degrees.
Cognitive exergames in the ReMoVES platform are a digital reinterpretation of some
gold-standard tests administered on paper to patients. Interaction through a touchscreen
monitor allows for complete data collection, also helping the administrator avoid taking
notes during patient activity. Examples of collected auxiliary data are interaction speed
and methods or strategies used by the patient to complete the test.
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Figure 2. Skeleton-joint locations and names as captured by Microsoft Kinect sensor. Skeleton
composed of 3D coordinates for each of its 25 joints.

Exergames: The digital games were developed from scratch for this research. They
encourage the patient to autonomously carry out functional exercises along with traditional
motion rehabilitation. The creation of these activities involved different processes, technolo-
gies, and specialists. It is necessary to pay particular attention to the specifications provided
by physiotherapists and physiatrists, who share their skills to define the requirements
and parameters of the game. The present exergames are considered to be assessment
and rehabilitation activities, delivering task-oriented training by requiring the patients to
fulfil consecutive and repetitive tasks. They foster mild-intensity activity, which promotes
active aging for frail elderly individuals, and allows for the preservation or reacquisition of
functional skills that are involved in real-life activities.

To design an enjoyable and safe gaming experience for elderly users, several age-
related requirements needed to be considered [52]: (i) The target audience’s lack of previous
gaming experience: devices such as Microsoft Kinect enable users to control and naturally
interact with exergames without the need to physically touch a game controller or object
of any kind. Microsoft Kinect achieves this through a natural user interface by tracking
the user’s body movements. (ii) Exergames should focus on a simple interaction mecha-
nism, while complex and decorative graphics should be kept to a minimum. (iii) Exergames
should avoid frustration and foster an enjoyable player experience: when the motor skills
of the user are reduced, a preventive calibration phase allows for the patient to complete
the game task even with a limited ROM.

The system currently includes six different exergames for the Kinect sensor that can
be modified on the basis of level parameters, duration, range of motion, speed, or others.
These activities automatically adapt to the patient capabilities due to a calibration phase.
The thumbnails of Kinect exergames are shown in Figure 3.
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(a) (b) (c)

(d) (e) (f)

Figure 3. Thumbnails of Kinect exergames in current ReMoVES catalog. (a) Equilibrium Paint;
(b) Owl Nest; (c) Shelf Cans; (d) Hot Air; (e) Push Box; (f) Flappy Cloud.

For the sake of completeness, a brief description of the Kinect exergames follows.

• Equilibrium Paint: this game is an interactive version of the sit-to-stand exercise.
The user repeatedly stands up and sits down within a predefined amount of time
(30 s). The scene shows a horizontal wooden beam on which paint cans are placed.
The inclination of the beam directly depends on the angle of the patient’s shoulders
during the STS, traced by Microsoft Kinect. When the patient does not symmetrically
stand up, the paint cans fall down, causing a score penalty in the game.

• Owl Nest: the patient is encouraged to reach an on-screen target with an arm motion
(reaching task) in order to achieve a high ingame score. Many colorful owls randomly
appear in a position in the screen, and the user carries them to the nest to gain points.
Then, other ones appear on the screen.

• Shelf Cans: introduces the patient to a virtual environment that is similar to a kitchen.
With an arm movement, the patient grabs one of the colorful drink cans appearing
in the middle of the screen and drags it to the corresponding shelf. This game is
appealing because it requires the user to be attentive to drop off the drink can on
the correct shelf according to its color.

• Hot Air: this is an activity to train the patient’s body balance. The user can control
the direction of a hot-air balloon floating in the sky with the balance shift: ingame
scores are collected when it is led towards the bonus targets.

• Push Box: assesses balance, where the patient must stretch forward with their arms
parallel to the ground. It takes inspiration from a phase of the Berg balance test.
The purpose of this exercise is to push a box into a hole a few meters in front of
the box.

• Flappy Cloud: this is a functional exercise for the lower limbs. The leg abduction–
adduction movement reflects the position of a cloud object in the game screen: the pa-
tient makes it move forward without hitting some obstacles.
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4.1.2. Network Layer

The role of the network layer is to establish communication between data tracked by
the sensors and stored in a local PC and the remote server or cloud. In ReMoVES, data-log
files in JavaScript Object Notation (JSON) format are temporarily stored in the local unit or
PC installed in the patient’s home or at hospital. These data are sent to the central server as
soon as an Internet connection is available via Ethernet or Wi-Fi. This functionality was
added in order to combat any possible connection trouble and to facilitate domestic use
where a reliable Internet connection may not be available.

