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A B S T R A C T   

The prediction of new COVID-19 cases is crucial for decision makers in many countries. Researchers are 
continually proposing new models to forecast the future tendencies of this pandemic, among which long short- 
term memory (LSTM) artificial neural networks have exhibited relative superiority compared to other forecasting 
techniques. Moreover, the correlation between the spread of COVID-19 and exogenous factors, specifically 
weather features, has been explored to improve forecasting models. However, contradictory results have been 
reported regarding the incorporation of weather features into COVID-19 forecasting models. Therefore, this 
study compares uni-variate with bi- and multi-variate LSTM forecasting models for predicting COVID-19 cases, 
among which the latter models consider weather features. LSTM models were used to forecast COVID-19 cases in 
the six Gulf Cooperation Council countries. The root mean square error (RMSE) and coefficient of determination 
(R2) were employed to measure the accuracy of the LSTM forecasting models. Despite similar weather condi-
tions, the weather features that exhibited the strongest correlation with COVID-19 cases differed among the six 
countries. Moreover, according to the statistical comparisons that were conducted, the improvements gained by 
including weather features were insignificant in terms of the RMSE values and marginally significant in terms of 
the R2 values. Consequently, it is concluded that the uni-variate LSTM models were as good as the best bi- and 
multi-variate LSTM models; therefore, weather features need not be included. Furthermore, we could not identify 
a single weather feature that can consistently improve the forecasting accuracy.   

1. Introduction 

The World Health Organization (WHO) declared the coronavirus 
disease (COVID-19) a pandemic on 11 March, 2020 (WHO, 2020). The 
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which 
is responsible for COVID-19, first appeared in Wuhan, Hubei Province, 
China, in December 2019 (Bodapati et al., 2020). Since then, COVID-19 
has resulted in a significant public health crisis (Wang et al., 2022). As of 
February 2022, the number of confirmed COVID-19 cases had reached 
422 million (Organization et al., 2022). 

As with many other respiratory viruses, SARS-CoV-2 spreads via 
respiratory droplets, human-to-human contact, and aerosol transmission 
(Yin et al., 2022). According to the Centers for Disease Control and 
Prevention, physical contact, such as the touching of surfaces that carry 
viral particles, is another virus-spreading mechanism (Al-Qaness et al., 
2020). Several studies have demonstrated that weather features can 
affect the spread and stability of respiratory infections (Choi et al., 2021; 
Liu et al., 2020). For example, ambient humidity, is a weather feature 
that can change the lifetime and size of respiratory droplets. It may 

reduce the size of droplets to such an extent that they fall to the ground, 
or maintain them in the air such that they are absorbed into the respi-
ratory tracts of vulnerable individuals (El Hassan et al., 2022; Pica and 
Bouvier, 2012). 

Furthermore, temperature was found to be a significant factor 
affecting the COVID-19 outbreak in Wuhan, China (Chen et al., 2020). 
Liu et al. (2020) confirmed this finding by demonstrating that COVID-19 
cases were linked to temperature in 17 cities in China. Liu et al. (2020) 
also found that a 1 ∘C increase in the ambient temperature led to a 
decline in the daily reported COVID-19 cases. The effect of temperature 
on the spread of COVID-19 cases was also reported in India (Sharma 
et al., 2020) and Indonesia (Tosepu et al., 2020). In addition to tem-
perature, researchers have demonstrated that weather features, such as 
humidity can affect the spread of COVID-19 (Bhimala et al., 2020; Chen 
et al., 2020; Gupta et al., 2020; Méndez-Arriaga, 2020; Oliveiros et al., 
2020; Wang et al., 2020). This association between weather conditions 
and the spread of COVID-19 is expected to improve COVID-19 fore-
casting models. However, other scholars have denied such an associa-
tion (Briz-Redón and Serrano-Aroca, 2020; Iqbal et al., 2020; Jahangiri 
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et al., 2020); consequently, it has been stated that weather conditions 
must be completely ignored in the development of COVID-19 forecasting 
models. 

The forecasting of COVID-19 cases is important for decision makers 
who must implement appropriate precautionary measures, such as 
lockdowns and distance learning, to stop the spread of the virus, while 
maintaining regular economic activities. Several researchers have 
studied variants of artificial neural networks (ANNs) for forecasting 
COVID-19 cases, one of which is the long short-term memory (LSTM) 
network, which is a special type of ANN network that can deal with time 
series. Uni-variate LSTM networks (Chatterjee et al., 2020; Direkoglu 
and Sah, 2020; Elsheikh et al., 2021; Hartono, 2020; Vadyala et al., 
2020) have been used to forecast COVID-19 cases and deaths based on 
previously published COVID-19 data. Certain researchers included 
meteorological conditions along with COVID-19 data in LSTM fore-
casting models by using multi-variate LSTM networks to forecast 
COVID-19 cases (Batool and Tian, 2021; Khennou and Akhloufi, 2021). 

As stated previously, conflicting opinions exist regarding the role of 
weather conditions in the prediction of new COVID-19 cases. Therefore, 
in this study, we investigate these contradictions by comparing the ac-
curacy of LSTM forecasting models that consider weather conditions 
with those that ignore weather conditions. We analyze the Gulf Coop-
eration Council (GCC) countries, which include the United Arab Emir-
ates (UAE), Kingdom of Saudi Arabia (KSA), Bahrain, Kuwait, Qatar, and 
Oman. The GCC were selected owing to their similarity in terms of 
weather conditions, high COVID-19 testing rates, and preventive pol-
icies that have been adopted to curb the spread of the virus. Moreover, 
their high testing rates compared to the number of cases make the GCC 
countries reliable study objects (Al-Shihabi and Abu-Abdoun, 2021). 

