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ABSTRACT Performance of a bioreactor is affected by complex microbial consor-
tia that regulate system functional processes. Studies so far, however, have
mainly emphasized the selective pressures imposed by operational conditions
(i.e., deterministic external physicochemical variables) on the microbial commu-
nity as well as system performance, but have overlooked direct effects of the mi-
crobial community on system functioning. Here, using a bioreactor with ammo-
nium as the sole substrate under controlled operational settings as a model system,
we investigated succession of the bacterial community after a disturbance and its
impact on nitrification and anammox (anaerobic ammonium oxidation) processes
with fine-resolution time series data. System performance was quantified as the ratio
of the fed ammonium converted to anammox-derived nitrogen gas (N2) versus
nitrification-derived nitrate (npNO3

�). After the disturbance, the N2/npNO3
� ratio

first decreased, then recovered, and finally stabilized until the end. Importantly, the
dynamics of N2/npNO3

� could not be fully explained by physicochemical variables
of the system. In comparison, the proportion of variation that could be explained
substantially increased (tripled) when the changes in bacterial composition were
taken into account. Specifically, distinct bacterial taxa tended to dominate at differ-
ent successional stages, and their relative abundances could explain up to 46% of
the variation in nitrogen removal efficiency. These findings add baseline knowledge
of microbial succession and emphasize the importance of monitoring the dynamics
of microbial consortia for understanding the variability of system performance.

IMPORTANCE Dynamics of microbial communities are believed to be associated
with system functional processes in bioreactors. However, few studies have provided
quantitative evidence. The difficulty of evaluating direct microbe-system relation-
ships arises from the fact that system performance is affected by convolved effects
of microbiota and bioreactor operational parameters (i.e., deterministic external
physicochemical forcing). Here, using fine-resolution time series data (daily sampling
for 2 months) under controlled operational settings, we performed an in-depth anal-
ysis of system performance as a function of the microbial community in the context
of bioreactor physicochemical conditions. We obtained statistically evaluated results
supporting the idea that monitoring microbial community dynamics could improve
the ability to predict system functioning, beyond what could be explained by opera-
tional physicochemical variables. Moreover, our results suggested that considering
the succession of multiple bacterial taxa would account for more system variation
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than focusing on any particular taxon, highlighting the need to integrate microbial
community ecology for understanding system functioning.

KEYWORDS community dynamics, disturbance, nitrogen removal, succession, time
series, wastewater treatment

Monitoring temporal changes in community assembly (i.e., succession) is crucial for
understanding the variation in system properties (1–3). For example, research on

plants has shown that species diversity and system functioning generally increase
during succession, with higher diversity usually begetting greater functioning of the
system (4, 5). Whereas succession of plant and animal communities has been well
documented (6, 7, 80), microbial succession and its impact on system functioning
(8–10) are less well studied. Since microorganisms are crucial components that are
responsible for numerous biochemical reactions in both natural and industrial envi-
ronments (11), monitoring the dynamics of microbial communities is required for
understanding the functional performance of various systems (12).

System functional performance is believed to be closely associated with changes in
microbial communities (13). Previous studies on the nitrogen removal in wastewater
treatment systems have investigated the microbial contributions to system functioning
from an engineering point of view, through identifying the involved microorganisms
that express specific metabolic activities, such as ammonium-oxidizing bacteria (AOB),
nitrite-oxidizing bacteria (NOB), complete ammonium-oxidizing (comammox) bacteria
(14), and anaerobic ammonium-oxidizing (anammox) bacteria (15). However, only a few
studies have investigated the assembly and temporal dynamics of microbial commu-
nities with the consideration of community-level impacts on the system performance of
bioreactors (16–19). Considering microbial communities as consortia of complex
species-species interactions that regulate system functional processes as a whole (20,
21), monitoring microbial community succession should help us understand the vari-
ability of system performance in bioreactors (22).

