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Abstract: In phylogenetic analyses of nucleotide sequences, ‘homogeneous’ substitution models, which assume the stationarity of 
base composition across a tree, are widely used, albeit individual sequences may bear distinctive base frequencies. In the worst-case 
scenario, a homogeneous model-based analysis can yield an artifactual union of two distantly related sequences that achieved similar 
base frequencies in parallel. Such potential difficulty can be countered by two approaches, ‘RY-coding’ and ‘non-homogeneous’ models. 
The former approach converts four bases into purine and pyrimidine to normalize base frequencies across a tree, while the heterogeneity 
in base frequency is explicitly incorporated in the latter approach. The two approaches have been applied to real-world sequence data; 
however, their basic properties have not been fully examined by pioneering simulation studies. Here, we assessed the performances of 
the maximum-likelihood analyses incorporating RY-coding and a non-homogeneous model (RY-coding and non-homogeneous analyses) 
on simulated data with parallel convergence to similar base composition. Both RY-coding and non-homogeneous analyses showed 
superior performances compared with homogeneous model-based analyses. Curiously, the performance of RY-coding analysis appeared 
to be significantly affected by a setting of the substitution process for sequence simulation relative to that of non-homogeneous analysis. 
The performance of a non-homogeneous analysis was also validated by analyzing a real-world sequence data set with significant base 
heterogeneity.
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Introduction
In molecular phylogenetic analyses, two distantly 
related, rapidly evolving (long-branch) sequences 
often erroneously group together owing to long-
branch attraction (LBA) artifacts, which have been 
recognized as one of the major sources of phy-
logenetic artifacts.1 Pioneering studies based on 
simulated data have shown that the susceptibility 
to LBA artifacts differs amongst tree reconstruc-
tion methods: distance matrix (DM)-based and 
maximum-parsimony methods are sensitive to, but 
the maximum-likelihood (ML) method is in theory 
robust against LBA artifacts.2,3 This ideal property of 
the ML method, however, collapses under conditions 
such as ‘model misspecification,’ where the substitu-
tion model applied to a phylogenetic analysis does 
not sufficiently describe the evolutionary process that 
generated the sequence data. As the precise evolution-
ary process underlying real-world sequences is diffi-
cult to know, there is always a risk of a critical aspect 
(or aspects) in sequence evolution being overlooked 
by phylogenetic analysis with a particular substitu-
tion model. Therefore, depending on the degree of 
model misspecification, the ML inference can suffer 
from severe LBA artifacts.

As base composition varies amongst genomes or 
even within a single genome, compositional heteroge-
neity is likely ubiquitous in nucleotide (nt) alignments 
for phylogenetic analyses. However, widely used 
‘homogeneous’ models for sequence substitutions 
assume the homogeneity of base composition across 
a tree, estimating the averaged base frequencies from 
the entire alignment. Thus, analyzing nt data bearing 
extreme compositional heterogeneity under homoge-
neous model conditions introduces significant model 
misspecification to tree reconstruction, resulting in 
severe LBA artifacts. Indeed, LBA artifacts attributed 
to ignoring compositional heterogeneity in nt align-
ments, as well as amino acid alignments, have been 
documented in the analyses of both real-world4–8 and 
simulated data.9–12

In DM-based analyses, LogDet transformation,13,14 
which can take compositional heterogeneity into 
account, has been widely used for the analyses 
of alignments bearing significant compositional 
heterogeneity. Past simulation studies have shown 
that LogDet distance method outperforms DM-based 
methods with ‘homogeneous’ models in recovering 

the correct tree from alignments with a high degree of 
compositional heterogeneity.11,12 Unfortunately, Log-
Det distance method is not always a practical solution 
for countering artifacts stemming from compositional 
heterogeneity in analyses of real-world sequences. 
Sequences with extreme compositional bias often are 
more rapidly evolving than other homologues with 
unbiased composition.15,16 As LogDet distance method 
is apparently DM-based, studies based on both real-
world and simulation data showed this method to be 
susceptible to typical LBA artifacts, yielding the arti-
factual union of rapidly evolving sequences.10,11,17,18