This study seeks to answer the following research questions (RQs):  

1. (RQ1): Should the effects of weather on the spread of COVID-19 be 
the same for countries with similar weather conditions?  

2. (RQ2): Will the accuracy of LSTM forecasting models that only 
consider COVID-19 cases be improved by including relevant weather 
conditions in bi- or multi-variate LSTM forecasting models? 

To answer RQ1, we (i) studied the correlation between weather 
conditions and COVID-19 cases and (ii) compared several bi- and multi- 
variate LSTM models in terms of their accuracy in predicting the number 
of future COVID-19 cases. Surprisingly, the six countries provided 
different answers regarding the weather conditions to be included along 
with the COVID-19 cases for developing the most accurate LSTM fore-
casting model. To answer RQ2, after identifying the best bi- or multi- 
variate LSTM model for each GCC country, we compared these models 
with uni-variate LSTM models that consider only COVID-19 cases. Using 
two accuracy measures, we found that the forecasting accuracy was only 
improved for three countries, and these improvements were not statis-
tically significant. Therefore, weather features need not be considered as 
inputs into LSTM models that are used to forecast COVID-19 cases. 

The main contributions of this study are as follows: (i) Uni-variate 
LSTM models for forecasting COVID-19 cases in the GCC countries are 
investigated. (ii) The correlations between COVID-19 cases and weather 
conditions in the GCC countries are examined. (iii) Several bi- and multi- 
variate LSTM models are developed to forecast COVID-19 cases in the 
GCC countries, which incorporate the most relevant weather features. 
(iv) The uni-variate LSTM models are compared with the best bi- and 
multi-variate LSTM models to answer RQ1 and RQ2. Furthermore, the 
optimization of the configurations of the LSTM models using the Keras 
tuning algorithm can be considered as a minor contribution of this study. 
A limitation of this study is that it only considers LSTM forecasting 
models for the GCC countries. 

The remainder of this paper is organized as follows. Section 2 pre-
sents the literature review. The dataset sources are outlined in Section 3, 
and Section 4 describes the experiments that were conducted. Finally, 
the conclusions and future work are summarized in Section 5. 

2. Literature review 

Techniques for predicting the spread of COVID-19 can be divided 
into three major categories: machine-learning models, statistical 
models, and mathematical models that use compartmental mathematics 
(Mohamadou et al., 2020). Among the compartmental mathematical 
models, the susceptible-exposed-infected-removed (SEIR) and 
susceptible-infected-recovered models are the most popular for fore-
casting the spread of COVID-19 (Pandey et al., 2020; Ranjan, 2020; RSY, 
2020). Examples of statistical techniques for forecasting the spread of 
COVID-19 include simple techniques such as the moving average, 
weighted moving average, and single exponential smoothing methods 
(Elmousalami and Hassanien, 2020) and advanced techniques such as 
the auto-regressive integrated moving average (ARIMA) method (Roy 
et al., 2021; Talkhi et al., 2021). 

Machine-learning forecasting techniques are more accurate than 
statistical models, and the superiority of LSTM models has been proven 
(Assaf et al., 2020). Consequently, in the following subsections, we re-
view the related machine-learning techniques that have been employed 
to forecast the spread of COVID-19. This review is limited to methods 
that are relevant to this study; therefore, we focus on LSTM forecasting 
models and the effects of weather features on improving the forecasting 
accuracy. 

2.1. Machine learning-related forecasting techniques 

Machine-learning algorithms have been applied to forecast and 
model the spread of COVID-19. Malki et al. (2021) used a hybrid pre-
diction model of decision trees and linear regression to forecast the 
spread of COVID-19 in 12 countries during the first week of September 
2021. Ribeiro et al. (2020) evaluated the efficiency of the random forest 
and support vector regression models in forecasting the cumulative 
COVID-19 cases in Brazil. Sultana et al. (2022) employed linear 
regression, a multi-layer perceptron (MLP), and vector auto regression 
to predict various COVID-19 outbreaks in India. The random forest, 
support vector machine (SVM), and other machine-learning algorithms 
were used in a study by Alali et al. (2022) for predicting the confirmed 
and recovered COVID-19 cases in India and Brazil. Finally, in a recent 
study by Dairi et al. (2021a), an unsupervised detector that integrated a 
variational autoencoder for feature extraction with an SVM algorithm 
was proposed to detect COVID-19 cases using routine blood tests. 

Among the machine-learning techniques, ANN-based methods have 
exhibited superiority over other methods in forecasting COVID-19 cases 
(Shetty and Pai, 2021). ANNs were developed based on the mechanisms 
of biological nerve systems (Maind et al., 2014). Several ANN variants 
have been proposed for predicting COVID-19 behavior in different re-
gions. Tamang et al. (2020) used an ANN to construct a forecasting 
model for confirmed and fatal COVID-19 cases in India, the USA, the UK, 
and France, whereas Lounis et al. (2021) developed an inverse ANN 
model to estimate COVID-19 cases, deaths, and recoveries in Algeria. 