In previous studies, variability in microbial community and system functioning was
attributed mainly to selective pressures of external deterministic parameters (such as
temperature, substrate concentration, and hydraulic retention time) of bioreactors
(16–18, 23), overlooking the direct effect of microbial community dynamics on system
functioning. Thus, even though some associations between microbial community and
bioreactor performance have been revealed (16, 17, 19, 24), it is still unclear whether
these associations are driven by shared operational conditions, microbial influence
on system functioning, or a combination of the two. Moreover, previous studies on
microbial community succession in bioreactors were usually based on coarse (i.e.,
weekly or monthly) samplings; however, considering the complexity and short gener-
ation time of microbial populations, sampling efforts at finer temporal resolution are
required to capture detailed changes in microbial communities and their impacts on
system performance (8). Thus, in this study, we aimed to evaluate the predictive power
of microbial community for explaining the variation in system functional processes,
using highly resolved daily samples to quantify microbe-system relationships. Specifi-
cally, we addressed the question of whether the dynamics in microbial communities
could explain the variation in system performance of the bioreactor, beyond what
could be predicted by operational physicochemical conditions.

Analogous to plant succession (3), the succession of microbial communities in
bioreactors could be categorized into primary and secondary successions. Since bio-
reactors are typically inoculated with microbial consortia from various sources (such as
sludge, soil, or compost), primary succession has been reported to vary depending on
inoculum source and initial community structure (25–28). Then, after a period of
operation in a controlled setting, the bioreactor can be considered to reach a steady
state when biomass concentration and system performance approach a constant
(29–31). However, secondary succession of microbial communities might occur due to
disturbances, such as overloading (32), adding new substrates (33), or modifying
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operational parameters (23). In this study, we focused on secondary succession of
microbial communities within a bioreactor, after it had been considered to reach a
steady state, and examined the responses of microbial community succession and
system performance following an artificial disturbance which consisted of homogeniz-
ing all microbial consortia (including biofilm and suspended sludge) and resuspending
the mixture in the bioreactor. Specifically, to reveal the direct association between
microbial community and bioreactor performance, the system would be maintained
under similar operational parameters before and after the disturbance event. However,
even under similar operational settings, the microbial community might vary contin-
ually over a period of time after the disturbance; this allows us to statistically examine
the community effects on system performance in the context of bioreactor operational
conditions.

Here, we established a simplified model system focusing on autotrophic nitrogen
removal processes in a bench-scale continuously stirred tank reactor (CSTR) fed with
ammonium as the sole nitrogen source. A CSTR would provide complete mixing of
microbial populations and substrates, enabling the precise control of operational
conditions, as well as reliable sampling of microbial communities and nitrogenous
compounds of the system. It was reasonably assumed that in this bioreactor, the
ammonium input would be removed only through collaborative autotrophic reactions
of nitrification and anammox with a very limited contribution by heterotrophic deni-
trification due to no organic carbon supply (34). In comparison with traditional
nitrification-denitrification nitrogen removal processes, the combination of nitrification
(i.e., to convert ammonium through nitrite to nitrate) and anammox (i.e., to convert
nitrite and ammonium into nitrogen gas and water, with small amounts of nitrate as a
by-product) reactions is more cost-effective (35) and has been increasingly used as a
green wastewater treatment process (36), although the system stability is sensitive to
oxygen supply (37). Specifically, various types of microorganisms (including AOB, NOB,
comammox bacteria, and anammox bacteria) associated with the efficiency of au-
totrophic nitrogen removal processes can simultaneously conduct aerobic and anaer-
obic nitrogen conversion reactions at a low dissolved-oxygen (DO) concentration (38).
Owing to potentially high variation in community membership, this system represents
a suitable model for investigating the succession of microbial communities after
disturbance and its impact on system performance.