The degree of compositional heterogeneity in 
sequence data can be reduced by character recoding. 
In nt alignments, the variation of AT (or GC) con-
tent across a tree can be efficiently diminished by 
recoding four characters, A, C, G, and T, into purine 
(R; A or G) or pyrimidine (Y; C or T).19,20 This ‘RY-
coding,’ coupled with an ML method, is believed to 
prevent the putative artifact stemming from the het-
erogeneity of AT content across a tree and ameliorate 
the accuracy of phylogenetic inferences. Nevertheless, 
this procedure cannot erase compositional heteroge-
neity among any sequences except those with the 
ratio of A plus G to C plus T being roughly 1, sug-
gesting that a certain degree of compositional hetero-
geneity remains in the recoded data. As the recoded 
alignments are usually analyzed by the ML method 
with the homogeneous substitution model proposed 
by Cavender and Felsenstein,21 it is naïve to assume 
that the ML inferences from the recoded alignments 
are liberated from the phylogenetic artifacts from 
compositional heterogeneity. Finally, the recoding 
procedure may discard informative transition substi-
tutions (A↔G or T↔C) in the original alignments. 
Importantly, the efficacy and limitation of RY-coding 
remain uncertain, as no simulation study assessing 
the concerns mentioned above is available.

‘Non-homogeneous’ models can explicitly take 
compositional heterogeneity across a tree into 
account.22 A study based on simulated nt data with 
biased base composition evidently showed that the 
accuracy of a DM-based method was improved by a 
non-homogeneous model.9 An analysis with a non-
homogeneous model requires no character recoding in 
an alignment, being free from the potential issues asso-
ciated with RY-coding discussed above. Furthermore, 
the ML method with a non-homogeneous model is 
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anticipated to be much more robust against typi-
cal LBA artifacts than any DM-based methods with 
or without LogDet transformation. However, to our 
knowledge, the robustness of ML inferences under 
non-homogeneous model conditions has not yet been 
examined in detail by analyzing simulated data.

We here present the results from the de facto first 
simulation study assessing the performance of an 
ML method incorporating RY-coding and that with 
a non-homogeneous model. Simulated nt sequence 
data bearing various degrees of compositional het-
erogeneity were subjected to the two types of ML 
analyses. Our study indicated that the ML analyses 
incorporating RY-coding and a non-homogeneous 
model (henceforth designated as RY-coding and 
nonhomogeneous analyses, respectively) were more 
robust against the LBA artifact stemming from com-
positional heterogeneity than the ML analysis with 
a homogeneous model (henceforth designated as 
homogeneous analysis). Additionally, a real-world 
data set with a difference in AT content  across a tree 
(∆AT %) of 25% was subjected to non-homogeneous 
analysis. Significantly, as anticipated from the results 
from our simulated study, non-homogeneous analysis 
successfully suppressed the artifactual tree topology 
recovered in a homogeneous analysis, which cannot 
account for a large ∆AT%.

Our closed investigation, however, revealed 
the potential pitfalls of both RY-coding and 
non-homogeneous analyses. The performance of RY-
coding analysis appeared to be largely affected by the 
substitution process used for sequence simulation. 
Likewise, the inference from non-homogeneous 
analysis can be significantly misled when the substi-
tution process was incorrectly modeled. Practically, 
we recommend cross-checking the inference from 
the ML method with RY-coding by that from the ML 
method with a non-homogeneous model, which can 
sufficiently account for the substitution process in the 
alignment of interest.

Materials and Methods
Data simulation
Nucleotide sequence data were generated by Monte 
Carlo simulation, using indel-Seq-Gen Version 
2.0,23 based on a 4-taxon model tree described 
below (Fig. 1A). For each data point, we simulated 
500 replicates. The simulated data were varied from 

500, 1000, 2500, and 5000 nt positions in size. The 
lengths for the central branch and two terminal 
branches leading to Taxa 1 and 2 were set to 0.025, 
and the lengths of the terminal branches leading to 
Taxa 3 and 4 were set to 0.800 (a and b in Fig. 1A). 
These specific branch lengths were determined on 
the basis of preliminary analyses of sequence data 
simulated over 4-taxon model trees with 1600 com-
binations of branch lengths a and b (with a rang-
ing from 0.0125 to 0.5000, and b ranging from 
0.5000 to 1.0000; see Fig. S1). For each simulation, 
the ancestral sequence was randomly generated 
at the root (R in Fig. 1A), and each tip sequence 
was then simulated according to the given branch 
lengths. The substitution process was modeled with 
the HKY model,24 incorporating rate heterogeneity 
across sites approximated by a discrete gamma (Γ) 
distribution with four categories (HKY + Γ model). 
The κ parameter for transition/transversion (Ts/Tv) 
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Figure 1. Four-taxon trees considered in this study. (A) A model tree 
for sequence simulation. The lengths of the terminal branches leading 
to Taxa 3 and 4 were set as 0.800, while those of the rest of branches 
in the tree were set as 0.025. in this figure, the branch lengths were 
not correctly scaled for readers’ convenience. Firstly, random sequences 
with AT content of ∼50% were generated at the root (r). Subsequently, 
Taxa 1–4 sequences were simulated based on the given ‘root’ sequence, 
branch lengths, and model parameters. The parameters for discrete 
gamma distribution and transition/transversion ratio were fixed across a 
tree. The frequencies for A, c, g, and T were set equal from the root to 
the terminal branches leading to Taxa 1 and 2, while unequal frequencies 
for the four bases were applied to the terminal branches leading to Taxa 3 
and 4. The parameters for the base frequencies applied to the branches 
leading to Taxa 3 and 4 are shown in Table 1. (B) Possible tree topologies 
from the 4-taxon simiulated data. Branch lengths are not scaled.
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ratio and the shape parameter α for a Γ distribution 
were set to 2.0 and 0.8, according to Galtier and 
Gouy.9 We additionally simulated data with smaller 
κ values, 0.2, 0.5, 1.0, and 1.5, to evaluate how the 
setting of Ts/Tv ratio in sequence simulation affects 
the performnce of the ML analyses.

