
rstb.royalsocietypublishing.org
Research
Cite this article: Ferrari MJ, Grenfell BT,

Strebel PM. 2013 Think globally, act locally:

the role of local demographics and vaccination

coverage in the dynamic response of measles

infection to control. Phil Trans R Soc B 368:

20120141.

http://dx.doi.org/10.1098/rstb.2012.0141

One contribution of 15 to a Theme Issue

‘Towards the endgame and beyond: complex-

ities and challenges for the elimination of

infectious diseases’.

Subject Areas:
health and disease and epidemiology

Keywords:
measles, elimination, vaccination, mean age at

infection

Author for correspondence:
M. J. Ferrari

e-mail: mferrari@psu.edu
& 2013 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution
License http://creativecommons.org/licenses/by/3.0/, which permits unrestricted use, provided the original
author and source are credited.
Electronic supplementary material is available

at http://dx.doi.org/10.1098/rstb.2012.0141 or

via http://rstb.royalsocietypublishing.org.
Think globally, act locally: the role of local
demographics and vaccination coverage
in the dynamic response of measles
infection to control

M. J. Ferrari1, B. T. Grenfell2 and P. M. Strebel3

1Center for Infectious Disease Dynamics, Departments of Biology and Statistics, The Pennsylvania State
University, University Park, PA 16802, USA
2Dept of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
3Department of Immunization, Expanded Programme on Immunization, Vaccines and Biologicals, 20 Avenue
Appia, World Health Organization, Geneva 1202, Switzerland

The global reduction of the burden of morbidity and mortality owing to

measles has been a major triumph of public health. However, the continued

persistence of measles infection probably not only reflects local variation in pro-

gress towards vaccination target goals, but may also reflect local variation in

dynamic processes of transmission, susceptible replenishment through births

and stochastic local extinction. Dynamic models predict that vaccination

should increase the mean age of infection and increase inter-annual variability

in incidence. Through a comparative approach, we assess national-level pat-

terns in the mean age of infection and measles persistence. We find that

while the classic predictions do hold in general, the impact of vaccination on

the age distribution of cases and stochastic fadeout are mediated by local

birth rate. Thus, broad-scale vaccine coverage goals are unlikely to have the

same impact on the interruption of measles transmission in all demographic set-

tings. Indeed, these results suggest that the achievement of further measles

reduction or elimination goals is likely to require programmatic and vaccine

coverage goals that are tailored to local demographic conditions.
1. Introduction
Following on the successes of smallpox eradication, measles has been suggested

as a probable candidate for eradication [1–3]. While the feasibility of measles

eradication has been debated [4], major efforts have turned towards the interim

goal of reducing the burden of incidence and mortality [5,6]. In 2000, the United

Nations General Assembly adopted a resolution to reduce extreme poverty by

half by 2015 through a series of Millennium Development Goals. Millennium

Development Goal 4 (MDG4) calls for the reduction of childhood deaths (less

than 5 years) by two-thirds from 1990 to 2015. Given the high rate of childhood

mortality owing to measles infection in low-income countries, the proportion of

children vaccinated against measles was adopted as one of three indicators

used to measure progress towards MDG4. In 2010, the World Health Assembly

endorsed accelerated measles control targets for 2015; specifically, more than or

equal to 90 per cent coverage with the first dose of measles containing vaccine

and more than or equal to 80 per cent vaccine coverage in every district.

Despite broad improvement towards the vaccine coverage goals over the past

decades, endemic measles transmission persists in much of the world and inci-

dence has been observed to increase in recent years in sub-Saharan Africa and

western Europe [7–9]. The continued persistence of measles infection probably

reflects local variation in progress towards vaccination target goals, but may also

reflect local variation in dynamic processes of transmission, susceptible replenish-

ment through births, and stochastic local extinction. Identifying the degree to
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which local conditions mediate the performance of programma-

tic goals is critical to projecting the consequences of current

targets and planning for the definitive goal of eradication.

By the nature of its relatively simple epidemiology—high

transmissibility, lifelong immunity and no environmental or

animal reservoir—measles has been the classic model infec-

tion for the development of dynamic models for studying

the impact of vaccination [10–12]. These theoretical models

predict shifts in dynamics of measles epidemiology as a con-

sequence of control efforts; in particular: epidemic duration

[10], a shift in the mean age of infection [10–14] and the

increasing role of stochastic fadeout as a consequence of

increased vaccination [15,16].