Feed-forward neural networks and the MLP are forms of ANNs that 
have been used to forecast the spread rate of COVID-19 in India 
(Chakraborty et al., 2020; Shetty and Pai, 2021) and across the conti-
nental USA (Mollalo et al., 2020). Rizk-Allah and Hassanien (2020) 
presented a hybrid forecasting model that combines a multi-layer 
feed-forward neural network with an interior search algorithm to fore-
cast the spread of COVID-19 in the USA, Italy, and Spain. Another ANN 
variant is the convolutional neural network (CNN), which has been used 
to forecast the number of confirmed COVID-19 cases in China (Huang 
et al., 2020). Similarly, Mohimont et al. (2021) developed multiple CNN 
models to forecast cumulative COVID-19 cases, daily cases, deaths, and 
recoveries in France. Researchers have also employed self-organizing 
map (SOM) networks, which are a form of ANNs that are considered 
to be ideal for data clustering (Ghaseminezhad and Karami, 2011). For 
example, several researchers (Hartono, 2020; Melin and Castillo, 2021) 
applied SOM networks to cluster countries in terms of COVID-19 
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transmission and to predict COVID-19 cases. 

2.2. LSTM forecasting models 

LSTM is an improved version of the recurrent neural network (RNN) 
that is used to solve the scaling issue in RNNs (Sundermeyer et al., 
2012). LSTM networks can easily handle time series because they have a 
high capacity to learn dependencies and analyze large amounts of data 
over a long period (Marzouk et al., 2021). Therefore, various LSTM 
network-based forecasting models have been applied since the begin-
ning of the COVID-19 pandemic. LSTM forecasting models have been 
used to forecast COVID-19 cases, deaths, and recoveries (Bodapati et al., 
2020; Direkoglu and Sah, 2020; Elsheikh et al., 2021; Yudistira, 2020). 
Ghany et al. (2021) established two uni-variate LSTM models to forecast 
COVID-19 cases and deaths in the GCC countries. 

The bi-directional and encoder-decoder LSTM are improved versions 
of LSTM. The former enables information to flow from the backward and 
forward layers (Zeroual et al., 2020), whereas the latter is a popular 
sequence-to-sequence network that provides a simple and automated 
approach for sequential data modeling (Du et al., 2020). Chandra et al. 
(2021) used an encoder-decoder and bi-directional LSTM network for 
short-term COVID-19 infection forecasting in India. Furthermore, a 
bi-directional LSTM model was proposed by Aldhyani and Alkahtani 
(2021) to forecast COVID-19 cases and deaths in the GCC countries 
based on previous trends in COVID-19 in the Gulf region. Pustokhin 
et al. (2020) proposed a novel residual network based on the 
bi-directional LSTM network for COVID-19 detection. The residual 

Table 1 
COVID-19 forecasting models and weather conditions summary.  

Reference Study 
area 

Machine- 
learning 
model 

Weather 
features 

Findings of 
weather 
impact 

Abdulkareem 
et al. (2021) 

Korea CNN, Decision 
tree, BayesNet 

Temperature, 
humidity, 
wind speed, 
precipitation 

Temperature, 
humidity, 
wind, and 
precipitation 
influence 
predicting 
COVID-19 
cases. 

Da Silva et al. 
(2020) 

Brazil, 
USA 

Bayesian 
regression, 
cubist 
regression, k- 
nearest 
neighbors, 
random forest, 
support vector 
machine 

Temperature 
and 
precipitation 

Temperature 
and 
precipitation 
increased the 
accuracy of 
COVID-19 
prediction 
models. 

Karimuzzaman 
et al. (2020) 

9 
countries 

ARIMA, MLP, 
extreme 
learning 
machine, 
generalized 
linear count 

Temperature, 
wind speed, 
pressure, 
humidity, 
precipitation 

Temperature 
and humidity 
impact 
COVID-19 
cases in all 
studied 
countries 
except Italy 
and Sri Lanka. 

Malki et al. 
(2020b) 

France, 
UK 

Random forest Temperature, 
humidity, 
sunny hours, 
wind speed 

Weather 
variables 
influenced the 
prediction 
models 
compared to 
the other 
variables. 

Ronald Doni 
et al. (2021) 

India Concurrent 
ANN, 
recurrent 
ANN, bi- 
directional 
ANN 

Temperature, 
dew, 
humidity 

Weather 
features 
enhanced the 
prediction of 
the model. 

Pramanik et al. 
(2020) 

Russia Random forest Temperature, 
humidity, 
wind speed, 
sunshine 

Random forest 
model 
provided 
accurate 
predictions 
with weather 
features. 

Khennou and 
Akhloufi 
(2021) 

Canada LSTM model Temperature, 
humidity 

Temperature 
and humidity 
increased the 
accuracy of 
COVID-19 
forecasting 
model. 

Aragão et al. 
(2022) 

Brazil LSTM model Temperature, 
humidity 

LSTM model’s 
accuracy 
increased with 
the inclusion 
of weather 
conditions 
data. 

Batool and 
Tian (2021) 

Pakistan LSTM model Temperature, 
humidity 

LSTM model 
with weather 
data achieved 
highest 
accuracy. 

Bhimala et al. 
(2020) 

India LSTM model Temperature, 
humidity 

*Specific 
humidity 
influences the 
spread of 
COVID-19 in 
west and  

Table 1 (continued ) 

Reference Study 
area 

Machine- 
learning 
model 

Weather 
features 

Findings of 
weather 
impact 

northwest 
regions in 
India. 
*Temperature 
impact 
COVID-19 
spread in high 
humid regions 
in India. 