In terms of system performance in an autotrophic bioreactor, previous studies
usually considered either the removal efficiency of the input ammonium (39, 40) or the
total nitrogen reduction between inflow and outflow (34, 41). In contrast, since we
aimed to reveal the effects of the bacterial community on bioreactor nitrogen removal
processes, here we defined the ratio of anammox-derived nitrogen gas (N2) versus
nitrification-derived nitrate (npNO3

�) from the fed ammonium as an index of system
performance. Here, we used the N2/npNO3

� ratio as an index, because enhancing the
conversion of ammonium to nitrogen gas without nitrate accumulation in the biore-
actor is the objective of the autotrophic nitrogen removal system (41). Instead of
focusing on the removal ratio of ammonium-nitrogen or total nitrogen, the N2/npNO3

�

ratio might better represent the variation and balance of autotrophic nitrogen removal
processes in the system, with the consideration of the dynamics of bacteria that are
responsible for those processes.

In the present case, we centered on the postdisturbance dynamics of bacterial
communities and the corresponding changes in nitrogen removal processes. To reveal
direct effects of the bacterial community on system performance, we conducted daily
sampling after the disturbance to generate fine-resolution time series data. We char-
acterized bacterial communities based on next-generation sequencing of the 16S rRNA
gene, which provides community profiles at a high taxonomic resolution. Two major
questions were addressed: (i) which bacterial taxa are present in the bioreactor and
how their relative abundances change over time, and (ii) how bacterial community
succession influences system performance, in the context of physicochemical condi-
tions in the bioreactor.
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RESULTS
Time series dynamics of bacterial communities. After the disturbance, the bac-

terial composition changed gradually through time, with communities sampled closer
together containing more similar composition profiles (Fig. S1). According to hierar-
chical clustering (Fig. S2), the sampled communities could be divided into three groups
from time points corresponding to three successional stages (Table S1): (i) the early
stage contained time points 1 to 13, (ii) the middle stage contained time points 14 to
34, and (iii) the last stage contained time points 35 to 56, with communities in the
middle stage showing higher daily variation (Fig. S3). A clear succession of bacterial
communities was reflected in the time series trajectory on the nonmetric multidimen-
sional scaling (NMDS) ordination (Fig. 1).

Focusing on temporal dynamics of the top 10 dominant bacterial genera (contain-
ing �70% of the abundance in total), distinct genera varied substantially in relative
abundance during succession (Fig. 2), with some being associated with earlier stages

FIG 1 Nonmetric multidimensional scaling (NMDS) ordination, showing the time series trajectory (from
1 to 56) of bacterial composition. Time points are divided into three successional stages, indicated by
different colors, based on the results of hierarchical clustering (Fig. S2).

FIG 2 Succession of the top 10 dominant bacterial genera. Temporal changes in abundance (the aggregation of all the ASVs affiliated with each genus) have
been standardized for each genus over time. The dashed lines separate data into the three successional stages, corresponding to the colors in Fig. 1.
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and others being associated with later stages (Table S2). Some of those genera served
as indicators when their occurrences or abundances reflected the characteristics of
particular successional stages (Table S2). For example, the top two dominant genera,
Nitrospira (28.75% on average; belonging to the phylum Nitrospirae) and “Candidatus
Jettenia” (21.44%; belonging to the phylum Planctomycetes), displayed opposite abun-
dance trends during the three stages of succession (Fig. 2 and Table S2). In addition,
Nitrosomonas, Denitratisoma, and Sideroxydans (all three genera belonging to the
phylum Proteobacteria) were found to be relatively abundant in the early stage,
whereas two uncultured genera (AKYH767 and OLB12) of the phylum Bacteroidetes
tended to increase in later time points (Fig. 2 and Table S2).

Moreover, bacterial community diversity in terms of species richness, Shannon’s
diversity, and Pielou’s evenness also showed temporal variation (Fig. S4). After the
disturbance, species richness gradually increased over time and showed relatively high
values in the final successional stage at time points 50 to 56. In contrast, Shannon’s
diversity and Pielou’s evenness tended to peak around the middle stage at time points
14 to 23 (Fig. S4 and Table S3a).