For the simulation from the root to Taxa 1 and 2, the 
frequencies of A, C, G, and T were set equal (ie, the 
AT content is supposed to be ∼50%). On the other 
hand, Taxa 3 and 4 sequences were designed to be AT-
rich by changing the parameters for base frequency 
at the node uniting Taxa 1 and 3, and that uniting 
Taxa 2 and 4 (P and Q, respectively, in Fig. 1A). The 
above procedure enabled us to simulate slowly evolv-
ing sequences for Taxa 1 and 2 with an AT content 
of ∼50%, and rapidly evolving, AT-rich sequences for 
Taxa 3 and 4. We analyzed the simulated data with 11 
variations of ∆AT% calculated between slowly evolv-
ing Taxa 1 and 2, and rapidly evolving Taxa 3 and 4. 
The frequencies of A and T and those of C and G were 
set equal unless we specifically mention. We provide 
the settings for base frequency in the data simulation, 
and the average AT% achieved in the resultant simu-
lated data in Table 1.

Data analyses
We ran three different ML analyses in the present 
study. First, the simulated data (comprising four nt 
characters) were subjected to the ML analysis with 
the HKY + Γ model. The Ts/Tv ratio and shape 

parameter α for a Γ distribution were fixed to those 
used in the data simulation (κ = 2.0–0.2, and α = 0.8), 
but base frequencies were estimated from the entire 
data. We also analyzed the simulated data recoded by 
RY-coding.19,20 The recoded data (comprising binary 
characters) were then analyzed with the model of 
Cavender and Felsenstein21 for two-state characters 
incorporating rate heterogeneity across sites approxi-
mated by a discrete Γ distribution (CF + Γ model). All 
model parameters for the second ML analysis were 
estimated from the data. The substitution models 
used in the first and second ML analyses are homoge-
neous as they assume the stationarity of substitution 
process. We used PAUP* 4.0b,25 for the ML analyses 
with the two homogeneous models.

Finally, we subjected the simulated data to the third 
ML analysis with a non-homogeneous model pro-
posed by Galtier and Gouy22 incorporating rate het-
erogeneity across sites approximated by a discrete Γ 
distribution (GG98 + Γ model) implemented in NHML 
3.0.26 In this non-homogeneous model, the parameters 
for Ts/Tv ratio and the Γ distribution were estimated 
from the entire data, but the parameter for AT content 
was allowed to vary in a branch-by-branch fashion. 
We exhaustively searched for the ML tree by the 
eval_nh program packaged in NHML.26 In addition, a 
subset of simulated data was analyzed with a second 
non- homogeneous model, which is identical to the 
HKY + Γ model but allows base frequencies to vary 
across a tree (nhHKY + Γ model).

Table 1. Settings for the base frequencies applied to the terminal branches leading to Taxa 3 and 4, and the average AT 
content (AT%) in the resultant Taxa 3 and 4 sequences.