Rashed and 
Hirata 
(2021) 

Japan LSTM model Temperature, 
humidity 

Merging 
temperature, 
humidity data 
in the LSTM 
model 
reported 
accurate 
predictions. 

Pal et al. (2020) USA Shallow LSTM 
model 

UV, 
temperature, 
perception, 
ozone, dew, 
and humidity 

The prediction 
accuracy of 
the model was 
not affected by 
weather 
conditions 
data. 

Iloanusi and 
Ross (2021) 

20 
countries 

LSTM, random 
forest, 

Temperature, 
rainfall, 
windspeed, 
irradiation, 
humidity 

Temperature 
improved the 
accuracy of 
the forecasting 
models for 
most of the 
studied 
countries. 

Gupta et al. 
(2021) 

- Convolutional 
neural 
network 

Temperature, 
wind speed, 
sunlight, 
humidity 

Only 
temperature, 
wind speed, 
and sunlight 
enhanced the 
performance 
of the CNN 
model.  
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bi-directional LSTM network provides more efficient training and vali-
dation, with a short path during training, compared to an ordinary LSTM 
network (Malki et al., 2020a). 

Convolutional LSTM (CNN-LSTM) is another extension of the stan-
dard LSTM network that can interpret 2D spatio-temporal data (Shastri 
et al., 2020). A CNN-LSTM network-based forecasting model was pro-
posed by Ketu and Mishra (2021) to forecast the total number of 
COVID-19 cases across 29 states in India. Zain and Alturki (2021) 
demonstrated that the CNN-LSTM forecasting model for global 
COVID-19 patients outperformed other forecasting models such as CNN 
and LSTM network-based models as well as statistical models such as 
ARIMA. Similarly, the CNN-LSTM proposed by Dairi et al. (2021b) 
exhibited improved performance in forecasting COVID-19 cases 
compared to the SVM, gated RNNs, CNN, and restricted Boltzmann 
machine. However, Arora et al. (2020) developed a bi-directional LSTM 
forecasting model that was superior to CNN-LSTM models in terms of 
accuracy. 

Moreover, hybrid techniques that combine LSTM models with other 
machine-learning techniques have been developed. A hybrid forecasting 
model consisting of K-means-LSTM was proposed by Vadyala et al. 
(2020) to forecast COVID-19 cases in Louisiana, USA, which was more 
accurate than the SEIR model. Ayoobi et al. (2021) proposed a 
bi-directional CNN-LSTM forecasting model to predict COVID-19 cases 
and deaths in Australia and Iran. Furthermore, the hybrid forecasting 
model developed by Zheng et al. (2020) embedded LSTM into an 
improved susceptible-infected epidemiological model to predict the 
cumulative number of COVID-19 cases in China. 

2.3. COVID-19 forecasting and weather conditions 

Table 1 summarizes the COVID-19 forecasting models that include 
weather features. Column 2 indicates the study area, and column 3 
displays the machine-learning algorithm used for forecasting. Column 4 
lists the tested weather features, and column 5 summarizes the findings 
of the study. 

Abdulkareem et al. (2021) used principal component analysis for 
selecting relevant weather features to improve the prediction accuracy 
of three machine-learning algorithms that were used to predict 
COVID-19 cases. This improvement was also demonstrated by Da Silva 
et al. (2020), who included temperature and precipitation data in their 
machine-learning forecasting algorithms. Karimuzzaman et al. (2020) 
showed that temperature and humidity had a significant influence on 
the spread of COVID-19 in several countries, with the exception of Italy 
and Sri Lanka. Similar to the work of Karimuzzaman et al. (2020), Malki 
et al. (2020b) confirmed the role of temperature and humidity in fore-
casting COVID-19 mortality rates in France and the UK. Furthermore, 
Ronald Doni et al. (2021) claimed that the inclusion of temperature and 
humidity improved the accuracy of their ANN-based forecasting models. 
A study by Pramanik et al. (2020) revealed the significant effect of 
weather variables, such as temperature, humidity, sunshine, and wind 
speed, on COVID-19 cases and mortality in Russia. 

The cited studies used different machine-learning and statistical 
techniques that did not include LSTM models. The LSTM models that 
have been used to predict COVID-19-related problems are either bi- or 

multi-variate, and use weather features as inputs. For example, Khen-
nou and Akhloufi (2021) considered daily temperature, humidity, and 
precipitation data to forecast the progression of COVID-19 in Canada, 
whereas Aragão et al. (2022) used temperature, humidity, and air 
quality index data to forecast COVID-19 deaths in Brazil. Aragão et al. 
(2022) demonstrated that the inclusion of weather data in the 
multi-variate LSTM model resulted in higher prediction accuracy 
compared to that of the uni-variate LSTM model with only COVID-19 
deaths as a single input. Batool and Tian (2021) and Bhimala et al. 
(2020) stated that temperature and humidity were significant parame-
ters in forecasting COVID-19 cases in Pakistan and India, respectively. 
Rashed and Hirata (2021) merged the maximum temperature, average 
humidity, and mobility data in an LSTM model developed to forecast 
COVID-19 cases in Japan. Rashed and Hirata (2021) reported that the 
predicted COVID-19 cases were consistent with the actual reported 
COVID-19 cases, and a slight increase in the prediction accuracy was 
achieved when using meteorological data. 