Time series dynamics of nitrogen removal processes. In the bioreactor, the
conversion of injected ammonium (NH4

�) and intermediate nitrite (NO2
�) was quick

and complete (below the detection limit in most sampling time points), resulting in
nitrate (NO3

�) and nitrogen gas (N2) as system end products (Fig. 3). Considering the
balance of bacterium-involving biochemical reactions in this autotrophic nitrogen
removal system, N2 was derived from anammox, while a major proportion (94% � 2%)
of NO3

� was derived from nitrification (referred to here as npNO3
�) (Fig. 3a). The

N2/npNO3
� ratio (a proxy of system performance) tended to decrease in the early stage

(lowest at time points 14 to 17) but recovered in the middle stage (highest at time
points 39 to 42) and then remained relatively constant in the last stage (Fig. 3b), with
lower dynamics in the last stage (Table S4).

System performance explained by different variables. Physicochemical variables
measured in this study, including temperature, pH, and DO concentration (Fig. S4 and

FIG 3 Time series of various types of nitrogen compounds (a) and a smoothing trend of N2/npNO3
� ratio using

a moving average of 6.25 day (i.e., hydraulic retention time) (b). Here, NH4
�, NO2

�, and NO3
� (npNO3

� � pNO3
�)

were measured values, while npNO3
� (a part of NO3

� derived from the nitrification reaction), apNO3
� (a part of

NO3
� derived from the anammox reaction), and N2 were calculated values. The dashed lines separate data into the

three successional stages, corresponding to the colors in Fig. 1.
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Table S3b), could not provide high predictive power (only 9.5%) for the N2/npNO3
�

ratio (Table 1). Rather, the proportion of variation that could be explained substantially
increased when bacterial community components were incorporated into the deter-
mination (Table 1). Specifically, integrating bacterial community evenness with physi-
cochemical variables could account for 21.8% of the explained variation. Moreover,
when bacterial community structure (i.e., NMDS scores) was taken into account, 28.4%
of the variation could be explained, which tripled the explained proportion compared
to that obtained by considering physicochemical variables per se. Moreover, it is worth
mentioning that the best Akaike information criterion (AIC) model suggested that
compared to considering the community structure variables per se (accounting for
21.5% of the explained variation), the adding of alpha-diversity variables did not
provide extra explained variance (Table 1), indicating the importance of focusing on the
dynamics of community members. Thus, subsequently, we evaluated the effects of
relative abundance changes in the top 10 dominant bacterial genera on nitrogen
removal efficiency. The results revealed that each individual genus accounted for 0.5%
to 9.3% of the variation in system performance, and up to 45.9% of the variation could
be explained when the relative abundances of multiple bacterial genera, which were
Denitratisoma and three uncultured candidate genera included in the best AIC model,
were incorporated into the determination (Table 2).

TABLE 1 Results of multivariate regression for explaining the variation of N2/npNO3
� ratio

in relation to predictor variables

Modela Adjusted R2b

Standardized regression coefficient for:

Temp DO Evenness NMDS1 NMDS2 NMDS3

Only ENV 0.095c 0.334c

Only DIV 0.036 �0.231
Only COM 0.215 �0.267 0.416
ENV�DIV 0.218 0.329 �0.244 �0.371
ENV�COM 0.284 0.349 �0.269 �0.178 0.347
DIV�COM 0.215 �0.267 0.416
ENV�DIV�COM 0.284 0.349 �0.269 �0.178 0.347
aFor each model, only results of the best model according to AIC scores are shown. ENV corresponds to
temperature, pH, and dissolved-oxygen (DO) concentration; DIV corresponds to richness, Shannon’s
diversity, and Pielou’s evenness; COM corresponds to the three main axes from the NMDS analysis.

bThe adjusted R2 value (after accounting for the degree of freedom) indicates the predictive power of the
best model.

cValues with significant P values (�0.05) are in bold.

