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Inhalation toxicity of indoor 
air pollutants in Drosophila 
melanogaster using integrated 
transcriptomics and computational 
behavior analyses
Hyun-Jeong Eom1,*,†, Yuedan Liu2,*, Gyu-Suk Kwak3,‡, Muyoung Heo4, Kyung Seuk Song5, 
Yun Doo Chung6, Tae-Soo Chon3,‡ & Jinhee Choi1

We conducted an inhalation toxicity test on the alternative animal model, Drosophila melanogaster, 
to investigate potential hazards of indoor air pollution. The inhalation toxicity of toluene and 
formaldehyde was investigated using comprehensive transcriptomics and computational behavior 
analyses. The ingenuity pathway analysis (IPA) based on microarray data suggests the involvement of 
pathways related to immune response, stress response, and metabolism in formaldehyde and toluene 
exposure based on hub molecules. We conducted a toxicity test using mutants of the representative 
genes in these pathways to explore the toxicological consequences of alterations of these pathways. 
Furthermore, extensive computational behavior analysis showed that exposure to either toluene or 
formaldehyde reduced most of the behavioral parameters of both wild-type and mutants. Interestingly, 
behavioral alteration caused by toluene or formaldehyde exposure was most severe in the p38b mutant, 
suggesting that the defects in the p38 pathway underlie behavioral alteration. Overall, the results 
indicate that exposure to toluene and formaldehyde via inhalation causes severe toxicity in Drosophila, 
by inducing significant alterations in gene expression and behavior, suggesting that Drosophila can be 
used as a potential alternative model in inhalation toxicity screening.

Indoor air quality is a significant health and environmental concern because people in modern societies spend 
most of their time indoors, and air pollutants such as volatile organic compounds (VOCs) occur more frequently 
and at higher concentrations indoors than in the outdoor air. Indoor VOCs include highly toxic chemicals such 
as formaldehyde, acetaldehyde, benzene, toluene, and perchloroethylene. Among the VOCs, toluene and for-
maldehyde are frequently detected in workplaces and homes. Exposure to VOCs may result in a wide range of 
illnesses. Most research on indoor air pollution, however, has been based on the measurement of VOCs in resi-
dential indoor/outdoor environments and human samples. Inhalation toxicity studies using animal models are 
very limited and have been conducted mostly using rodent models1,2. However, it is difficult to use rodent models 
routinely in screening-level indoor air pollution monitoring.

1School of Environmental Engineering, University of Seoul, 163 Siripdaero, Dongdaemun-gu, Seoul 02504, 
Korea. 2The Key Laboratory of Water and Air Pollution Control of Guangdong Province, South China Institute of 
Environmental Sciences, the Ministry of Environment Protection of PRC, Guangzhou 510065, China. 3Department of 
Biological Sciences, Pusan National University, Busandaehak-ro 63 beon-gil, Geumjeoung-gu, Busan 46241, Korea. 
4Department of Physics, Pusan National University, 2 Busandaehak-ro 63 beon-gil, Geumjeoung-gu, Busan 46241, 
Korea. 5Toxicity Evaluation Center, Korea Conformity Laboratories (KCL), 8, Gaetbeol-ro 145beon-gil, Yeonsu-gu, 
Incheon, 21999, Korea. 6Department of Life Science, University of Seoul, 163 Siripdaero, Dongdaemun-gu, Seoul 
02504, Korea. †Present address: Center for Nanosafety Metrology, Korea Research Institute of Standards and Science 
(KRISS), 267 Gajeong-Ro, Yuseong-Gu, Daejeon 34113, Republic of Korea. ‡Present address: Ecology and Future 
Research Association, 21 Dusilro 45 beon-gil, Geumjeong-gu, Busan 46228, Korea. *These authors contributed 
equally to this work. Correspondence and requests for materials should be addressed to Y.D.C. (email: ydchung@
uos.ac.kr) or T.-S.C. (email: tschon@pusan.ac.kr) or J.C. (email: jinhchoi@uos.ac.kr)