Despite the consensus among the abovementioned researchers 
regarding the importance of including weather data in forecasting 
models, several researchers have offered contradicting opinions in this 
regard. For example, Pal et al. (2020) demonstrated that the prediction 
accuracy of their LSTM model in forecasting COVID-19 cases, deaths, 
and recoveries in the USA did not improve when including weather data. 
Several weather parameters were included as inputs in the multi-variate 
LSTM model proposed by Iloanusi and Ross (2021) for predicting the 
COVID-19 cases-to-mortality ratio in 36 countries. According to their 
study, only temperature was related to an increase in the prediction 
accuracy, and this increase was only detected in hot countries. The 
findings of Iloanusi and Ross (2021) do not align with those of previous 
studies, which indicated that temperature and humidity must be 
considered together. Moreover, temperature has been shown to improve 
the forecasting accuracy in cold countries, such as Canada (Khennou and 
Akhloufi, 2021) and Russia (Pramanik et al., 2020), and these results 
were rejected by Iloanusi and Ross (2021). Furthermore, Gupta et al. 
(2021) demonstrated that humidity does not improve the forecasting 
accuracy, which contradicts the claims of Karimuzzaman et al. (2020), 
Malki et al. (2020b), and Ronald Doni et al. (2021). Consequently, 
further research is required to understand the effects of weather on 
COVID-19 forecasting models. 

3. Study context 

This section provides important information regarding the countries 
that were studied, particularly in terms of their weather conditions. 
Furthermore, the data used in this study are described in detail. 

3.1. Study area 

This study included data from the GCC countries. These countries 
have similar environmental and weather conditions, such as limited 
rainfall and long summers with high temperatures. Furthermore, the 
GCC countries have adopted similar strategies to restrict the spread of 
the COVID-19 outbreak (Alandijany et al., 2020). Table 2 lists the de-
mographic information and meteorological variables of the GCC 

Table 2 
Demographic and meteorological information about the GCC countries.  

Country Population Area Temperature Humidity Wind speed Dew Point  

(million) (km2) Max. Min Max. Min Max. Min Max. Min 

UAE 9.7 83,600 47 13 100 0 32 0 88 0 
KSA 34.77 2,150,000 46 17 94 3 32 0 84 9 
Kuwait 4.207 17,818 52 3 100 0 46 0 86 0 
Oman 4.975 309,501 47 11 100 0 58 0 97 0 
Bahrain 1.64 780 45 13 94 7 33 0 90 25 
Qatar 2.64 11,521 48 13 100 0 30 0 90 36  
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countries. 

3.2. Dataset description 

The daily reported cases of COVID-19 in the GCC countries were 
obtained from the WHO coronavirus dashboard1 and compared with the 
local dataset that was provided by the health ministries in the GCC 
countries. Fig. 1 depicts the timeline of the COVID-19 cases in the GCC 
countries that were included in our study (April 2020 to September 
2021). The highest numbers of COVID-19 cases detected in the UAE, 
KSA, Kuwait, Bahrain, Qatar, and Oman were 4471, 4919, 1993, 3273, 
2355, and 3910, respectively. We ended the study by September 2021 as 
vaccination campaigns started in October 2021. Vaccination is expected 
to decrease COVID-19 transmission by reducing symptomatic and 
asymptomatic infections, and hindering the person-to-person spread of 
the virus (Eyre et al., 2022). Moreover, as argued by Iloanusi and Ross 
(2021), more than one season is required to study the effects of weather 
on the spread of COVID-19. 

Data related to weather conditions for the GCC countries were 

extracted from the Weather Underground website, in which weather 
conditions were collected from more than 29,000 weather stations 
globally2. The weather features that were included in this study were the 
average temperature (∘C), average humidity (%), average dew point 
(∘F), and average wind speed (mph). Figs. 2 to 5 present the observed 
weather conditions in the GCC countries during the study period. 

4. Experiment 

In this section, we first describe the internal structure and compo-
nents of the LSTM network. Subsequently, we explain the selection of 
the weather features that were used to construct the bi- and multi- 
variate LSTM models. Thereafter, we demonstrate the configuration of 
the LSTM forecasting models. Finally, we present our experimental re-
sults and compare them with those of the LSTM forecasting models. 

Python, which is a high-level general-purpose programming lan-
guage, was used to develop all LSTM forecasting models. We used 
several deep-learning packages, such as NumPy, Pandas, TensorFlow, 
Keras, Matplotlib, Seaborn, and scikit-learn, to construct our forecasting 

Fig. 1. COVID-19 cases in the GCC countries from April 2020 to September 2021.  

Fig. 2. Average temperature in the GCC countries from April 2020 to September 2021.  

1 WHO COVID-19 Dashboard (https://covid19.who.int/). 2 Weather Underground (wunderground.com) 
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models. 

4.1. LSTM ANNs 

In a typical RNN model, the gradient vanishes during back- 
propagation, which prevents the neural networks from learning long- 

term temporal correlations (Hochreiter and Schmidhuber, 1997). 
Consequently, in 1997, LSTMs were proposed to overcome the limita-
tions of RNNs. LSTMs are considered to be among the most feasible 
forecasting tools for prediction tasks (Arora et al., 2020). 

Fig. 6 depicts an LSTM network, whereas Fig. 7 shows the internal 
structure of an LSTM cell. An LSTM unit consists of three inputs: the 

Fig. 3. Average humidity in the GCC countries from April 2020 to September 2021.  

Fig. 4. Average dew point in the GCC countries from April 2020 to September 2021.  