Ts/Tv ratio (κ) = 2.0 Ts/Tv ratio (κ) = 0.2
settings of base frequencies  
in data simulation (%)

AT% achieved in the  
simulated data (%) 
(mean ± 2*sD)

settings of base frequencies  
in data simulation (%)

AT% achieved in the  
simulated data (%) 
(mean ± 2*sD)A and T G and c A and T G and c

25.0 25.0 50.0 ± 2.5 25.0 25.0 50.0 ± 2.7
26.5 23.5 51.7 ± 2.5 27.0 23.0 51.9 ± 2.6
28.0 22.0 53.4 ± 2.6 29.0 21.0 53.8 ± 2.6
29.5 20.5 55.1 ± 2.5 31.0 19.0 55.8 ± 2.5
31.0 19.0 56.8 ± 2.6 33.0 17.0 57.7 ± 2.7
32.5 17.5 58.6 ± 2.4 35.0 15.0 59.7 ± 2.6
34.0 16.0 60.5 ± 2.5 37.0 13.0 61.9 ± 2.7
35.5 14.5 62.4 ± 2.4 39.0 11.0 64.1 ± 2.6
37.0 13.0 64.5 ± 2.4 41.0 9.0 66.5 ± 2.6
38.5 11.5 66.7 ± 2.6 43.0 7.0 69.4 ± 2.4
40.0 10.0 69.2 ± 2.4 45.0 5.0 72.7 ± 2.4
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Analyses of a real-world data set
We retrieved the gene sequences encoding four 
ribosomal proteins (L14, L16, S3, and S11) and β 
subunit of RNA polymerase encoded in 9 red algal 
or red alga-derived plastids, 17 green algal or green 
alga-derived plastids, and five residual plastids in 
apicomplexan parasites (so-called apicoplasts) from 
GenBank database. For each gene, nt sequences were 
carefully aligned by referring their putative amino 
acid sequences. After the exclusion of unambiguously 
aligned positions, the five single-gene alignments were 
concatenated into a ‘5-gene’ alignment containing 
31 taxa with 2226 nt positions. Of note, the AT contents 
of the apicoplast sequences are generally higher than 
other plastid sequences and produce a wide range of 
∆AT% in the 5-gene alignment (Fig. 2A).

We firstly conducted the ML analyses of the 
original 5-gene alignment and 100 bootstrap repli-
cates with the HKY + Γ model by PhyML3.0.27 All 
parameters were estimated from the entire data. The 
ML analysis placed the clade of the five apicoplasts 
within the green algal/green alga-derived plastids 
(Fig. 2A), implying that apicoplasts were established 
through secondary endosymbiosis of a green alga 
(henceforth here designated as the ‘green origin’ of 
apicoplasts; Fig. 2B). Nevertheless, this result is con-
tradictory to the widely accepted the ‘red origin’ of 
apicoplasts,28 which regards apicoplasts as a residual 
endosymbiotic red alga (Fig. 2B). We conjectured that 
the tree topology representing the green origin of api-
coplasts was attributed to the homogeneous (HKY) 
model ignoring the heterogeneity of AT content in the 
5-gene alignment (see the bar graph in Fig. 2A). If 
the above conjecture is true, we can anticipate that 
the ML analysis with a non-homogeneous model may 
suppress the phylogenetic artifact and recover a tree 
topology representing the red origin of apicoplasts.

On the basis of the results presented in Figure 2A, 
it is difficult to evaluate how the ML tree represent-
ing the green origin of apicoplasts was superior to 
the trees representing the alternative hypothesis. To 
evaluate the two competing hypotheses for the ori-
gin of apicoplasts, we prepared alternative trees by 
modifying the ML tree shown in Figure 2A. The 
apicoplast clade was regrafted to (i) seven terminal 
branches showing no apparent affinity to any other 
sequences, or (ii) seven branches which are basal to 
the robustly supported clades (highlighted by dots in 

Fig. 2A). Subsequently, the log-likelihoods (lnLs) of 
the 14 alternative trees were compared with that of 
the ML tree (see below).

The lnLs of the ML and 14 alternative trees were 
calculated with the HKY + Γ (homogeneous) model 
by PhyML3.0.27 The same calculation was repeated 
with a non-homogeneous (GG98 + Γ) model by 
eval_nh.26 The root position was fixed in the second 
comparison with the GG98 + Γ model (highlighted 
by a diamond in Fig. 2A). Branch lengths were opti-
mized during the lnL calculation. Model parameters 
were estimated from the entire alignment.

Results
impact of compositional heterogeneity—
hKY analysis
The HKY model assumes the stationarity of the 
substitution process (ie, homogeneous), and ∆AT% 
in the simulated data cannot be adequately accounted 
for. Henceforth here, we designate the HKY model-
based ML analysis as ‘HKY analysis.’ On the basis 
of Jermiin et al12 and Ho and Jermiin,11 we expected 
that ‘LBA’ tree (center in Fig. 1B), in which rapidly 
evolving Taxa 3 and 4 erroneously grouped together, 
was preferentially recovered in HKY analysis of the 
data bearing large ∆AT%.