Received: 13 October 2016

Accepted: 17 March 2017

Published: 16 June 2017

OPEN

mailto:ydchung@uos.ac.kr
mailto:ydchung@uos.ac.kr
mailto:tschon@pusan.ac.kr
mailto:jinhchoi@uos.ac.kr


www.nature.com/scientificreports/

2Scientific RepoRts | 7:46473 | DOI: 10.1038/srep46473

The fruit fly Drosophila melanogaster is one of the most extensively studied alternative model organisms. The 
Drosophila model at various development stages, such as embryo, larva, and adult fly, has been used to test the 
toxicity of chemicals, including heavy metals, industrial VOCs, and anesthetic gases3,4. The fly model has advan-
tages over other animal models, particularly in air pollution monitoring. In combination with behavior analysis 
and airborne agents, fruit flies have been used to explore the mechanisms5 and genetics underlying the suscep-
tibility to ethanol intoxication, to quantify the changes in the metabolic rate during exposure to components of 
gasoline6, to document the olfactory avoidance behavior7, and to identify neurotransmitter pathways affected by 
volatile fungal toxins8.

The behavior depends upon the integrated processes at the subcellular, cellular, and organism level, and thus, 
is susceptible to disruption by a broad spectrum of chemicals and environmental stresses. Therefore, behavioral 
changes are considered an important indicator of chemical toxicity because it reflects the integrated physiological 
alteration. Behavioral changes in small animals (i.e., water flea, Daphnia magna) due to chemical and/or environ-
mental stresses have been investigated in environmental toxicity tests in continuous water quality monitoring9,10.

In the present study, the inhalation toxicity of toluene and formaldehyde was investigated via transcriptomics 
and computational behavior analyses using the alternative model, Drosophila, to identify potential hazards of 
major indoor air pollutants. All toxicity tests were conducted in an inhalation chamber because inhalation is the 
main route of absorption of indoor air pollutants. Microarrays and ingenuity pathway analysis (IPA) were used 
to obtain insights into genome-wide responses to toluene and formaldehyde in Drosophila. To investigate the 
toxicological consequences of gene expression changes, we then analyzed the susceptibility of mutant flies that are 
defective in pathways overrepresented based on analysis of the transcriptome in response to toluene and formal-
dehyde exposure. These pathways include immune response, stress response, and metabolism. Finally, extensive 
computational behavior analysis was performed on wild-type, and p38b and p53 mutant flies selected based on 
the transcriptome analysis and susceptibility test. Understanding the relationship between gene expression and 
behavior in response to VOC toxicity in Drosophila will help to determine the likely hazards of indoor air pollut-
ants and to establish the potential of Drosophila as an alternative model for inhalation toxicity screening.

Results and Discussion
Inhalation toxicity of toluene and formaldehyde in Drosophila. An inhalation exposure system, 
which utilizes inhalation as the main route of exposure, is used to test the toxicity of chemicals. Most inhalation 
toxicity studies have been conducted on rodent models. In this study, we applied the system to an alternative 
model species, Drosophila, which represents an excellent model system to study the molecular mechanisms of 
responses to atmospheric pollutants. Although flies do not have lungs, their airway systems have enough sim-
ilarities with the respiratory system of mammals to be useful model organisms for inhalation toxicity tests11,12.

To identify the potential hazards of toluene and formaldehyde, we first conducted a lethal toxicity test. 
Considering that the primary route of exposure to VOCs is inhalation, Drosophila was exposed to 1, 5, and 
10 ppm toluene and 0.1, 0.5, and 1.0 ppm formaldehyde in an atmospheric chamber for 72 h (see Materials and 
Methods). The temperature and humidity in the inhalation chamber were within the range of the pertinent OECD 
test guidelines. The inhalation chamber system is presented in Supplementary Figure S1. VOC concentrations in 
each exposure chamber were maintained within the range of target concentrations throughout the experiment 
(Supplementary Table S1). The survival rate of wild-type flies decreased by 20% and 10% when exposed to toluene 
and formaldehyde, respectively (Fig. 1), suggesting that the exposure concentrations had limited organism-level 
effects.

Transcriptomics response of Drosophila to toluene and formaldehyde. Transcriptome analysis 
was conducted under sublethal exposure conditions (i.e., 1,000 μ g/m3 for toluene and 100 μ g/m3 for formal-
dehyde) to understand the genome-wide effects of toluene and formaldehyde inhalation on the gene expres-
sion of Drosophila. Analysis of the microarray results using a 2-fold change as the cutoff value indicated that 
a total of 37 and 130 genes were differentially expressed upon toluene and formaldehyde exposure, respec-
tively (Supplementary Table S2, GSE24845). Exposure to formaldehyde altered more genes than to toluene. 