The reduction of incidence as a consequence of vacci-

nation is expected to reduce the overall force of infection

and increase the mean age of infection [10–13]. This general

phenomenon has been best documented for rubella, where

increasing mean age of infection increases the likelihood of

congenital rubella syndrome [17]. In the case of measles, mor-

tality risk due to infection is much higher in infants [18]; thus

increasing mean age is expected to reduce childhood mor-

tality. Shifts in the age distribution of cases may have

further, unexpected consequences on transmission as both

mobility and mixing may be age-specific [19].

The reduction in effective susceptible birth rate as a conse-

quence of measles vaccination is expected to lead to shifts in

the cyclical outbreak dynamics of measles [20]. Ferrari et al.
[21] showed that in settings with strong seasonal forcing, such

as that resulting from rural–urban agricultural migration

[22,23], reduction of the effective birth rate of susceptibles

could lead to high amplitude, multi-annual cycles. As a conse-

quence of the deterministic shift in the amplitude of measles

cycles, local transmission of measles is likely to fade out as the

predicted incidence between peaks gets progressively lower

[15,21]. During these periods of local fadeout natural infection

is removed as a source of immunity and the susceptible popu-

lation grows at a rate, equal to the birthrate times the fraction

un-immunized, which is necessarily greater than or equal to

the growth rate in the presence of natural infection. Thus, the

increased volatility of local transmission dynamics can result

in a more rapid growth of the susceptible population, over a

multi-year period, for a given level of vaccination coverage.

Though the predictions of dynamic models and the

response to vaccination control have been well studied for

many well-documented case studies [21,24–32], the generality

of the theoretical predictions has rarely been assessed due to

lack of consistent, large-scale surveillance data. Here, we take

a comparative approach to study the dynamical response of

measles infection to vaccination using contemporary surveil-

lance data on age-specific incidence and temporal variability

of measles infection at the national scale. By comparing patterns

in countries across the globe, which vary in measles vaccination

coverage and demographic characteristics, we identify both

general patterns of the response of measles infection to vacci-

nation and the degree to which those general patterns are

mediated by local demography.
2. Methods
(a) Age at infection
The mean age of infection is expected to increase with vacci-

nation coverage due to the reduction in average incidence and
concomitant reduction in the force of infection [10,33]. We calcu-

lated the expected mean age of infection as a function of

vaccination coverage using a simple, deterministic Susceptible–

Infected–Recovered compartmental model (see the electronic

supplementary material A for details). We assumed that a

fraction p of children at age Av¼ 1 year were immunized

(i.e. vaccinated and sero-converted). We further assumed that

the population was at constant size with a constant rate of mor-

tality (i.e. type II). Thus, populations with a low mean lifespan

were assumed to also have correspondingly high birth rate.

While this demographic model is a poor representation of high-

income countries, where the mortality rate is unlikely to be

constant across ages, it is likely to be a reasonable representation

of demographic processes in low-income countries that represent

the bulk of current measles transmission [5]. For the purposes of

illustration, we consider only the example of a single dose of vac-

cination. Much of the world offers a second dose opportunity,

either through a routine second dose or through periodic sup-

plemental immunization activities (SIAs). We note, however,

that direct evaluation of the increase in first-dose coverage due

to SIAs and second dose opportunities is difficult, as high

reported coverage may be strongly biased towards those vacci-

nated through a routine first dose [34]. Thus, we present results

here with respect to reported routine first-dose coverage as an

index of overall vaccination programme performance.

To assess global patterns in the age distribution of measles

cases, we analysed 77 010 records from 72 countries reported to

the World Health Organization (WHO) case-based surveillance

system between 2002 and 2010 (for list of countries, see the elec-

tronic supplementary material, table S3). We analysed only cases

that were laboratory or clinically confirmed, or epidemiologically

linked to a confirmed case. The ages of cases were reported in

years and we aggregated cases across all reported years to calcu-

late the mean age of infection for each country. The mean age of

infection tended to increase from 2002 to 2010, thus the aggre-

gated data reflect an average over that time period (see the

electronic supplementary material B, figure S1).

Measles vaccination coverage is reported annually to WHO

by all member states through the WHO/UNICEF Joint Reporting

Form [35]. WHO derived coverage estimates for the first routine

dose of measles containing vaccine (MCV1) from reported cover-

age data and survey results by use of computational logic [36].