Indeed, in the analysis of 1000 nt-long data simu-
lated with κ = 2.0 (henceforth designated as ‘κ_2.0 
data’), the recovery rate of the correct tree (left in 
Fig. 1B) gradually decreased along with the incre-
ment of ∆AT% (black circles in Fig. 3A). On the other 
hand, LBA tree was dominantly yielded in the analy-
ses of the data with high ∆AT% (Fig. S2). A similar 
but clearer trend for the success rate (as well as the 
recovery rate for LBA tree) was observed in the anal-
ysis of the data simulated with κ = 0.2 (henceforth 
designated as ‘κ_0.2 data’; black circles in Fig. 3B). 
These results evidently suggest that HKY analysis, 
particularly when the data bear large ∆AT%, becomes 
highly susceptible to the LBA artifact stemming from 
compositional heterogeneity.

We additionally tested how the performance of 
HKY analysis was affected by the Ts/Tv ratio in 
data simulation. Five sets of 1000 nt-long data bear-
ing ∆AT = ∼20% were simulated with different κ 
values, 0.2, 0.5, 1.0, 1.5, and 2.0, and subjected to 
HKY analysis. As shown in Figure 3C, the analysis of 
κ_2.0 data yielded the highest success rates (∼30%), 
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Figure 2. The origin of apicoplasts. (A) Maximum-likelihood tree inferred from the 5-gene alignment with the hKY + Γ (homogeneous) model. The subtree 
for red algal/red alga-derived plastids is in orange, while that for green algal/green alga-derived plastids is in green. The subtree for the residual plastids in 
apicomplexan parasites (apicoplasts) is in red. green alga- and red alga-derived plastids are highlighted by green and orange arrowheads, respectively. 
in this topology, the apicoplast clade is placed within green algal/green alga-derived plastids, representing the ‘green origin’ of apicoplasts. For each taxon, 
the AT content (AT%) is shown on the right side. Bootstrap proportions larger than 50% are shown for the nodes. (B) hypothetical origin of apicoplasts. The 
scheme on the left represents the ‘green origin’ of apicoplasts—apicoplasts are the descendants of an endosymbiotic green alga. On the other hand, the 
‘red origin’ of apicoplasts schematically shown on the right assumes that apicoplasts were derived from an endosymbiotic red alga.
notes: The nucleus of the endosymbiotic alga (n) has disappeared in modern apicomplexan cells.
Abbreviations: n, host nucleus; n, endosymbiotic algal nucleus; P, plastid; Ap, apicoplast.
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while the correct tree was recovered at less than 10% 
in the analyses of the data simulated with κ , 2.0.

impact of compositional heterogeneity—
rY-coding analysis
RY-coding has been widely used for the analyses 
of real-world nt data bearing base compositional 
bias.19,29 However, there is a (potentially large) room 

for argument on whether this procedure can truly help 
in reconstructing the correct tree. In this study, both 
κ_2.0 and κ_0.2 data series bearing ∆AT of 0–20% 
were subjected to RY-coding analysis.

We firstly checked whether the recoding proce-
dure erased the compositional heterogeneity simu-
lated in κ_2.0 and κ_0.2 data. Regardless of the 
degree of ∆AT% in the original data or the setting 
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Figure 3. impacts of the difference in AT content across a tree (∆AT) and transition/transversion ratio (κ) on the recovery rate of the correct tree. 
(A) Analysis of 4-taxon data simulated with κ = 2.0. We prepared 11 sets of 500 replicates of 1000 nt-long sequence data simulated with different ∆AT%. 
The simulated data were subjected to the maximum-likelihood analyses with the hKY + Γ model (hKY; black circles) and the gg98 + Γ model (gg98; 
green squares). We also recoded the simulated data (comprising four nt characters, A, c, g, and T) into binary characters, purine (r; A or g) and pyrimi-
dine (Y; T or c), and then subjected to the ML analysis with the cF + Γ model (rY; red diamonds). (B) Analysis of 4-taxon data simulated with κ = 0.2. The 
details are same as described in (A), except κ was set as 0.2. (c) Analysis of 4-taxon data simulated with five different κ values. We prepared five sets of 
500 replicates of 1000 nt-long sequence data simulated with a fixed ∆AT of ∼20%, but κ of 0.2, 0.5, 1.0, 1.5, or 2.0.
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for Ts/Tv ratio in data simulation, the ratio of R to 
Y was almost equal (data not shown). As almost no 
compositional heterogeneity existed, the correct tree 
was stably recovered in the homogeneous (CF model-
based) analyses of the recoded κ_2.0 and κ_0.2 data 
at 69%–77% and 53%–60%, respectively (red dia-
monds in Fig. 3A and B). The recovery of LBA tree 
was less than 18% and 29% in the analyses of the 
recoded κ_2.0 and κ_0.2 data series, respectively 
(Fig. S2). The success rate of RY-coding analysis 
remained high irrespective of Ts/Tv ratio (56%–70%; 
red diamonds in Fig. 3C), compared with that of HKY 
analysis. We successfully provide the first simulation 
results that indicate that RY-coding largely improved 
the phylogenetic inferences of sequence data with 
 compositional heterogeneity.