4.1.3. Server Layer

The server layer provides data elaboration and analysis via cloud or server storage.
Software running on the physical ReMoVES server can manage content-independent data
flow to be compliant with software reuse logic. Server software consists of a traditional
Linux–Apache–MySQL–PHP (LAMP) stack, and provides data-storage solutions, data-
processing methods, and a web application for clinicians to view information through
dedicated graphic interfaces. The ReMoVES server has only three types of application
programming interfaces (APIs) for the management of client or server data synchronization.
Data communication is in secure mode based on hypertext transfer protocol secure (HTTPS).
In HTTPS, the communication protocol is encrypted using transport layer security (TLS).
Certificates are issued by the Let’s Encrypt authority. To process acquired information, a
complete postmovement reconstruction of ingame events is allowed. Additionally, this
component runs the data-processing algorithms and provides the interface for displaying
the results.

Database: This subsection describes the MySQL relational database used by ReMoVES.
The dataset consists of a structured collection of JSON files, each of them containing an
array of temporal events. In each element of the array, there are key-value pairs that provide
data. Some keys are common to all exergames, such as time of recording in milliseconds
(ms), ingame score, and Kinect joint position (see Figure 2). In addition, other keys are
provided depending on the game.

4.1.4. Application Layer

This layer consist of the therapist client, which provides therapists, physiotherapists,
and doctors with direct access to data. Specifically, the built-in algorithms provide a clear
and concise report to the therapist in order to facilitate the interpretation of therapy evo-
lution. The web interface provides a user-friendly means for the clinical staff to consult
information, also displaying patient performance in graphic mode, and to assign rehabilita-
tion therapies. The layout dynamically adapts to the size and type of device; this allows
for connection even from a smartphone in the case that the therapist does not have an
available computer.

Figures 4 and 5 show pictures of hardware and software architectures, respectively. The pa-
tient client is composed of a local unit with the following hardware requirements:

• processor, seventh generation Intel® Core™i5 CPU (quad-core 2.4 GHz or faster);
• memory, 4 GB RAM;
• storage, 20 GB;
• video card, DirectX11-capable from NVIDIA, AMD, or Intel with at least 1 GB VRAM; and
• dedicated USB3 port.

Microsoft Kinect or Leap Motion sensors are connected to the computer on the basis of
the therapist’s recovery plan; thereby, exergames are assigned to the patient. A touchscreen
monitor is added instead in the case of assessment through cognitive tests. As mentioned in
Section 4.1.2, an Internet connection is not mandatory for the user identification phase and
to locally start the exergames, but it is necessary for data synchronization with the server.
The central unit is composed of the ReMoVES server, which performs the data synchro-
nization with the patient or client units, and stores and processes data in the MySQL
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database. Therapists can access from any device the web application supplied by WEB
server functions.

Figure 4. Hardware architecture of ReMoVES.

Figure 5. Software architecture of ReMoVES.

4.2. Experiment Setting

In the following section, a real-world application of the system is provided for the con-
dition assessment of elderly people referring to STS activity. The experiment setting is
described here.

STS is a well-known assessment test of which the importance in estimating lower-limb
strength is widely recognized [53]. Many studies discussed its effectiveness as an indicator
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of leg weakness and related falling risk in elderly and disabled people [54]. Indeed, it is
included in the Berg balance test battery as a standard activity for frail elderly persons [55].
In addition to assessment, STS is a task-oriented and strength-reinforcing exercise [56].

For frail elderly people, such an exercise represents a simple and daily activity, but at
the same time, it involves the muscles of the lower limbs, stimulating them and thus allow-
ing for their strengthening over time. The importance of this test gave rise to numerous
studies that implement new technologies, such as wearable sensors or baropodometer
boards [57,58].

There exist two different STS protocols: the 30 s STS [59], consisting of standing and
sitting as many times as possible; and the 5 times STS [60], requiring five complete STS
cycles to be performed in the shortest time possible. Here, the 30 s STS is considered,
and sessions by a population of frail elderly individuals referred to the Centro di Riabil-
itazione, Gruppo Fides Genova (Italy) are described. An ad hoc exergame, Equilibrium
Paint, was developed in the context of the improved STS with the support of new technolo-
gies. It guides the patient to correctly conduct the exercise and improves engagement due
to stimuli and visual feedback. Section 4.1.1 describes the exergame, and Figure 6 shows a
captured screenshot of the game during activity.