TABLE 2 Results of univariate or multivariate regression models for explaining the
variation of N2/npNO3

� ratio, in relation to the relative abundance of top 10 dominant
bacterial genera

Model Predictor variable Coefficient Adjusted R2

Univariate Nitrospira �0.107 0.007
Candidatus Jettenia 0.166 0.009
Nitrosomonas �0.236 0.038
Groundwater metagenome 0.233 0.037
AKYH767 (uncultured) 0.332 0.093
SM1A02 (uncultured) �0.266 0.054
Denitratisoma 0.320 0.086
Sideroxydans 0.067 0.005
OLB12 (uncultured) �0.174 0.012
Bryobacter �0.081 0.007

Multivariatea Groundwater metagenome �0.368 0.459
AKYH767 (uncultured) 0.791
SM1A02 (uncultured) �0.164
Denitratisoma 0.868

aFor the multivariate regression model, only the best model with a subset of selected predictor variables
according to AIC scores is shown. Values with significant P values (�0.05) are in bold.
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Functional prediction of bacterial taxa. According to functional annotation, the
removal of the fed ammonium could be attributed mainly to the predominant genera
Nitrospira, “Candidatus Jettenia,” and Nitrosomonas (Table S5); these three genera
accounted for �30%, �20%, and �10% of the total abundance (Table S2). Nitrospira
could perform aerobic nitrite oxidation (as NOB) or complete oxidation of ammonium
to nitrate (comammox), “Candidatus Jettenia” could perform anaerobic ammonium
oxidation (anammox), and Nitrosomonas could perform aerobic ammonium oxidation
(as AOB). Moreover, two uncultured genera, SM1A02 and a groundwater metagenome,
were detected as potential anammox bacteria. In addition, Denitratisoma, as a denitri-
fying bacterium, together with other chemoheterotrophic bacteria might also contrib-
ute to nitrogen conversion processes in the bioreactor (Table S5).

DISCUSSION
The bacterial community shows successional dynamics after a disturbance.

After the disturbance, the bacterial community structure varied markedly over time
(Fig. 1). Specifically, individual bacterial taxa exhibited substantial variation in relative
abundance over time (Fig. 2) and showed distinct associations with different succes-
sional stages (Table S2). Even though the bioreactor was operated under controlled
physicochemical conditions, it is worth mentioning that the measured environmental
variables of the system fluctuated after the disturbance, especially for the DO in the
early stage (Fig. S4 and Table S3b). This fluctuation might be associated with the early
succession of bacterial communities, similar to the phenomenon reported in other
disturbance-induced community dynamics (42). In fact, �25% of the variation concern-
ing bacterial community compositions could be explained by the operational physico-
chemical parameters (Fig. S5). However, in the middle and later stages, besides envi-
ronmental variability as an external driver (43, 44), other factors, such as biotic
interactions or stochastic assembly, may also play important roles in shaping bacterial
community succession (44, 45). Regarding biotic interactions, previous studies have
suggested that microbial consortia establish interspecies communication and specific
partnerships to generate efficient metabolic processes (20). Therefore, in the middle
and later successional stages, even under relatively stable physicochemical conditions,
the bacterial community still varied with time; this is likely because bacterial taxa
continuously interact with each other, resulting in biological internally driven commu-
nity succession.

System performance varies corresponding to bacterial community succession.
The most important finding of this study is that when bacterial community components
are taken into account, the explained variation for the system nitrogen removal
processes substantially increases, compared to the analysis based on physicochemical
variables alone (Table 1). While associations between microbial community and biore-
actor performance have frequently been suggested (16, 19, 24, 29, 43), here we provide
for the first time statistically evaluated results supporting the concept that microbial
community succession exerts a significant influence on system functional processes of
the bioreactor, beyond the effects exerted by the operational physicochemical param-
eters. These microbe-system relationships are expected but have hitherto been difficult
to quantitatively evaluate.

In terms of the bacterial community effects, the community structure variables
accounted for more explained variance than the alpha-diversity variables (Tables 1),
and changes in the relative abundance of dominant bacterial genera could explain up
to 46% of the variation in nitrogen removal efficiency (Tables 2). These results support
the concept that monitoring the dynamics of community assembly (i.e., the presence
and abundance of specific taxa in a community), rather than focusing on alpha-diversity
index alone, would improve our ability to anticipate the variability of system functional
processes (12). In fact, we detected a negative relationship between community
evenness and system performance (Table 1), which is counterintuitive in light of typical
biodiversity effects on ecosystem functioning (46). Our results suggest that the de-
tected negative diversity-system relationship could be a consequence of the domi-
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nance effects of some species that contribute significantly to some specific functioning
of the system (47, 48). That is, high dominance levels of particular functional taxa would
lead to high system performance (i.e., nitrogen removal) and consequently result in the
negative diversity-system relationship. That might be the case in this CSTR system.