Fig. 5. Average wind speed in the GCC countries from April 2020 to September 2021.  
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previous cell state ct− 1, previous hidden state ht− 1, and current input 
vector xt. A tanh function is generally used as the nonlinear activation 
function σ before all gates, as illustrated in Fig. 7. An LSTM cell consists 
of three gates: input, forget, and output. This arrangement inhibits the 
memory cells from retaining information across several time steps. The 
states of the gates are calculated using Eqs.  (1)–(3). 

it = σ(wixt + uiht− 1 + bi) (1)  

ft = σ
(
wf xt + uf ht− 1 + bf

)
(2)  

ot = σ(woxt + uoht− 1 + bo) (3) 

Based on ht− 1 and xt, an intermediate state C̃t is generated, as indi-
cated in Eq.  (4). Subsequently, the memory cell and hidden state of the 
LSTM are updated, as shown in Eqs.  (5) and (6), respectively. Here, ⊙
denotes the point-wise multiplication operation for the two vectors. In 
all of the above equations, the set of weights {wi,wf ,wo,wt ,wch, ui, uf , uo,

bi, bf , bo, bc} is determined by optimizing the LSTM forecasting model. 

C̃t = tanh(xtwt +wchht− 1 + bc) (4)  

C(t) = σ(ft ⊙ Ct− 1 + it ⊙ C̃t) (5)  

h(t) = ot ⊙ tanh(Ct) (6) 

The uni-variate forecasting model considers only one data stream. In 
contrast, the bi- and multi-variate LSTM forecasting networks consider 
two or more inputs. In this study, COVID-19 cases were used as inputs in 
all the models. One or more weather features were also included as in-
puts in the bi- and multi-variate LSTM forecasting models. 

4.2. Feature selection 

Feature selection refers to selecting the most relevant features for 
accomplishing the classification task with the smallest error (Pai and 
Ilango, 2020). We chose the Pearson correlation coefficient ρ as a metric 
for selecting the appropriate input features. Figs. 8–13 present heat 
maps that reflect the ρ values between the four selected weather fea-
tures, namely the temperature (∘C), humidity (%), dew point (∘F), and 
wind speed (mph), with the COVID-19 cases in each GCC country. A 
strong positive correlation of ρ = 1 is indicated by dark red, whereas a 
strong negative correlation ρ = − 1 is indicated by dark blue in the heat 

Fig. 6. Example of LSTM structure.  

Fig. 7. LSTM cell.  
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map. Table 3 lists the weather features for for ρ ≥ 0.2. We used these 
features to construct the multi-variate LSTM models. 

4.3. LSTM models 

We developed the following seven LSTM forecasting models for each 
GCC country to predict COVID-19 cases:  

1. A uni-variate LSTM model that takes COVID-19 cases as input.  
2. Four bi-variate LSTM forecasting models. Each bi-variate LSTM 

model takes one weather feature (i.e., temperature, humidity, dew 
point, and wind speed) as an input along with the COVID-19 cases.  

3. Two multi-variate LSTM forecasting models that use the weather 
features listed in Table 3 as the input with the COVID-19 cases. 

As data scaling improves the performance of forecasting models, the 
min-max scalar algorithm from the scikit-learn library was used to scale 
the weather features and COVID-19 case data to values between 0 and 1. 
Moreover, the datasets of COVID-19 and the weather conditions in each 
forecasting model were divided into 80% for training and 20% for 
testing. During the training of the LSTM models, the Adam optimizer was 
used to optimize the mean squared error (MSE) loss. The neural net-
works of the LSTM forecasting models were trained for 40 epochs, with a 
batch size of 1. All LSTM models were configured using the Keras tuning 

Fig. 8. UAE heat map correlation.  

Fig. 9. KSA heat map correlation.  

Fig. 10. Bahrain heat map correlation.  

Fig. 11. Qatar heat map correlation.  
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Fig. 12. Kuwait heat map correlation.  

Fig. 13. Oman heat map correlation.  

Table 3 
Weather factors selected for multi-variate LSTM models.  

Country High correlated weather factors 

UAE Temperature, Dew point, Wind speed 
KSA Temperature, Wind speed 
Bahrain Humidity 
Kuwait Temperature, Dew point, Wind speed, Humidity 
Qatar Dew point, Humidity 
Oman Temperature  

Table 4 
Keras-tuning results on models configurations.  