Figure 6. (left) Still reconstruction of movement for joints involved in indicator calculations (joints 1,
3–5, and 17–23 in Figure 2). Whole movement visible in the attached Video S1. (right) Screenshot of
Equilibrium Paint.

Intervention using the ReMoVES exergame platform did not replace the classical
rehabilitation program but is an integrative tool of usual treatment. Patient participation
in the activity is uniquely aimed at collecting movement data during the execution of
the STS exergame rather than undergoing clinical tests. Data were collected over a period
lasting up to 2 months and up to twice a week, and admission to each game session was
determined on the basis of the judgment of the physiatrist, who assessed the willingness to
participate and the general conditions of the patient at that particular time.

4.3. Indicators

Some peculiar features are defined and extracted from the patients’ game sessions
in order to provide a picture of the general conditions of the considered population.
The definition of the considered features was inspired by works in the literature such
as [61,62]. They were computed from the spatial coordinates of joints in Figure 2, where x,
y, and z represent the mediolateral, anteroposterior, and vertical directions, respectively.

The main indicator is the number of sit-up occurrences (NSU) during the 30 s duration
of the test. This is computed by analyzing the trajectory of the spine middle joint (joint
7 in Figure 2) along the vertical axis. Each peak of such a trajectory represents a sit-up.
For the population under analysis, the average NSU is ¯NSU = 4.5.

Peak detection also allows for separating the ascending and descending phases during
activities. They are identified as the parts of the trajectory between a local minimum of
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the spine middle height and the following peak, and between a peak and the following
local minimum of the spine middle height, respectively. In this fashion, it is possible to
in-depth analyze both phases by computing ad hoc indicators.

The first feature that is introduced is the upper-body flexion angle (UBFA), which
represents the angle of flexion of the trunk and is computed as

UBFA = arctan
z2 − z7

y2 − y7
. (1)

The UBFA is maximal when the player is in a standing position, and reaches values
of approximately 90◦ when sitting. In addition, other values are present that represent
the intermediate phase from a sitting to a standing position and vice versa. For standing
up, the player should move forward, which results in a decrease in sitting UBFA.

Similarly to the UBFA, the indicator of the lower-limb flexion angle (LLFA) represents
the knee angle, and can be computed for both the left and the right limb. It is defined as

LLFA = 180 + θ f emur − θtibia. (2)

where θ f emur = arctan
z20 − z19

y20 − y19
, θtibia = arctan

z22 − z20

y22 − y20
for the left limb and

θ f emur = arctan
z21 − z17

y21 − y17
, θtibia = arctan

z24 − z21

y24 − y21
for the right limb. Variation in this

angle for both the left and the right limb is similar to the trajectory of the spine middle joint
(see Section 5.2).

During this activity, patients may adopt erroneous behavior such as moving the shoul-
ders or hips. Hence, it is important that therapists supervising the rehabilitation are in-
formed about these compensatory movements. Regarding shoulder movement, the upper-
body twist angle (UBTA) depicts the angle of the line joining the shoulders (joints 3–5 in
Figure 2) on the axial plane:

UBTA = arctan
y5 − y3

x5 − x3
. (3)

Hip displacement is calculated on the basis of the anteroposterior and mediolateral
displacement of the center of mass (COM). The COM is defined as the middle point between
the right and left hips (joints 17 and 19 in Figure 2, respectively) and spine middle (joint 7
in Figure 2):

COM = (x̄, ȳ, z̄) =
(

x17 + x19 + x7

3
,

y17 + y19 + y7

3
,

z17 + z19 + z7

3

)
. (4)

Hence, indicators center-of-mass anteroposterior movement (COM AP) and center of
mass mediolateral movement (COM ML) depict COM positions on the axial plane.

To conclude, upper-frame velocity (UfV) is the velocity of motion in either the ascend-
ing or descending phase. For one ascending phase, it is computed as

U f Vup =
zpeak − zlocalmin

timepeak − timelocalmin
. (5)

Similarly, in the descending phase, it is

U f Vdown = −
zlocalmin − zpeak

timelocalmin − timepeak
. (6)

More generally, all aforementioned features are separately computed in the ascend-
ing and descending phases in order to provide a fragmented and specific analysis of
the patients’ sessions.
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5. Experiment Results

The aforementioned real-world case study is described in the present section. The cur-
rent study involved 13 frail elderly people (6 females and 7 males) with an average age
of 82.3 ± 6.2 who participated several times to the rehabilitation sessions via ReMoVES.
This was a preliminary feasibility study to evaluate the possible use of ReMoVES in a
real-world scenario. Feedback from the present work drives further applications involving
more patients. Participants reported that they felt safe while playing the game, and there
were no adverse events while playing. Most of the patients stated that they enjoyed this
extra activity, asking the clinical staff to participate more frequently. An interesting social
interaction developed among the participants, who enjoyed watching others carry out
the activities.