We assessed the relationship between the mean age of

measles infection and the MCV1 coverage and birth rate

(births/population size in 2010) using a linear mixed-effects

model with random intercepts for WHO global burden of disease

(GBD) regions (Americas, Asia Pacific, East Asia, Eastern

Europe/Central Asia, North Africa/Middle East, South Asia,

Southeast Asia, Sub-Saharan Africa, Western-Central Europe)

implemented with the package lme4 in the R software package

[37]. We restricted this analysis to the 50 countries reporting

more than or equal to 100 cases in the age-specific dataset to

limit biases due to low sample size.
(b) Measles persistence
To assess global patterns in the variability of measles incidence

and measles fadeout at the country level, we analysed monthly

records of measles cases reported to the WHO from 144 countries

(11 in the Americas, six in Asia Pacific, one in East Asia, 16 in East-

ern Europe/Central Asia, 18 in North Africa/Middle East, five in

South Asia, 13 in Southeast Asia, 42 in Sub-Saharan Africa, 29 in

Western-Central Europe). The number of months reported ranged

from 1 to 84 months, with a median of 25.5 months (see the elec-

tronic supplementary material, table S3, for regional summaries).

The years included in the dataset were 2002 to 2010, with the

bulk of countries reporting in the latter years (note that a report

of 0 cases is counted as a reported month).
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Classically, the occurrence of a local extinction event, or

‘fadeout’, has been defined as a month for which 0 cases are

reported [26,38,39] at the scale of municipalities. Aggregated

data, at the country scale, are more difficult to interpret as asyn-

chrony in epidemic fadeout at the local scale can be obscured

when data are summed across municipalities [40]. In the WHO

monthly surveillance dataset, only 11 of 144 countries reported

months with 0 cases. As such, we adopted an alternate definition

of fadeout as a month with less than 10 reported cases. While not

a true extinction at the country scale, this level would indicate

that local extinction is occurring in a significant proportion of

municipalities, or is likely, due to demographic stochasticity.

The general patterns in the results (below) are not sensitive to

the choice of cutoff (i.e. defining a fadeout as less than 2–15

cases; we note that at the country-level, reports of true fade-

outs (i.e. 0 cases) were rare).

To study the relationship between measles fadeout and

population size, birth rate and vaccination coverage, we fit the

proportion of fadeouts in the reported monthly time series

using a generalized linear mixed model with binomial errors

and a random intercept for WHO GBD region using the package

lme4 in the R software package [37]. We note that the probability

of observing a fadeout (regardless of the cutoff definition used) is

expected to increase in smaller populations assuming that report-

ing is less than perfect; i.e. the binomial probability of observing

fewer than x cases out of I true cases, for any binomial reporting

rate, is a decreasing function of I. To verify that the observed

relationships are significantly different from those we would

expect by random chance we performed a bootstrap analysis of

the observed data assuming different levels of binomial reporting

(see the electronic supplementary material E).
3. Results
(a) Age at infection
Though classically thought of as a childhood infection (i.e. in

the pre-vaccination era), the observed age distribution of

measles infection worldwide has a strongly skewed distri-

bution (figure 1). In the African and South East Asian

regions, more than 41 per cent and 34 per cent of cases are

observed in children less than 1 year of age. This may reflect

infections in children that are too young to vaccinate (the rec-

ommended age for the first dose varies from 9 to 12 months)

or children who had maternal immunity at the time of vacci-

nation rather than a failure of vaccination programmes, per se.

In the African region, the age distribution of cases declines

rapidly: mean age of infection 5.6 years. In the Southeast

Asian region, incidence declines rapidly up to approximately

10 years (mean age of infection 9.1 years), but the distribution

has a long tail, with 28 per cent of cases in more than 15

years. In the European region, 24 per cent of cases fall

below 1 year of age and incidence in older individuals

declines less rapidly than in Africa and Southeast Asia;

which is consistent with an overall lower force of infection.

At the scale of individual countries, theory predicts that

the mean age of infection should increase with vaccination

coverage [10,13,33]. The rate of that increase in mean age is

mediated by the demographic rates in the population

(figure 2a); populations with high birth rates, and thus

skewed age distributions, are predicted to experience a

much slower change in the mean age of infection as vacci-

nation coverage increases. Note, that at very high coverage,

the mean age of infection is predicted to decline as the
individuals remaining unvaccinated are disproportionately

those that are younger than the age at first vaccination.

In general, countries in the European and Southeast Asian

regions had higher MCV1 coverage and correspondingly

higher mean age of measles cases (figure 2b). Countries in

the African region had lower mean age of measles cases and

only a very weak correlation with vaccination coverage, as pre-

dicted by the analytic model (figure 2). In a linear mixed effects

model using all country data for which there were more than

100 reported cases, the negative relationship between the

mean age of cases and birth rate was statistically significant

( p , 0.001). MCV1 coverage was not significantly correlated

with mean age of cases ( p ¼ 0.64). Thus, while MCV1 coverage

is positively correlated with mean age of cases across all

countries (linear regression: p ¼ 0.049, R2 ¼ 0.08), that relation-

ship is not significant within regions. We note that these results

are not changed if we use MCV1 coverage in 2001 or the mean

MCV1 coverage from 2002 to 2010 as a covariate (see the

electronic supplementary material C, table S1).