impact of compositional  
heterogeneity—gg98 analysis
The non-homogeneous GG98 model proposed 
by Galtier and Gouy in 199822 allows different 
AT% on different branches. The GG98 model has 
been applied for the ML analyses of real-world 
sequence data, and successfully displayed the 
robustness against systematic artifacts originating 
from compositional heterogeneity.30 A simulation 
study by Galtier and Gouy in 19959 showed that 
the GG98 model drastically improved the accuracy 
of a DM-based analysis, but the performance of 
GG98 model-based ML analysis (henceforth here 
designated ‘GG98’ analysis) has not been tested. In 
the present study, we examined how the GG98 model 
can improve the ML inference from sequence data 
with large ∆AT%.

Regardless of ∆AT%, the correct tree was recov-
ered at 67%–76% in the analysis of κ_2.0 data series 
(green squares in Fig. 3A), while the recovery of 
LBA tree was suppressed (,23%; Fig. S2). In GG98 
analysis of κ_0.2 data series, ∆AT% had little impact 
on the success rate (63%–72%; green squares in 
Fig. 3B). The same analysis was repeated on the 1000 
nt-long data simulated with the five different Ts/Tv 
ratios (∆AT was set as ∼20%), but the success rates 
stayed at 63%–72% (Fig. 3C). These are the first 
simulation results indicating that the parallel shifts of 
base frequency in sequence data could be tolerated in 
non-homogeneous model-based ML analysis.

impact of data size
We simulated 500, 1000, 2500, and 5000 nt-long data 
with ∆AT = ∼20%, and these data were subsequently 
subjected to HKY, RY-coding, and GG98 analyses. The 
data simulated with the largest and smallest κ values, 
2.0 and 0.2, were considered in these analyses. The suc-
cess rates obtained from the three ML analyses were 
plotted in Figure 4A and B.  Regardless of κ param-
eter, the success rate of HKY analysis appeared to be 
negatively correlated with data size (black circles in 
Fig. 4A and B). The analyses of the largest κ_2.0 and 
κ_0.2 data (ie, 5000 nt-long) marked the lowest suc-
cess rates, 14% and 0%, respectively. The magnitude 
of the LBA artifact stemming from compositional het-
erogeneity was apparently enhanced by increment of 
data size.

The success rates of RY-coding analysis posi-
tively correlated with data size, and this trend was 
independent from the setting of κ parameter (red 
diamonds in Fig. 4A and B). The highest success 
rates were 96% and 84% in the analyses of the larg-
est κ_2.0 data and the largest κ_0.2 data, respec-
tively. In GG98 analyses of the two data simulated 
with two different κ values, the success rates were 
improved by increment of data size (up to 95% and 
98%, respectively; green squares in Fig. 4A and B). 
These plots clearly suggest that data size can further 
enhance the performances of RY-coding and GG98 
analyses against the LBA artifact from compositional 
heterogeneity in the data.

gg98 analysis versus rY-coding 
analysis
Both RY-coding and GG98 analyses were robust 
against ∆AT% in the simulated data (Fig. 3A and B), 
and their success rates displayed positive correlation 
with data size (Fig. 4A and B). However, the success 
rates from GG98 analyses of κ_0.2 data series were 
constantly greater than the corresponding values from 
RY-coding analyses (Fig. 4B). We statistically com-
pared the success rates of 500 simulation trials from 
RY-coding and GG98 analyses for 500, 1000, 2500, 
and 5000 nt-long κ_0.2 data by Pearson’s chi-square 
test. In all the comparisons, the null hypothesis of the 
success rate being the same between the RY-coding 
and GG98 analyses was rejected with extremely small 
P values (P = 5.2 × 10−6−2.2 × 10−16). In contrast, in the 
analyses of κ_2.0 data series, the success rates from 
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RY-coding analyses were almost equal or greater than 
those from GG98 analyses (Fig. 4A). These results 
clearly suggest that the performance of RY-coding 
analysis can be altered by the evolutionary process 
that generated the sequence data of interest (eg, Ts/Tv 
ratio in this study).