In addition, the collected data are released with this publication. They are avail-
able for download on GitLab (https://gitlab.com/NumIP/removes-fe-data/ accessed on
1 April 2021). Data are licensed under the Creative Commons Attribution 4.0 International
license (CC BY-NC-SA 4.0). The data release is because, despite the deep research interest in
this field, publications that provide raw data acquired during the execution of exergames
were not found.

5.1. Implicit Activity Analysis

The implicit analysis of the activity performed by the involved patients is presented.
Mean values of the proposed indicators were collected, and their coherence with already
published results was statistically tested. In addition, aimed at enabling deeper analysis of
each game session, a graphic visualization of the indicators along the time dimension is
shown. Such graphs are provided to therapists via the application layer, so that clinical staff
analyze both summary statistical indicators and patient performance during the whole
session. In this fashion, even some erroneous movements or loss of energy, which may
be limited to a short period of time, can be noted by the medical specialists, leading to a
complete and deep clinical picture of the patients.

The average features of the available population are summarized in Table 1. Negative
values for the UBTA indicate that the left shoulder was put forward while practicing
the activity.

Table 1. Mean feature values. NSU, number of sit-up occurrences; UBFA, upper-body flexion angle;
LLFA, lower-limb flexion angle; COM, center of mass; AP, anteroposterior; ML, mediolateral.

Feature Mean Value

NSU 4.5 ± 1.5
Stand UBFA range (deg) 79.92 ± 6.71

Sit UBFA range (deg) 79.35 ± 8.15
Stand LLFA (deg) 131.16 ± 17.28

Sit LLFA (deg) 134.31 ± 16.94
Stand UBTA (deg) −0.67 ± 1.91

Sit UBTA (deg) −0.59 ± 1.91
COM stand AP (cm) 0.36 ± 0.09

COM sit AP (cm) 0.52 ± 0.61
COM stand ML (cm) 0.08 ± 0.02

COM sit ML (cm) 0.07 ± 0.03
U f Vup (m/s) 0.12 ± 0.06

U f Vdown (m/s) 0.07 ± 0.02

To address the coherence of the derived data with respect to the literature, the results
of [61,62] were considered for the discussion. In [61], the indicators standing and sitting
COM AP, standing and sitting COM ML, U f Vup, and U f Vdown were calculated with re-
spect to a population of healthy elderly individuals (mean values were 0.01, 0.03, 0.03,
and 0.04 cm, and 0.78 and 0.71 m/s, respectively). Hence, a statistical test was performed
to verify the assumption that the indicator values in [61] depicted a better general health

https://gitlab.com/NumIP/removes-fe-data/


Sensors 2021, 21, 2719 14 of 20

condition than the ones deduced for the population under analysis. A one-tailed t-test was
used, and the assumption was confirmed with p value < 0.01.

In addition, the authors in [62] showed mean values for the range of UBFA in both
the ascending and descending phases in a population of frail elderly persons. Via a two-
tailed t-test, the assumption that the mean ranges of UBFA in [62] and in the present work
were equal was verified with p value < 0.01.

5.2. Graphs on Therapist Client

As anticipated, therapists were also provided with graphs depicting all game ses-
sions, delivering more comprehensive informative content than that in the mean or range
indicators. An example of the graphic representation available on the therapist client is
shown in Figure 7. In particular, Figure 7a depicts the trajectory of the COM and peaks;
hence, corresponding standing positions were visible. In particular, parts with a light-gray
background are for the ascending phase, and parts with a dark-gray background represent
the descending phase. Figure 7b shows UBFA values during the session. Figure 7c shows
LLFA values for both the right and the left limb during the session. The trend of this
chart is very similar to that of the COM. A standing position also requires limbs to be
fully extended, corresponding to the peaks of the LLFA indicators. Figure 7d presents
the shoulder twist on the axial plane during the session. Lastly, COM AP and COM ML dis-
placements are depicted in Figure 8 on the transverse plane. Reduced lateral displacement
in the second graph with respect to the first suggests that the patient stabilized themselves
while playing.