Figure 1. The survival test was conducted on the wild type exposed to toluene (A) and formaldehyde (B). The 
results were expressed as mean values compared with the control sample (untreated sample; control =  1, n =  3, 
20 flies per replicate; mean ±  standard error of the mean). The statistical analysis was conducted using two-
tailed t-test, *p <  0.05.
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Supplementary Figure S2 presents the results of the hierarchical clustering analysis. The expression pattern of 
toluene exposure clustered with that of the control sample, while formaldehyde showed a distinct expression 
pattern. Among the differentially expressed genes (DEGs), 86.5% (32/37) and 96.9% (126/130) were upregulated, 
while only 5 and 4 genes were downregulated by toluene and formaldehyde, respectively (Table S2). Interestingly, 
many immune-related genes, such as Attacin (AttA, AttC), Diptericin-like protein (DptB), Metchnikowin (Mtk), 
and Turandot (TotA, TotC, TotM, TotX) genes, were found in the DEGs of the flies that inhaled toluene and for-
maldehyde. The subsequent gene ontology (GO) analysis on the DEGs revealed that the immune response was 
one of the most significantly overrepresented GO terms for both toluene and formaldehyde exposure (Table 1A; 
see Supplementary Table S3 for the full set of GO categories). Considering that immune response organs express 
pathogen recognition proteins (e.g., peptidoglycan recognition proteins13) and antimicrobial proteins (e.g., 
Drosomycin) in response to pathogens14, it is interesting that these genes were identified in the DEG list from 
the microarray data for both chemicals (Supplementary Table S2). This result suggests that both toluene and 
formaldehyde induce immune response, even in the absence of pathogens. This result is also consistent with 
the findings of several previous studies, which showed that formaldehyde toxicity could influence the immune 
system15–17. In humans, for instance, occupational formaldehyde exposure was found to decrease white blood 
cell count15. Long-term exposure to formaldehyde at higher concentrations than the threshold limit (0.08 ppm) 
in mice enhanced allergen-specific immunoglobulin E (IgE) responses and NK (Natural Killer) cell activity in 
peripheral blood cells16. Inhalation of formaldehyde has been found to decrease secondary immune response 
in rats17. Immunotoxicity caused by toluene inhalation has also been documented. In an allergic mouse model, 
long-term exposure (6 weeks) to low-level toluene might dysregulate the allergic responses to ovalbumin18. 
Several reports by Fujimaki and colleagues revealed that long-term exposure to low-level toluene could disturb 
the neuroimmune crosstalk19. A genome-wide gene expression profile study on Drosophila determined several 
genes related to defense response, biological regulation, cell cycle, metabolic process, and circadian rhythms that 
were affected by toluene exposure20.

Another interesting GO term overrepresented in the DEGs by formaldehyde exposure is the neurological 
system process. The neurotoxicity caused by formaldehyde inhalation has been demonstrated in epidemiological 
and toxicological studies21. For instance, Tang et al.22 reported that formaldehyde induces neurotoxicity in PC12 
cells by decreasing endogenous H2S generation, which protects nerve cells against oxidative stress. In animal 
studies, acute exposure of male rats to 5 ppm formaldehyde decreased the motor activity during exposure and 
increased the levels of dopamine, serotonin, and enzymatic metabolites in the hypothalamus23. In another study, 
the exposure to 1–10 ppm formaldehyde induced avoidance in mice24. Another study showed that exposure of 
rats to 2.6 or 4.6 ppm formaldehyde caused behavioral abnormalities observed in a maze task; the data also indi-
cated possible neurotoxicity of formaldehyde exposure25. Some human studies have reported persistent central 
nervous system (CNS) symptoms and impairment resulting from occupational or non-occupational exposure to 
formaldehyde26,27. In addition, in humans, exposure to formaldehyde together with other solvents such as xylene 
and toluene can have depressant effects on CNS functions, causing epileptiform seizures28. However, neurotoxic 
effects of formaldehyde inhalation in Drosophila have not been reported yet. The results of our microarray exper-
iment indicated that the Drosophila nervous system might also be affected by formaldehyde inhalation.