(b) Measles persistence
Increased vaccination coverage is expected to reduce the like-

lihood of contact between infected and unvaccinated

susceptible individuals, resulting in a higher probability of

stochastic fadeout of infection. There was a weak relationship

between the vaccinated proportion (MCV1 coverage) and

the proportion of months with less than 10 reported cases

( p ¼ 0.061). Countries that had conducted any SIAs did

have a marginally higher incidence of fadeout ( p ¼ 0.049),

though there was no significant effect of the number or

reported coverage of SIAs.

There is a strong negative relationship between the pro-

portions of months with less than 10 reported cases and the

size of the unvaccinated birth cohort (annual births �
(12MCV1 coverage)) ( p , 0.001). This relationship is consist-

ently negative across all WHO regions (figure 3a). The

proportion of months with less than 10 reported cases scales

negatively with country population size, but the effect of the
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unvaccinated birth cohort remains significant ( p ¼ 0.0018) in a

model including population size (figure 3b, electronic sup-

plementary material D, table S2). The slope of this relationship

was greater than would be expected by random chance due to

binomial sampling (see the electronic supplementary material

E). This implies that the dynamics of measles fadeout are deter-

mined more by the absolute number of susceptibles than by the

proportion of the population that is susceptible.
4. Discussion
The broad-scale coverage goals for measles vaccination, such

as those adopted by the World Health Assembly in response

to the Millennium Development Goals, have resulted in sig-

nificant reductions in the burden of measles disease and

childhood mortality [5,41,42]. The overall reduction of

measles incidence is predicted to lead to shifts in the under-

lying dynamics of measles transmission and persistence that

may impact the broader goal of eradication. The same classi-

cal models that have guided much of current vaccination

policy (i.e. the 95% herd immunity threshold and the critical

community size; [10]) also predict that vaccination should

affect the age distribution of measles cases [10–14], should

increase the rate of stochastic local fadeout [43] and increase

the annual variability in incidence at the local scale [21]. Here,

we illustrate, using aggregate national data, that these classic

predictons do appear to hold, in general, but are mediated by

local variation in birth rate. Thus, the achievement of measles

reduction or elimination goals at the local (national or lower)

scale is likely to require programmatic and vaccine coverage

goals that are tailored to local demographic conditions.

Simons et al. [5] recently showed that mortality due to

measles had decreased by 74 per cent from 2000 to 2010;
this reduction was achieved both due to a reduction in overall

incidence and to an increase in the age distribution of cases

from the high-risk under-5 years age class. Here, we have

shown that the mean age of measles infection is broadly cor-

related with overall first-dose measles vaccination coverage,

which would predict further reductions in the overall case-

fatality rate with increased vaccination. However, the rate at

which the mean age at infection increases with vaccination

coverage is negatively correlated with birth rate. Thus, in

many low-income countries, where birth rates are high, we

may predict to continue to see measles infection concentrated

in young children who are at high risk for mortality.

Herd immunity is a central concept to the proposition that

eradication is logistically feasible in the absence of perfect

immunization at 100 per cent coverage [44]. As incidence

declines, however, the increasing likelihood of stochastic

local fadeout can obscure the evaluation of herd immunity

as the absence of local transmission does not necessarily

imply sufficient population level immunity. A single dose

of measles vaccine administered at 9–12 months is only

expected to achieve immunity in 84 per cent of individuals

[45], thus, a single dose alone is not able to achieve the classic

95 per cent immunity threshold. Here, we find that there is

no empirical support for a threshold first-dose vaccination

coverage level at which measles is likely to fade out at the

national-level; neither was there a significant correlation

between first-dose coverage and the rate of measles fade

out. Some of the variation in observed measles fade out

may be due to differences in the administration of both first

and second dose opportunities through SIAs, though the

effect was weak. Though one would expect a clearer relation-

ship between vaccination and fade out, this may reflect the

challenges in using reported vaccination coverage as a

measure of population immunity.
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The proportion of stochastic fadeout (months with less

than 10 cases) is strongly negatively correlated with both

population size and the size of the unvaccinated birth

cohort; i.e. the number rather than the proportion of new sus-

ceptibles in the population. Lloyd-Smith et al. [46] found that

local persistence in wildlife populations failed to show a

threshold with population size, but did increase gradually

with demographic turnover rates. The results here suggest

that local persistence of measles correlates with both popu-

lation size and demographic rates. This suggests that broad-

scale vaccine coverage goals are unlikely to have the same

impact on the interruption of measles transmission in all

demographic settings. Indeed, these results suggest that in

order to achieve increased rates of local stochastic extinction

of measles, target vaccine coverage should be scaled positively

with either population size or the size of the birth cohort.