Sensors 2021, 1, 0 14 of 20

condition than the ones deduced for the population under analysis. A one-tailed t-test was
used, and the assumption was confirmed with p value < 0.01.

In addition, the authors in [62] showed mean values for the range of UBFA in both
the ascending and descending phases in a population of frail elderly persons. Via a two-
tailed t-test, the assumption that the mean ranges of UBFA in [62] and in the present work
were equal was verified with p value < 0.01.

5.2. Graphs on Therapist Client

As anticipated, therapists were also provided with graphs depicting all game ses-
sions, delivering more comprehensive informative content than that in the mean or range
indicators. An example of the graphic representation available on the therapist client is
shown in Figure 7. In particular, Figure 7a depicts the trajectory of the COM and peaks;
hence, corresponding standing positions were visible. In particular, parts with a light-gray
background are for the ascending phase, and parts with a dark-gray background represent
the descending phase. Figure 7b shows UBFA values during the session. Figure 7c shows
LLFA values for both the right and the left limb during the session. The trend of this
chart is very similar to that of the COM. A standing position also requires limbs to be
fully extended, corresponding to the peaks of the LLFA indicators. Figure 7d presents
the shoulder twist on the axial plane during the session. Lastly, COM AP and COM ML dis-
placements are depicted in Figure 8 on the transverse plane. Reduced lateral displacement
in the second graph with respect to the first suggests that the patient stabilized themselves
while playing.

0 50 100 150 200 250
0

0.2

0.4

[m]

(a)

0 50 100 150 200 250

100

110

120

130

[deg]

(b)

0 50 100 150 200 250

100

120

140

160

180

[deg]

(c)

0 50 100 150 200 250

−4

−2

0

[deg]

(d)

Figure 7. Graphs from Equilibrium Paint exergame. These graphic representations are available for
clinical staff, so that deeper analysis is enabled throughout the whole session. (a) COM; (b) UBFA;
(c) LLFA; (d) UBTA.
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(c) LLFA; (d) UBTA.

5.3. Analysis of Presented Graphs

The present section provides an interpretation of the graphs in Section 5.2. This allows
for discussing the considered indicators and for highlighting how the present IoT solution
can be used for remote monitoring.
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Figure 8. Representations of anteroposterior (AP) and mediolateral (ML) movements of center of
mass in two consecutive ascending and descending phases. Blue lines, ascending phases; red lines,
descending phases.

The COM trajectory in Figure 7a shows that the patient performed a smooth move-
ment with no particular pauses. The resulting regular path means that the patient did not
experience particular fatigue and managed to control their motion. So, by only considering
such a graph, a therapist would say that the patient’s performance was fairly good. How-
ever, Figure 7b,c, for UBFA and LLFA, respectively, depict incomplete movement. Indeed,
the patient is supposed to reach maximal extension while standing, namely, the maximal
values of UBFA and LLFA (corresponding to COM peaks) should reach approximately 180◦.
While LLFA satisfies such a requirement, meaning correct leg extension, the maximal values
of UBFA were around 130◦, denoting that the patient remained bent forward when stand-
ing. Figure 7d for UBTA depicts that shoulder rotations were very small, denoting correct
movement (the patient is required to preserve shoulders in the frontal plane, i.e., without
trunk rotations). To conclude, graphs in Figure 8 depicting AP and ML movements show
that the patient was not laterally significantly displaced (about 2 cm), confirming the correct
execution of the exercise apart from the vertical trunk extension.

This shows how multidimensional data can provide the clinical staff with precise
information. This is very important for reliable remote monitoring, by which small or
partially erroneous behaviors can also be detected and corrected.

6. Discussion and Conclusions

The present section is for the discussion and conclusions. Style and structure are
inspired by [63].

IoT system ReMoVES administers exergames for motor and cognitive activities; its
use in the context of frail elderly individuals’ care was presented here. By using low-cost
off-the-shelf components and an easy-to-use interface, patient activity can be monitored
even when executed without therapist supervision. Additionally, people who are not
familiar with new technology can perform this activity according to their personalized plan
of care. All this also allows for continuity of care after dehospitalization, and the remote
supervision of patient activity by clinical staff. Implicit analysis of patient performance
was presented with respect to STS activity. Acquired data during the game sessions refer
to the players’ practice, and can be used to deliver both a summary and a deep description
of their activity to clinical staff.