We conducted a Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis to obtain insights into the bio-
logical processes affected by formaldehyde and toluene inhalation (Table 1B). The results revealed that toluene 

Treatment Term Count % P value

(A) Gene Ontology

Toluene

Innate immune response 6 8.6 1.79E-05

Proteolysis 9 12.9 0.00371

Response to oxidative stress 3 4.3 0.02065

Antibacterial humoral response 5 50.0 5.30E-10

Formaldehyde

Innate immune response 22 11.2 1.53E-21

Immune response 26 13.2 1.20E-20

Antibacterial humoral response 26 13.2 1.20E-20

Toll-signaling pathway 7 3.6 1.51E-06

Proteolysis 23 11.7 7.27E-05

Response to oxidative stress 4 2.0 0.04026

Neurological system process 4 18.2 0.01989

(B) KEGG analysis

Toluene

Metabolism of xenobiotics by cytochrome P450 4 5.71 0.00398

Drug metabolism 4 5.71 0.00435

Starch and sucrose metabolism 3 4.29 0.03896

Formaldehyde
Lysosome 4 2.030 0.05112

Amino sugar and nucleotide sugar metabolism 3 1.523 0.08938

Table 1.  The representative biological process of DEGs in Drosophila was generated by Gene ontology 
(A) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway (B) analysis under toluene and 
formaldehyde exposure.
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exposure led to an alteration in xenobiotic metabolism by cytochrome P450 (CYP450), drug metabolism, and 
starch and sucrose metabolism. Several members of the CYP450 superfamily are important for the metabolism of 
xenobiotics29,30, and their expression is also induced by toluene exposure31–33. Of them, the expression of CYP2E1, 
which is the primary enzyme in the hydroxylation of toluene30, increased in rat liver and peripheral lymphocytes 
after toluene exposure31. Similarly, a human study showed an increase in CYP2E1 in peripheral lymphocytes 
due to occupational toluene exposure32. Toluene exposure also induced other isoenzymes, including CYP1A1/2, 
CYP2B1/2, and CYP3A1 in rat liver33. Thus, our findings are consistent with those of previous studies, suggesting 
that toluene metabolism via CYP450 is conserved in Drosophila, reinforcing the importance of CYP450. KEGG 
pathway analysis for formaldehyde exposure indicated a significant change in the lysosome process, involved in 
innate immune responses and amino sugar and nucleotide sugar metabolism, which is a part of the carbohydrate 
metabolism for regulating protein synthesis. These findings suggest that active protein synthesis is required for 
the immune system to function in the defense against inhaled formaldehyde.

Transcriptomics profiling generates a large amount of information, with no comprehensive mechanistic 
understanding provided, which makes it difficult to interpret the data. We thus performed pathway analysis using 
IPA to put the gene expression data in a relevant biological context. IPA revealed that nuclear factor-kappaB 
(NF-κ b), Phosphoinositide 3-kinase (PI3K) and mitogen-activated protein kinases p38 (p38 MAPK) are hub 
molecules in formaldehyde-induced toxicity, whereas MTTP and beta-estradiol are highly linked to toluene 
exposure (Fig. 2). In mammals, MTTP is not only essential for the assembly and secretion of apolipoprotein B 
(apoB)-lipoprotein, but is also involved in the immune response via its participation in the biosynthesis of CD1 
proteins. The main function of CD1 proteins is to provide foreign lipids with certain T lymphocytes that affect 
both innate and adaptive immune responses34. The Drosophila MTTP protein is also involved in the secretion 
of the apoB-family lipoprotein Lipphorin (LPP), which is the major hemolymph lipid carrier35. Although an 
immune-related function of MTTP has never been reported in Drosophila, an unexpected but interesting find-
ing revealed a crucial role of MTTP in tracheal development, probably through the regulation of de novo apical 
membrane delivery to the existing lumen, instead of its well-known function of lipoprotein secretion36. Thus, 
MTTP might participate in the maintenance or protection of membrane integrity against inhaled toluene in 
tracheal epithelia. Among the formaldehyde-induced genes, p38 and NF-κb are the most interconnected nodes 
of the network (Fig. 2B). In agreement with the GO analysis, the clustering of the biological process indicates the 
involvement of the immune response and toll-signaling pathway in formaldehyde-induced response (Table 1). 
Considering that the MAPK pathways, which include p38 and JNK, play pivotal roles in both stress response and 
innate immune response in Drosophila37, our findings suggest that formaldehyde inhalation induces crosstalk 
between stress response and innate immunity in Drosophila.