Country Model type Hyperparameters with keras tuning   

Input 
nodes 

Hidden 
layers 

Hidden 
nodes 

MSE 

UAE Multi-variate 160 2 300,10 0.0022 
High correlated 
factors 

280 1 0 0.0021 

Uni-variate 20 2 220,220 0.0023 
Bi-variate 
Windspeed 

300 2 280,10 0.0021 

Bi-variate 
Dewpoint 

30 2 80,10 0.0024 

Bi-variate 
Humidity 

140 2 20,60 0.0024 

Bi-variate 
Temperature 

270 2 20,10 0.0026 

KSA Multi-variate 30 1 40,10 0.0011 
High correlated 
factors 

210 3 90,10,10 0.0013 

Uni-variate 100 3 170,10,10 0.0010 
Bi-variate 
Windspeed 

50 3 220,10,10 0.0013 

Bi-variate 
Dewpoint 

20 2 80,10 0.0011 

Bi-variate 
Humidity 

210 2 60,190 0.0012 

Bi-variate 
Temperature 

290 2 30,300 0.0011 

Kuwait Multi-variate 70 2 270,80 0.0044 
High correlated 
factors 

70 2 270,80 0.0044 

Uni-variate 200 3 190,290,240 0.0048 
Bi-variate 
Windspeed 

50 2 280,210 0.0044 

Bi-variate 
Dewpoint 

70 3 260,50,160 0.0044 

Bi-variate 
Humidity 

280 1 170 0.0044 

Bi-variate 
Temperature 

90 2 90,200 0.0045 

Bahrain Multi-variate 160 3 60,10,10 0.0015 
High correlated 
factors 

120 2 210,50 0.0011 

Uni-variate 90 2 20,10 0.0014 
Bi-variate 
Windspeed 

130 2 60,20 0.0013 

Bi-variate 
Dewpoint 

70 3 240,10,10 0.0017 

Bi-variate 
Humidity 

20 2 60,240 0.0013 

Bi-variate 
Temperature 

150 3 10,80,130 0.0014 

Qatar Multi-variate 210 1 180 0.0016 
High correlated 
factors 

210 2 50,120 0.0017 

Uni-variate 160 2 170,160 0.0018 
Bi-variate 
Windspeed 

30 1 70 0.0018 

Bi-variate 
Dewpoint 

270 2 260,40 0.0021 

Bi-variate 
Humidity 

220 2 270,230 0.0018 

Bi-variate 
Temperature 

20 2 70,270 0.0017 

Oman Multi-variate 170 1 20 0.0069 
High correlated 
factors 

200 2 110,190 0.0071 

Uni-variate 220 2 40,10 0.0077 
Bi-variate 
Windspeed 

160 1 70 0.0071 

Bi-variate 
Dewpoint 

210 2 170,70 0.0079 

Bi-variate 
Humidity 

260 1 280 0.0080 

Bi-variate 
Temperature 

110 1 220 0.0073  
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algorithm to ensure that the highest possible prediction accuracy was 
achieved by all forecasting models. 

The LSTM model architecture is composed of three layers: an input 
layer, a hidden layer, and an output layer. The Keras tuning algorithm 
selects the hyperparameters of the layers, namely the number of hidden 
layers, number of nodes in each layer, and activation function in each 
layer. 

A range for each hyperparameter was selected in the Keras tuning 
algorithm, and the best parameter values were selected by optimizing 
the accuracy measure. The objective function of the Keras tuning algo-
rithm was set to the minimum MSE. The configurations of the LSTM 
models for each GCC country, as determined by the Keras tuning 

algorithm, are presented in Table 4. Column 1 of Table 4 indicates the 
country name, column 2 lists the model type, and columns 3 and 4 
present the numbers of input and hidden layers, respectively, for each 
LSTM model. Furthermore, the number of hidden nodes is indicated in 
column 5. It should be noted that for all models, one output unit was 
selected to show the expected number of COVID-19 cases. Column 6 lists 
the MSE values that were obtained for each LSTM model after being 
optimized by the Keras tuning algorithm. Either sigmoid or tanh acti-
vation function was selected for the gates in all models. 

Table 5 
LSTM models accuracy evaluation.  

Country LSTM model Evaluation metrics Country LSTM model Evaluation metrics   

RMSE R2   RMSE R2 

7*UAE Multi-variate 94.7 0.95 Bahrain Multi-variate 184.76 0.85  
High correlated factors 86.28 0.97 High correlated factors 128.81 0.93  
Uni-variate 148.1 0.98 Uni-variate 110.87 0.94  
Bi-variate Wind speed 137.79 0.96 Bi-variate Wind speed 114.56 0.94  
Bi-variate Dew point 117.34 0.97 Bi-variate Dew point 182.43 0.85  
Bi-variate Humidity 111.89 0.97 Bi-variate Humidity 128.81 0.93  
Bi-variate Temperature 131.02 0.96 Bi-variate Temperature 134.33 0.92 

KSA Multi-variate 178.5 0.97 Qatar Multi-variate 87.46 0.93 
High correlated factors 186.38 0.97 High correlated factors 77.46 0.95 
Uni-variate 173.73 0.97 Uni-variate 68.23 0.95 
Bi-variate Wind speed 184.05 0.97 Bi-variate Wind speed 80.48 0.94 
Bi-variate Dew point 197.07 0.97 Bi-variate Dew point 75.04 0.95 
Bi-variate Humidity 176.47 0.97 Bi-variate Humidity 74.54 0.95 
Bi-variate Temperature 165.13 0.98 Bi-variate Temperature 93 0.92 

Kuwait Multi-variate 129.43 0.90 Oman Multi-variate 268.7 0.79 
High correlated factors 129.43 0.90 High correlated factors 273.97 0.78 
Uni-variate 122.05 0.79 Uni-variate 275.41 0.70 
Bi-variate Wind speed 141.94 0.87 Bi-variate Wind speed 280.26 0.77 
Bi-variate Dew point 133.57 0.86 Bi-variate Dew point 271.73 0.78 
Bi-variate Humidity 150.91 0.85 Bi-variate Humidity 255.24 0.80 
Bi-variate Temperature 137.17 0.85 Bi-variate Temperature 273.97 0.78  

Fig. 14. R2 box-plot for the GCC countries’ models.  
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4.4. Model evaluation 