In this system, we found that the temporal changes of taxa’s relative abundances
would explain substantial variance in system performance (Table 2), reinforcing the
need to account for species identity effect (47, 48). The results of regression models
indicated that considering the succession of four specific bacterial taxa (including
Denitratisoma and three uncultured genera) would explain much more system variation
than focusing on any particular taxon (Table 2). Specifically, there was no significant
simple correlation between either Nitrospira (as NOB or comammox bacteria) or “Can-
didatus Jettenia” (as anammox bacteria) and the output of nitrate or nitrogen gas. This
may seem counterintuitive but, in fact, is to be expected in a working microbial system,
since diverse bacterial taxa with complex metabolic interactions should be involved in
the balance of nitrogen conversion processes (13). These findings suggest that domi-
nant taxa do not function alone; they might interact closely with other community
members to regulate the system processes as a whole (20, 21).

Diverse bacterial functional groups coexist in the bioreactor. Various types of
bacterial functional groups coexisted in the bioreactor, including taxa directly involved
in nitrogen conversion processes as well as a small proportion of chemoheterotrophic
bacteria (Table S5). Overall, anammox and nitrification were the two major processes in
this model system, as found in bioreactors with restricted aeration (36, 37).

For an autotrophic nitrogen removal bioreactor operated under conditions of low
DO concentration, the anammox process is expected to combine with a partial-
nitrification step (i.e., oxidizing ammonium to nitrite by AOB but not further oxidizing
nitrite to nitrate by NOB) to achieve the high system performance (41). Often, supplying
the oxygen at low levels is a practical measure to stimulate the growth of AOB over
NOB in the partial-nitrification process (49, 50), because the oxygen half-saturation
constant (KO) value of AOB is generally lower than that of NOB (51, 52). Paradoxically,
our findings showed that the genus Nitrospira (NOB or comammox bacteria) outper-
formed the genus Nitrosomonas (AOB) (Table S2) at a low DO concentration (�0.2 mg/
liter) in the present bench-scale bioreactor, resulting in complete nitrification and
accumulation of nitrate (Fig. 3). The counterexample found in this study may be
explained by the recent argument that the KO values for AOB and NOB vary greatly
from one case to the other (53, 54). Some studies have reported lower KO values for
NOB than for AOB in their systems (55, 56). Thus, actual maintenance of the partial
nitrification process has to be assessed case by case, particularly under different DO
conditions. Further research on the KO values of different types of AOB and NOB would
help design an autotrophic nitrogen removal system which enhances the conversion of
ammonium to nitrogen gas with minimal accumulation of nitrate.

Moreover, regarding the four bacterial genera with predictive power in the regres-
sion model (Table 2), two of them may function as anammox bacteria, while the other
two may conduct denitrification-related and/or chemoheterotrophic reactions (Ta-
ble S5). Although the heterotrophic reaction was not considered in this simplified
model of the autotrophic nitrogen removal process, the collective activity of the
heterotrophic bacteria may play important roles in influencing the system functioning
after the disturbance. How these heterotrophic bacteria contribute to system perfor-
mance and whether they interact with nitrifiers and anammox bacteria should be
studied in the future.

Conclusion. This study paid special attention to the postdisturbance dynamics of
bacterial communities and revealed the significant effects of bacterial community
components on bioreactor system performance. The present study is different from
previous studies in that it investigated the temporal dynamics of the bioreactor
microbial community by using highly resolved daily samples to quantify microbe-
system relationships. These fine-resolution time series data allowed an in-depth anal-
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ysis of system performance as a function of the microbial community in the context of
bioreactor operational conditions. The findings indicate that the temporal changes in
bacterial community components could explain much of the variation in bioreactor
functional processes beyond what could be predicted by operational physicochemical
parameters alone, highlighting the need to monitor the dynamics of microbial consor-
tia for understanding system performance of bioreactors. Validation of our findings by
additional studies using parallel bioreactors, multiple disturbances in one bioreactor,
and other types of disturbances would provide a more generalized conclusion.