Analysis of simulation data  
with complex base composition
We simulated an additional set of 4-taxon data 
with κ = 2.0 (1000 nt-long; 500 replicates). Unlike 
other simulated data analyzed in this study, neither 
frequencies of A and T nor those of C and G were set 
equal in these data. Slowly evolving Taxa 1 and 2 pos-
sess equal frequencies of the four bases, while rapidly 
evolving Taxa 3 and 4 possess approximately 45%, 
25%, 13%, and 17% of A, T, G, and C, respectively 
(∆AT = ∼20%).

In this set of simulated data, purine (A and G) and 
pyrimidine (T and C) are equally contained in Taxa 1 
and 2, while the ratio of purine to pyrimidine becomes 
almost 6:4 in Taxa 3 and 4. Thus, this compositional 
heterogeneity can introduce model misspecification to 
RY-coding analysis based on the CF + Γ model assum-
ing the stationarity of R/Y composition across a tree. 
Similarly, the complex base composition  simulated in 

sequence data cannot be modeled by the GG98 model, 
a non-homogeneous version of the T92 model,31 in 
which assumes the frequencies of A and T, and those 
of C and G being equal. Indeed, the accuracies of RY-
coding and GG98 analyses on this set of simulation 
data were lowered, dominantly recovering LBA tree 
(Fig. 5).

In theory, non-homogeneous models with more 
flexible assumption on base composition than 
GG98 model can improve the accuracy of the ML 
analysis. We then subjected the simulation data to the 
ML analysis with the nhHKY + Γ model, which allows 
the compositions of four bases to be  independent. 
As anticipated, the accuracy of the ML analysis was 
greatly improved by applying the nhHKY + Γ model 
(Fig. 5).

Analysis of a real-world sequence data set
Prior to this study, only a single study has applied the 
GG98 model to the ML analysis of real-world data.30 
Unfortunately, due to the experimental setting of 
Herbeck et al30 it was somewhat ambiguous whether 
the GG98 model suppressed the phylogenetic artifact 
from compositional heterogeneity.

We here subjected a real-world data set compris-
ing five plastid-encoded genes, of which AT% varied 
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from 59.6% to 84.6% amongst the taxa considered, 
to the ML analysis with the GG98 + Γ model. The 
ML analysis of the 5-gene alignment with the homo-
geneous (HKY + Γ) model, which cannot take into 
account the ∆AT% across a tree, placed the apicoplast 
clade within green algal/green alga-derived plastids 
(Fig. 2A), and this tree topology is highly likely a phy-
logenetic artifact stemming from ∆AT%.  Contrary to 
Herbeck et al,30 we can directly assess whether the 
GG98 model suppresses the artifact from ∆AT% in 
the 5-gene alignment by assessing the position of the 
apicoplast clade. If the substitution process in the 
data was appropriately modeled, a tree representing 
the red origin of apicoplasts should be preferred over 
those representing the alternative hypothesis.

We examined the two competing hypotheses for 
the origin of apicoplasts by comparing the ML tree 
inferred from the HKY model-based analysis and 14 
alternative trees, which are identical to the ML tree 
except for the position of the apicoplast clade (Fig. 6). 
In the tree comparison based on the lnL calculated 
with the HKY+ Γ model, the ML tree received the 
highest lnL score among the trees subjected to this 

comparison (Tree 0; Fig. 6), preferring the artifactual 
green origin of apicoplasts. In contrast, the GG98 + Γ 
model-based ML analysis supported the red origin of 
the apicoplasts—Trees 9–11 and 14, in which the api-
coplast clade grouped with red alga/red alga-derived 
plastids, received higher lnL scores than any other 
trees, which represent the green origin of apicoplasts 
(Fig. 6). These results indicate that the GG98 + Γ 
model-based ML analysis successfully avoided a 
phylogenetic artifact stemming from ∆AT% in the 
5-gene alignment.