A comparison between the actual and predicted values of the COVID- 
19 cases was performed to evaluate the prediction accuracy of the 
proposed LSTM forecasting models, as presented in Table 5. We calcu-
lated the root mean square error (RMSE) and coefficient of determina-
tion (R2) using Eqs.  (7) and (8), respectively. Consequently, we 
graphically summarized the results in Table 5 using the boxplots 
depicted in Figs. 14 and 15 for the R2 and RMSE, respectively. The 
boxplots present several descriptive measures of the distribution of the 
R2 and RMSE values for each country. 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
1
n

)
∑n

i=1
(ŷ i − yi)2

√

(7)  

R2 = 1 −

∑n
i=1(yi − ŷ i)

2
∑n

i=1(yi − y)2 (8)  

4.5. Main results 

The results reported in Table 5 are summarized in Table 6, which 
compares the results of the best bi- or multi-variate model with those of 

the uni-variate model, considering both the RMSE and R2 values as 
performance measures. Column 1 of Table 6 indicates the country name, 
whereas columns 2 and 3, and 4 and 5, present comparisons of the best 
results that were obtained for the R2 and RMSE, respectively. We used a 
paired t-test to determine whether a significant difference existed be-
tween the uni-variate and best bi- or multi-variate models. The P-values 
for the one-sided test were 0.09 and 0.22 for the R2 and RMSE, 
respectively. 

As we compared countries that have similar weather conditions, we 
expected to provide a single answer to RQ1. However, we were incorrect 
in our expectations, as the significant weather features that could affect 
COVID-19 cases differed for the different countries. This could be 
observed by considering the following:  

1. The correlation coefficients between the COVID-19 cases and 
weather features: The correlation coefficient between the tempera-
ture and COVID-19 cases was high in KSA, Kuwait, Oman, and UAE, 
but not in Bahrain and Qatar. Moreover, humidity was significantly 
correlated with COVID-19 cases in Bahrain, Qatar, and Kuwait, but 
not in the other GCC countries.  

2. The best bi- and multi-variate LSTM forecasting models: The best bi- 
variate model for KSA was the model that considers the temperature 
as a second input to the model. However, the worst-performing bi- 
variate model for Qatar also considers temperature as an input. 

RQ2 asks whether the accuracy improvement of LSTM models that 
consider weather conditions is significant. As indicated in Table 6, ac-
cording to the R2 values, the inclusion of weather conditions in the bi- 
and multi-variate LSTM forecasting models resulted in a higher predic-
tion accuracy for KSA, Kuwait, and Oman. However, the uni-variate 
LSTM, which ignores weather features, was superior to the bi- and 
multi-variate models for Bahrain and Qatar. 

To answer RQ2 quantitatively, we tested the null hypothesis that 
there is no difference in accuracy between the uni-variate and bi-variate 
LSTM forecasting models using the results summarized in Table 6, which 
shows two accuracy measures. For R2, we rejected this null hypothesis 

Fig. 15. RMSE box-plot for the GCC countries’ models.  

Table 6 
R2 comparison between uni-variate LSTM model and bi-,multi-variate LSTM 
model.  

Country R2 values RMSE values 

Uni- 
variate 

Best bi- or multi- 
variate 

Uni- 
variate 

Best bi- or multi- 
variate 

UAE 0.98 0.97 148.1 86.28 
KSA 0.97 0.98 173.73 165.13 
Bahrain 0.94 0.94 110.87 128.81 
Qatar 0.95 0.95 68.23 74.54 
Kuwait 0.80 0.90 122.05 129.43 
Oman 0.70 0.79 275.41 255.24  
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for a level of significance α equivalent to 0.1. However, we did not reject 
the hypothesis for RMSE. These contradictory results can be attributed 
to the relatively large difference between the R2 values for Kuwait and 
Oman, as indicated in the final two rows of Table 6. 

5. Conclusions and future work 

The objective of this study was to determine whether the inclusion of 
weather data to predict COVID-19 cases using an LSTM forecasting 
model would improve the forecasting accuracy of the model. This study 
was conducted on COVID-19 cases in the GCC countries for over one 
year. To achieve the objective, we compared a uni-variate LSTM model 
that considered only COVID-19 cases with other bi- and multi-variate 
models that considered COVID-19 cases and weather features. We 
evaluated the performance of the LSTM forecasting models using two 
performance measures, namely the R2 and RMSE, after optimizing the 
LSTM configuration using the Keras tuning algorithm. 

The experiments that were conducted demonstrated that the inclu-
sion of weather features did not significantly improve the precision of 
the LSTM models. This conclusion was based on statistical tests in which 
the uni-variate model was compared with the best bi- and multi-variate 
LSTM models. Moreover, we expected that the best bi-variate LSTM 
models would use the same weather features because the GCC countries 
experienced similar weather conditions; however, this was an incorrect 
supposition. The best bi-variate LSTM models included different features 
for different countries. 

This study was limited to the GCC countries and the period between 
April 2020 and September 2021. Furthermore, we could not extend our 
conclusions to other forecasting models, such as auto-regressive moving 
average exogenous and other ANN-based models. Finally, we only 
considered two performance measures, namely the R2 and RMSE, in our 
comparisons, and we obtained differences in the accuracy improvement 
and statistical testing results. Consequently, these observations cannot 
be extended to other performance metrics. 

This study can be extended in two directions. First, the experiment 
that uses LSTM to forecast COVID-19 cases can be repeated using other 
time series and machine-learning forecasting algorithms. Second, the 
experiment can be extended to include countries that experience cold 
weather conditions. The merits of this research are not limited to 
COVID-19, but are also relevant to the spread of other viruses, such as 
influenza. 
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