MATERIALS AND METHODS
Continuously stirred tank reactor system. A benchtop bioreactor (PolyGerm 500; Micro-Giant

BioEngineering) containing a 4.5-liter working volume (in a 5-liter container) was initiated as a model
system for autotrophic nitrogen removal under oxygen-limiting conditions (at agitation speeds of
40 rpm) on 17 November 2016. The bioreactor was inoculated with sludge (1,300 mg/liter) obtained from
a membrane bioreactor for treatment of petrochemical wastewater and operated in CSTR mode at �30°C
in the dark, with a hydraulic retention time of 6.25 days. The input substrate was prepared in accordance
with the medium described previously (14), containing ammonium chloride (86.4 mg ammonium
nitrogen [NH4

�-N]/day) as the sole nitrogen source, sodium bicarbonate (40 mM) as the carbon source,
and a pH buffer (pH �7.6). Oxygen was periodically supplied to the bioreactor with a filtration-sterilized
airflow of 0.9 to 1.1 liters/day for maintaining low DO levels (�0.2 mg/liter). Physicochemical parameters
of the bioreactor, including temperature, pH, and DO, were monitored using on-line electrodes (Suntex
Instruments).

Artificial disturbance. Prior to this study, the bioreactor had been operated for 8 months and
displayed a high efficiency of converting input ammonium to nitrogen gas. On 10 July 2017, we created
an artificial disturbance of the microbial consortia of the bioreactor by homogenizing all types of
microbial consortia (including biofilms on the inner surface, stirrers, and pipelines as well as suspended
sludge) and resuspending the mixture in the solution. After the disturbance, fine-resolution daily time
series sampling was carried out for about 2 months (Table S1) to monitor the succession of bacterial
communities and corresponding system functional processes.

System performance monitoring. Concentrations of nitrogenous compounds, including ammo-
nium nitrogen (NH4

�-N), nitrite nitrogen (NO2
�-N), and nitrate-nitrogen (NO3

�-N), were analyzed daily
using Dionex ICS-1100 ion chromatographs (Thermo Fisher Scientific) with two columns: Dionex IonPac
CS12A RFIC (for ammonium) and Dionex IonPac AS9-HC (for nitrite and nitrate). In terms of biological
reactions, NH4

� is expected to be first oxidized to NO2
� by AOB and further oxidized to NO3

� by NOB
(referred to in total as nitrification) aerobically, while a proportion of NH4

� with NO2
� could be

anaerobically converted to N2 along with NO3
� as the by-product (about 0.26 mol of NO3

� per 1.02 mol
of N2) through the reaction of anammox bacteria (57). Consequently, the nitrogen loss in the effluent was
the expected nitrogen gas (N2) derived from the anammox, while NO3

� detected in the system was
further divided according to origin, nitrification-derived NO3

� (npNO3
�) and anammox-derived NO3

�

(apNO3
�), based on the stoichiometric balance (57).

Here, the N2/npNO3
� ratio was calculated as a proxy of system performance to indicate the efficiency

of anammox versus nitrification nitrogen removal processes. Because of the very slow growth of
autotrophic bacteria and the lack of organic carbon source, the nitrogen flux through biomass assimi-
lation and heterotrophic denitrification in this system could reasonably be ignored. The Mann-Kendall
trend test (58) was conducted to determine whether there was a monotonic upward or downward trend
in the N2/npNO3

� ratio corresponding to the successional stages of bacterial communities, and the slope
of the trend was determined with Sen’s slope (59), using the Kendall (60) and trend (61) packages in the
R platform (62).