The rate of local stochastic fadeout is likely to feed back on

the mean age of measles infection. In times of local measles

fadeout, natural infection is removed as a source of immunity

and those individuals missed by immunization programmes

(due to access or refusal) will age until the next reintroduction

of measles. Thus, in areas of high rates of local fadeout, we

would predict to see an increase in mean age of infection rela-

tive to the predictions due to vaccination alone. Several

examples of resurgent measles outbreaks in areas following

periods of local elimination (Sao Paulo in 1996 [47], Burkina

Faso in 2009 [9], Malawi in 2010 [8], France 2012 [7]) have

been characterized by broad age distributions which are

likely to result from the interaction of the age-shift due to

vaccination and the ageing of the remaining susceptible popu-

lation during times of local stochastic fadeout. This interaction

between births and local fade out may further explain the

stronger effect of birth rate than vaccination coverage on

mean age of measles infection (figure 2).

Here, we have presented an evaluation of national-scale

patterns as a function of both vaccine programme performance,
as measured by first-dose measles coverage, and demographic

rates using a broad, comparative analysis. The combined

impact of vaccination and demography on susceptible recruit-

ment has a powerful impact on measles dynamics, which

underlines the key role of herd immunity in limiting epidemics

[48]. Comparative analyses across a range of other pathogens

underline this point [49,50].

Aggregate patterns of measles age distribution and persist-

ence at the national scale are likely to obscure the complexities

of local, sub-national transmission dynamics and vaccination

coverage (due to access or refusal). Further, additional local

variation in human movement [51], school attendance [52]

and seasonal migration [22] are likely to affect both the age

at infection and the local persistence of measles infection. Co-

variation of these heterogeneities with local clustering of

vaccination rates and refusal is a critical area for future work

as measles vaccination continues to ramp up. The relevance

of these local-scale drivers reinforces, rather than detracts,

from the overall conclusion of this comparative analysis.
(a) Measles modelling and vaccination policy
In general, the development and evaluation of measles control

and elimination strategies has relied on two main sources of

information—country experience and modelling. Modelling

can be used to generalize the lessons from individual country

settings for the evaluation of novel policies. McLean &

Anderson [11] used dynamic models to illustrate that optimal

vaccine targeting depends on the local demographic rates and

that a single age-target for routine immunization was always

preferential to a two-stage introduction strategy. Since then,

models have been used to evaluate the impact of the introduc-

tion of and timing of a second dose of measles vaccine [53], the

effect of periodic SIAs [54] and the efficacy of outbreak response

vaccination [55,56]—all leading to revisions in global measles

policy [57]. Detailed case studies have been useful in validating
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the predictions of theoretical models such as the role of season-

ality and birth rate in producing locally erratic outbreak

dynamics and the maintenance of regional persistence through

metapopulation dynamics [21,23]. Finally, models and surveil-

lance data have been explicitly combined to develop policies

that are grounded in both general theoretical understanding

and local dynamics. Gay et al. [58] combined serological surveil-

lance with model predictions to quantify outbreak risk in the

UK and recommend enhanced vaccination. Where permitted

by local logistics, such synthesis of serological estimation of

populations at risk with models provide an especially powerful

tool for targeting measles control. Where serological data are

not available, cases surveillance can serve as a proxy; Simons

et al. [59] developed models that include national surveillance

data in global evaluation of progress towards the global measles

mortality reduction targets.

The dynamics of measles infection and persistence, par-

ticularly as incidence declines due to the success of control
measures, will be mediated by locally specific demographic

forces. Our analysis here indicates that there is broad-scale

correspondence between the theoretical predictions and the

patterns observed across all countries. We note, however,

that the individual variation from the expected relationship

may reflect either local deviation from the model assump-

tions—e.g. due to population growth, the role of migration,

local vaccine programme performance, vaccine refusal. In

practice, identifying these variations from theoretical predic-

tions could be used to identify regions that exceed

programmatic expectations or to bolster elimination efforts

in regions that are falling behind. Thus, while broad-scale

programmatic goals have been highly successful in attaining

goals for the proportional reduction of incidence and mor-

tality, achieving the definitive goal of eradication will

probably require the integration of surveillance data and

quantitative models to develop control measures that are

custom-tailored to local conditions.
 20120141
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