Susceptibility of mutant flies to toluene and formaldehyde exposure. To further investigate the 
toxicological consequences of altered gene expression on the immune response, stress response, and metabo-
lism pathways, the effects of toluene and formaldehyde on living flies of representative mutant strains of each 
biological pathway were examined (Supplementary Table S4). Mutant flies were exposed to toluene and for-
maldehyde under the same conditions as the wild-type flies, and their survival rates were compared (Fig. 3). 
Counter-intuitively, the immune response-related mutants appeared to be unaffected by toluene and formal-
dehyde. The stress response-related mutants did not show significant alterations as compared to the wild-type 
flies, except for a few mutant strains. A concentration-dependent decrease in the survival rate of p38b mutants 
caused by toluene exposure was observed. Another alteration was determined in mekk1 mutants; their survival 
rate decreased by more than 20% upon formaldehyde exposure. Mutants of xenobiotic metabolism did not show 
any significant alterations as compared to the wild-type, except for the cyp4e2 mutant with significantly increased 
mortality due to formaldehyde exposure. In summary, we did not detect any significantly increased susceptibility 
to either toluene or formaldehyde in immune response mutants; however, some mutants of MAPK-signaling 

Figure 2. Ingenuity pathway analysis (IPA) network. The IPA was performed on DEGs to determine the 
toluene (A) and formaldehyde (B) exposure. A cutoff value of 1.5-fold was used for IPA.
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(p38b, mekk1) and xenobiotic metabolism (cyp4e2) were considerably more sensitive to toluene or formaldehyde 
than the wild-type flies. However, notably, some stocks are homozygous with respect to the mutant allele and thus, 
are bona fide loss-of-function mutants, whereas others are either heterozygous or the function of the affected 
gene has not yet been proven to be defective (Supplementary Table S4). Therefore, even if the sensitivity of the 
mutant stocks to VOCs does not significantly change, this does not necessarily mean that corresponding genes 
are not involved in the toxicity of VOCs. Another point to note is that we used mutant stocks without isogeniza-
tion because this was a pilot study to test the Drosophila model as an indoor air pollutant monitoring system and 
the resources were quite limited, hindering the isogenization of all strains. Therefore, the contribution of genetic 
background to the results cannot be ruled out.

Effect of toluene and formaldehyde on the Drosophila p38b and p53 gene expressions. The 
neurotoxic effects of toluene and formaldehyde have been widely reported in mammalian model organisms and 
epidemiological studies19,26,28,38. However, our transcriptomics analysis failed to provide direct evidence of the 
neurotoxic effects of formaldehyde or toluene in Drosophila. Nonetheless, considering that both formaldehyde 
and toluene can induce genotoxicity and cellular stress response, mediated by p53 and p38 MAPK, respectively, 
and these signaling pathways can induce cytotoxicity, the two signaling pathways might be involved in the 
neurotoxic effects of both formaldehyde and toluene. Indeed, several studies have demonstrated that the p53 
and p38 MAPK pathways are involved in neurodegenerative diseases and neural plasticity39,40. In addition, our 
transcriptomics analysis and susceptibility test consistently suggested the involvement of the p53 pathway in 
formaldehyde-induced responses at the cellular and the organism level. Therefore, to examine the neurotoxic 
effects of formaldehyde and toluene inhalation in Drosophila, we investigated the p53 and p38 pathways in more 
detail using behavioral analysis.