The use of ReMoVES for the care of frail elderly persons responds to a concrete
need addressing an issue of both scientific and social interest. Bringing new technologies
to the domestic level for frail elderly individuals is a turning point for their care, which
benefits both the patients themselves, their families who are looking after them, and medical
specialists in their practice.
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6.1. Theoretical Contributions

The present study shows how simple solutions can deliver relevant information in
the context of frail elderly persons’ care. On the one hand, the possibility to avoid wearable
devices in favor of sensors such as depth cameras allow for expanding the use of such a
system even without the need for therapists or caregivers to attend to patients. On the other
hand, measurement accuracy is satisfactory for remote monitoring, as pathological move-
ment can be detected from the data, and sessions can be analyzed and discussed as in
Section 5.2.

The most important theoretical contribution is the definition of indicators that drive
feature-extraction and data-processing operations in future studies. The reliability of data
and concordance with respect to the literature enable the development of data-analysis
and artificial-intelligence techniques for supporting clinical practice. For instance, due to
the sequential nature of rehabilitation data collected by ReMoVES, long short-term memory
(LSTM) [64] recurrent neural networks (RNNs) [65] can be used for data analysis.

6.2. Managerial Implications

The present study highlights the urgent need for officially recognizing IoT/ICT solu-
tions for telerehabilitation and telemedicine in general. Even though acceptability towards
such solutions is continuously increasing, it is still rare that such technologies are guar-
anteed and covered by national health services. For instance, in several Italian regions,
the local health service has recently been operating in such a direction given the large
number of elderly persons living there, recognizing the benefit that they may have from
technologies such as the one described here. This is the case of Liguria where, to encourage
better care of the elderly in the community, there are plans with funds for families to care
for disabled relatives at home (in the context of the Silver Economy) [66].

In addition, necessary strategic plans for bridging the gap between the development
of novel technologies and their extensive use by the population cannot disregard close
contact with private companies.

To sum up, institutions should promote collaboration between universities and re-
search centers in designing and prototyping novel solutions, high-tech companies that can
convert a research product into a commercial one, and healthcare facilities as both experi-
mental sites and final users to facilitate the spread of such technologies and consequent
benefits to people.

6.3. Practical and Social Implications

There are three main contributions for what concerns practical and social implications
of the present work.

First, from a clinical point of view, patients benefit from the use of ReMoVES in
terms of help for dehospitalization, continuity of care, the personalization of plans of care,
and engagement in activities.

Second, from an operative point of view, telerehabilitation helps clinical staff to also
follow several patients when they cannot physically attend to them. This is very important
in the time of the pandemic emergency, as it, for instance, allows for reducing time for
moving from one patient’s house to the next. As a practical example, the Liguria region
has relevant problems in terms of urban traffic; hence, home-based rehabilitation often
causes therapists to lose time in traffic, augmenting work stress and eventually affecting
the quality of the imparted treatment.

In the end, there were interesting social interactions among participants while practic-
ing ReMoVES activities in the Centro di Riabilitazione facility. Patients enjoyed the experi-
ence both when playing themselves and when watching others carrying out the activities,
thus promoting social inclusion. This may be the context of a stimulating future social
experiment aimed at evaluating whether such a friendly atmosphere induced by ReMoVES
activities can bring some sort of unexpected benefit.
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6.4. Limitations and Future Research

The main limitation of the present study is the difficulty in performing a systematic
comparison with similar studies, as mentioned in Section 3.

Concerning future developments, the next objective is the improvement of technical
ReMoVES potential, for instance, by deploying the new Azure Kinect sensor, developing
novel exergames, and including biometric sensors.

At the same time, the spectrum of diseases of which treatment also involves ReMoVES
will be expanded. In particular, ReMoVES was recently awarded the Innovazione Digitale
nella Sclerosi Multipla (Digital Innovation in Multiple Sclerosis) award, sponsored by
Merck. As a result, a study on multiple sclerosis is being conducted.

To conclude, the emotional implication of the system in the population of patients
will be investigated by means of specific questionnaires and the systematic analysis of
patient feedback.
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JSON JavaScript object Notation
LAMP Linux–Apache–MySQL–PHP
NSU Number of sit-up occurrences
UBFA Upper-body flexion angle
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UBTA Upper-body twist angle
COM Center of mass
AP Anteroposterior
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UfV Upper-frame velocity
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