Discussion
Compositional heterogeneity has been widely 
observed amongst molecular sequence data, and rec-
ognized as one of the important aspects in molecular 
sequence evolution for inferring accurate phylogenetic 
relationships.4,9 To avoid or mitigate the artifacts stem-
ming from compositional heterogeneity, there are two 
major choices available—cancelling compositional 
heterogeneity by character recoding, and accounting 
for compositional heterogeneity by applying a non-
homogeneous model. Currently, non-homogeneous 
models are about to grow in popularity, mainly due 
to the limited number of phylogenetic programs that 
implement these complex models. On the other hand, 
character recoding seems a standard procedure for 
analyzing data with compositional heterogeneity—
RY-coding for nt sequence data and ‘Dayhoff-coding,’ 
which converts 20 amino acid characters to four or 
six Dayhoff classes.32 Nevertheless, the validities and 
limits of RY-coding and non-homogeneous models 
have not been fully examined in simulation studies. In 
the present study, we simulated the data series bear-
ing 11 different degrees of compositional heterogene-
ity, and subsequently subjected these simulated data 
to RY-coding and GG98 analyses. We also examined 
whether the non-homogeneous (GG98) model over-
came a putative artifact from heterogeneity of AT% 
in a real-world data set. Overall, both RY-coding and 
GG98 analyses showed superior performances than 
the control analyses with the homogeneous (HKY) 
model: Compositional heterogeneity in the simulated 
nt data had little impact on the success rate of RY-
coding or GG98 analysis (Fig. 3A and B). We also 
observed that the GG98 + Γ model suppressed the 
phylogenetic artifact from the heterogeneity of AT% 
in the real-world sequences (Fig. 6).
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Nevertheless, it is noteworthy to mention that the 
performances of RY-coding analysis relative to that 
of GG98 analysis was largely altered by κ param-
eter setting in data simulation (Fig. 4A and B). We 
noticed that the overall site pattern was markedly 
different between the recoded κ_2.0 and κ_0.2 data 
(Fig. 7A). It is also noteworthy that the estimated 
branch lengths, particularly those for Taxa 3 and 4, 
calculated from the recoded κ_0.2 data were much 
longer than the corresponding values calculated 
from the recoded κ_2.0 data (Fig. 7B). Thus, the 
two differences shown in Figure 7A and B likely 
affected the relative performance of RY-coding 
analysis.

The results presented in this study clearly reinforce 
the importance of explicit incorporation of com-
positional heterogeneity in tree reconstruction. 
The maximum ∆AT% in the simulated and real-world 
(ie, 5-gene alignment) data examined here were ∼20% 

and 25%, respectively, albeit some real-world data 
bear a higher magnitude of compositional heterogene-
ity (eg, ∼37%4 and ∼50%7). Thus, severer LBA arti-
facts than what we observed here may be prevalent 
in homogeneous model-based analyses of real-world 
data. If compositional heterogeneity exists in the data 
of interest, we strongly recommend running both RY-
coding and non-homogeneous model-based analyses. 
Despite the simplicity, RY-coding clearly improved 
the accuracy of tree reconstruction—the analyses after 
recoding can greatly mitigate the artifactual impact of 
compositional heterogeneity. However, we should be 
aware of the potential difficulties in this procedure: (i) 
the true phylogenetic signal in the original sequences 
can be erased by recoding, and (ii) the accuracy of RY-
coding analysis, at least to some extent, depends on the 
substitution process that generated the data of inter-
est (eg, Ts/Tv ratio; see Fig. 4A and B). We believe 
that non-homogeneous models are indispensable 

http://www.la-press.com


ishikawa et al

368 Evolutionary Bioinformatics 2012:8

for analyzing molecular data bearing severe compo-
sitional heterogeneity since the non-homogeneous 
model-based analyses are supposed to be free from 
the potential issues in RY-coding analysis mentioned 
above.

Owing to the simple setting for data simulation, 
the GG98 model, which solely allows varying the AT 
content across a tree, was mostly used in the present 
study. However, the GG98 model cannot adequately 
account for a complex pattern of compositional 
heterogeneity across a tree in real-world data, in 
which the frequencies of A and T (or C and G) are 
unnecessarily equal. Our experiment evidently dem-
onstrated that the violation of the assumption on base 
composition introduced LBA artifacts to the ML anal-
ysis with the GG98 model (Fig. 5). In practical, more 
complex and flexible non-homogeneous models than 
the GG98 model (eg, nhHKY model implemented in 
BppML33) may be useful for empirical phylogenetic 
analyses. At the same time, we need to judge what 
kind of non-homogeneous model is most appropriate 
for describing the substitution process in the data of 
interest to avoid  over-fitting. Nevertheless, to our 
knowledge, no program for model selection can take 
non-homogeneous models into account. Thus, more 
advanced programs for model selection are also indis-
pensable before starting applying non-homogeneous 
models to phylogenetic analyses of various empirical 
data.
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cell in the matrix indicates the success rate.
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Figure s2. impact of the difference in AT content across a tree on the recovery rate of ‘LBA’ tree, in which rapidly-evolving Taxa 3 and 4 group together 
(see Fig. 1B).
note: The details of these figures are same as those in Fig. 3A and B, except we plotted the recovery rates of LBA tree here.
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