We checked the expression levels of p38b and p53 before behavior analysis. Although the two genes them-
selves were not detected as DEGs in our microarray experiments, they might both be induced by VOCs, because 
the GO and KEGG pathway analyses (Supplementary Table S3) and IPA (Fig. 2) implied an overrepresenta-
tion of pathways related to them. Therefore, we examined whether both toluene and formaldehyde could 
induce their expression upon higher exposure concentrations than those used in the microarray experiments 
(Supplementary Fig. S3). The results showed that the expression levels of both p38b and p53 were significantly 
elevated by 0.5 ppm formaldehyde (Supplementary Fig. S3B). Toluene also induced both genes, although it was 
less effective than formaldehyde (Supplementary Fig. S3A). These results suggest that the p38b and p53 genes can 
indeed be induced by both toluene and formaldehyde in Drosophila.

Behavioral effect of toluene and formaldehyde: Movement parameters. To investigate whether 
inhalation of formaldehyde or toluene causes a neurotoxic effect in Drosophila and if the effect is mediated by p38 
or p53 pathways, we systematically analyzed the behavioral responses of mutant flies, defective in p38b and p53, 
to VOCs. The movement tracks of the flies were monitored before and after the exposure to toluene and formal-
dehyde in the behavior analysis. Parameters were selected to characterize the shapes of instantaneous movements 
responding to chemical treatments. The speed (mm/s, movement distance divided by the observation time), 
acceleration (mm/s2, speed difference divided by time), and stop duration (total duration without movement) 
represent the general linear activity of the test organisms; less than 1/10 of the body size (0.1 mm) (see Materials 
and Methods). The locomotory rate (mm/s) was additionally measured to show how fast the test organisms move. 
The speed indicates the average movement distance during the total observation time, while the locomotory rate 

Figure 3. The survival test was conducted on mutants with respect to immune response, stress response, and 
xenobiotic metabolism exposed to toluene (A) and formaldehyde (B). The results were expressed as mean values 
compared with the control sample (untreated sample; control =  1, n =  3, 20 flies per replicate; mean ±  standard 
error of the mean). The statistical analysis was conducted using two-tailed t-test, *p <  0.05.
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is the average movement distance when the organisms move, excluding the total duration of the stop time. The 
meander (rad/mm, angular change divided by time) was added to reflect the turning behavior of the test organ-
isms. We also included the slipping number (n, the total number of slips), a typical response behavior, because 
flies slipped down toward the ground in the vertical arena in some treatment cases (see Materials and Methods).

Before treatments, the p38b mutant was most active compared to the other strains, wild-type and p53 mutant 
flies. The speed, acceleration, and locomotory rate were generally the highest in the p38b mutant (p <  0.05, mul-
tiple comparison; compare the bars indicated by the black dotted arrows in Fig. 4A–C) before exposure to the 
chemicals. The mutant p38b showed the highest speed with 4.22 ±  0.41 mm/s, whereas the wild-type and p53 
mutant flies moved slowly, with speeds of 3.52 ±  0.40 mm/s and 2.72 ±  0.25 mm/s, respectively (Fig. 4A). In con-
trast, the stop duration was the longest in the p53 mutant compared to that of wild-type and p38 mutant flies 

Figure 4. Mean and standard deviation of the movement parameters of different strains of Drosophila after 
treatment with toluene and formaldehyde (n = 15). Speed (A), Acceleration (B), Locomotory rate (C), Stop 
duration (D), Meander (E), Slipping number (F), and Fractal dimension of movement tracks (G). C: Control; 
T: Toluene; F: Formaldehyde. Different letters at the top of the bars indicate a significant difference between the 
chemicals within the same strain and different Roman numerals at the bottom of the bars shows a significant 
difference between the strains for the same chemical (p <  0.05) according to the multiple comparison tests.
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(compare the bars indicated by blue dotted arrows in Fig. 4D). The meander and slipping number of the strains 
were not much different before exposure to the chemicals (Fig. 4E and F).

The parameters related to linear activity, such as speed, acceleration, and locomotory rate, decreased signif-
icantly in all strains after chemical treatment (Fig. 4A–C). In contrast, parameters more delicately representing 
the behavior, such as meander, stop duration, and slipping number strongly increased in all experimental groups 
after formaldehyde exposure (Fig. 4D–F). The speed of wild-type flies, for instance, decreased to 2.66 ±  0.22 mm/s 
after formaldehyde exposure (from 3.52 ±  0.40 mm/s), whereas it decreased to 3.12 ±  0.27 mm/s after exposure to 
toluene (p <  0.05, multiple comparison).