Bacterial community monitoring. For each sampling, about 50 ml of mixed liquors was withdrawn
from the bioreactor using a syringe and then filtered through a 0.22-�m membrane to harvest microbial
cells. Total microbial DNA was extracted using a bead-beating method with the DNeasy PowerWater kit
(Qiagen), according to the manufacturer’s instructions. To determine bacterial community structure, the
V5-V6 region of the 16S rRNA gene was amplified using bacterial universal primers (787F and 1046R) (63)
and subjected to a 2 � 300-bp paired-end sequencing on the Illumina MiSeq platform. The specific
details regarding PCR amplification and sequencing preparation have been described previously (64). In
this study, archaeal community structure was not considered, as our preliminary findings (based on
quantitative PCR [qPCR] results; data not shown) suggested that there was a relatively low level of
archaeal DNA compared to bacterial DNA in our study system.

Processing of sequence data. To minimize sequencing errors, low-quality sequences (�Q30) were
trimmed out first with Trimmomatic 0.35 (65). Qualified reads were further processed using the DADA2
pipeline (66) for merging paired-end reads, removing chimeras, and inferring amplicon sequence variants
(ASVs), which are finer-resolution analogues of traditional operational taxonomic units (OTUs) but
without a fixed dissimilarity threshold (67, 68). Taxonomic groups (genus to phylum level) of ASVs were
assigned using BLAST (E value 	 10�6; identity � 0.9) against the SILVA 132 rRNA database (69).
Moreover, the FAPROTAX database (70) was used for mapping prokaryotic taxa with functions reported
in the literature.

Bacterial community structure. To reveal the dynamics of bacterial communities over sampling
time points, diversity and composition metrics were calculated. To fairly compare community structure
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across samples, original data were subsampled 100 times to equal sequencing depth (30,000 sequences
per sample) using the QIIME pipeline (71). For diversity metrics, species richness of each sample was
calculated as the number of ASVs detected, and Shannon’s diversity and Pielou’s evenness were
calculated to further weight the relative abundance patterns of ASVs (72). For composition metrics,
Bray-Curtis dissimilarity was calculated to quantify the pairwise difference between samples. Then,
nonmetric multidimensional scaling (NMDS) ordination was performed to visualize community succes-
sion over sampling time points. Moreover, hierarchical cluster analysis based on Ward’s method (mini-
mizing the total within-cluster variance) combined with elbow method (determining the optimal number
of clusters) was used to evaluate whether bacterial communities from the time-serial sampling points
would be separated into different successional stages. Furthermore, indicator value analysis (73) was
applied to reveal bacterial indicator taxa that showed preferences associated with a particular succes-
sional stage, using the point-biserial correlation coefficient as the association index (where �1 to �1
indicates a perfect negative to perfect positive association) (74). In addition, to estimate the influence of
operational physicochemical factors (including temperature, pH, and DO concentration) on the compo-
sitional variation of bacterial communities, distance-based redundancy analysis (75) was performed. The
statistical analyses described above were conducted using the vegan (76), factoextra (77), and indicspe-
cies (74) packages in the R platform (62).

Multivariate regression models. To detect the relationship between bacterial community structure
and bioreactor system processes, multivariate regression models were used to evaluate whether the
variation in bioreactor performance (using the N2/npNO3

� ratio as a proxy; here, N2 and npNO3
�

represent reaction end products from anammox and nitrification, respectively) could be explained by the
bacterial community dynamics, in the context of physicochemical conditions. In the models, three types
of predictor variables were considered, including physicochemical variables (temperature, pH, and DO
concentration), diversity variables (richness, Shannon’s diversity, and Pielou’s evenness), and composition
variables (specifically, NMDS1, NMDS2, and NMDS3 of the NMDS ordination were used to represent the
overall community structure, while the relative abundances of the top 10 genera were used to represent
the shift of taxonomic members). All variables were standardized to unit mean and variance prior to the
analysis. Multivariate regression models were performed considering either single or various types of
predictor variables, and the best model was selected according to the Akaike information criterion (AIC),
using the MASS (78) and car (79) packages in the R platform (62).

Data availability. Sequencing data have been deposited in the NCBI Sequence Read Archive (SRA)
under the accession number PRJNA543755.
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