The p38b mutant was more sensitive to the chemicals than the other strains. The speed of p38b mutant 
(4.22 ±  0.41 mm/s) greatly decreased after VOC exposure: 2.66 ±  0.26 mm/s and 2.18 ±  0.18 mm/s for toluene 
and formaldehyde, respectively (p <  0.05, multiple comparisons; Fig. 4A). The two-factor analysis of the variance 
showed the significance of the variation in speed values between the strains (DF =  2, p <  0.001 with F =  965.8), 
between VOCs (DF =  2, p <  0.001 with F =  21,352), and due to interactions between the strain and VOC (DF =  4, 
p <  0.001 with F =  549.0).

The speed and locomotory rate depend on both the chemicals and the strains. While the p38b mutant showed 
the highest locomotory rate (p <  0.05; multiple comparison; black dotted arrows in Fig. 4C), the stop duration 
was significantly shorter in the p38b mutant than in the p53 mutant before exposure to the chemicals (p <  0.05; 
multiple comparison; blue dotted arrows in Fig. 4D). Since p38b mutant had the highest values of speed and 
acceleration (black dotted arrows in Fig. 4A,B), it was, in general, more active than the p53 mutant. However, 
the locomotory rate of the p53 mutant was more strongly affected by the treatment (red arrow β  in Fig. 4C) than 
that of the p38b mutant (red arrow α  in Fig. 4C). Toluene was more effective in decreasing the locomotory rate 
of the p53 mutant than formaldehyde (p <  0.05; multiple comparison). In contrast, the stop duration of the p38b 
mutant was more strongly affected (red arrow γ  in Fig. 4D) than that of the p53 mutant (red arrow δ  in Fig. 4D). 
In general, the results indicate varying degrees of effects of different chemicals on distinct behavior parameters 
of different strains. The stop duration of p38b mutant was a more sensitive parameter affected by the chemicals, 
whereas the locomotory rate was more sensitive for the p53 mutant. The underlying mechanisms through which 
the p38 and p53 pathways regulate the specific behavior parameters depend on the type of inhaled chemicals; 
however, to the best our knowledge, these mechanisms have not yet been clearly identified to date.

We also analyzed the slipping number, which is defined as the number of flies that slip per 30 s. The slipping 
number was dependent on the strains and the chemicals (Fig. 4F). The slipping number of the wild-type flies was 
0.85 ±  0.10 (during a 5-s period) before VOC exposure but increased to 1.23 ±  0.13 and 2.91 ±  0.28 after exposure 
to toluene and formaldehyde, respectively. This indicated that the nervous system controlling the coordinated 
movement was affected by VOC exposure. The increase in the slipping number was most notable in the p38b 
mutant when treated with formaldehyde (from 0.94 ±  0.09 to 4.03 ±  0.48). Toluene also increased the slipping 
number to 2.05 ±  0.25 in the p38b mutant. However, the slipping number of the p53 mutant was not very sen-
sitive to VOCs compared to that of the p38b mutant; it increased from 1.04 ±  0.11 to 1.83 ±  0.20 (toluene) and 
to 2.09 ±  0.20 (formaldehyde). This suggests that the p38 signaling pathway might be involved in VOC-induced 
neurotoxicity that affects the coordinated behavior.

The general complexity of the movement data was further measured using the fractal dimension based on 
the box-counting method41 (Fig. 4G; see Materials and Methods). Fractal dimensions are widely used to meas-
ure complexities that appear in natural patterns with self-similarity properties (e.g., snowflakes, coastal lines). 
While the dimensions of area and volume are integers, 2 and 3, respectively, the fractal dimensions are fractional 
numbers, which originate from the uneven usage (or filling) of space. We observed the movement tracks of the 
test organisms in two dimensions. If the fractal dimension of the trace is close to two, it means that the fly evenly 
searches and passes by all of the space. However, a fractal dimension < 2 indicates that the movement pattern of 
the fly covers certain positions. A fractal dimension close to one implies that the movements of the fly are likely 
linear. The fractal dimension was higher in wild-type (1.52) and p38b mutant (1.67) compared with p53 mutant 
(1.27) before treatment, while it decreased substantially in wild-type (1.21) and p38b mutant (1.09) and slightly in 
p53 mutant (1.08) after treatment with formaldehyde. The parameter was more strongly affected by formaldehyde 
(1.08–1.21) than by toluene (1.19–1.22; Fig. 4G). In general, a decrease in the complexity of the movement data 
was observed after treatment. The general response patterns of the fractal dimension are similar to those of the 
speed and acceleration (Fig. 4A,B).

The Pearson correlation coefficients of the parameters are provided in Supplementary Table S5. Significant 
positive correlations were observed between speed, acceleration, and locomotory rate, while speed was strongly 
negatively-correlated with stop duration. The fractal dimension showed a strong positive correlation with speed 
(r =  0.96) and a negative correlation with stop duration (r =  − 0.90). The meander was highly correlated with 
the slipping number (r = 0.96) because inconsistent movement due to the sharp drop caused sudden increase in 
slipping distance, resulting in the high level of angle change per unit time in calculating meander (rad/mm). The 
locomotory rate showed a stronger positive correlation with acceleration (r =  0.90) than speed (r =  0.75), while 
stop duration had stronger negative correlation with speed (r =  − 0.95) than with acceleration (r =  − 0.74).

Most parameters used in this study mainly represent the instantaneous movements, except for the fractal 
dimension. We focused on the instantaneous behavior of the test organisms over relatively short distances in a 
confined cage (Fig. 4). Either the field or an in situ small-sized arena in the laboratory would be more feasible for 
monitoring the diverse behavior patterns in practice. We also demonstrated that subtle behavior differences in 
response to different treatments could be reliably identified, providing a useful system to infer the physiological 
responses through behavior analysis.

In general, the results indicated that toluene and formaldehyde might lead to reduced activity of flies, at the 
same time causing higher turning tendencies (i.e., meander) after treatment. A similar finding has been recently 
reported, where flies that inhaled toluene showed sedation in a dose-dependent manner42. However, the potency 
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of toluene is somewhat different between the two studies; no notable change in activity was observed at 100 ppm 
in the study of Tatum-Gibbs and colleagues42, whereas we detected changes in all behavior parameters at much 
lower concentrations of toluene. This discrepancy might be caused by the differences in the measuring methods. 
In the study of Tatum-Gibbs and colleagues, the temporal resolution of the move count was 10 min, much longer 
than the time window of 0.25 s used in this study. In the present study, the p38b mutant showed a much higher 
susceptibility to formaldehyde, which implied that the p38 signaling pathway might be involved in the cellular 
mechanisms underlying the formaldehyde-induced neurotoxicity.

Behavioral effect of toluene and formaldehyde: Duration of stay in defined areas. In addition 
to movement parameters, we also analyzed another behavior parameter that might be specifically related to the 
effect of VOCs; the duration of stay in defined areas in 30 s. The total duration of stay in a specific area in the arena 
also varied with the strain type and VOCs (Supplementary Fig. S4). The p53 mutant spent less time in the top area 
of the arena than both wild-type and p38b mutant flies before exposure, implying a less active negative-geotactic 
behavior (Supplementary Fig. S4A). Exposure to both VOCs increased the duration of stay in the top area for all 
three strains. The p38b mutant showed the highest value of the slipping number and the duration of stay in the top 
area after exposure to VOCs indicating that the p38b mutant slipped frequently but showed very active negative 
geotaxis and climbed up the vertical arena in response to VOC exposure. The duration of stay in the bottom area 
showed a reverse pattern; all three strains of flies spent less time in the bottom area after VOC treatment than 
before the treatment (Supplementary Fig. S4B). The duration of stay in the food area was relatively shorter than 
that in the top or the bottom area (Supplementary Fig. S4C). When treated with VOCs, however, both p38b and 
p53 mutants spent less time in the food area than did wild-type, although the duration decreased for all three 
strains.

Behavior effect of toluene and formaldehyde: Self-organizing map (SOM) analysis. Movement 
tracks were further patterned by self-organizing map (SOM) analysis based on the six input parameters represent-
ing the instantaneous movement behavior after exposure to VOCs (see Materials and Methods; Fig. 5). The fractal 
dimension was not included as input data because that parameter reflects the general complexity of the movement 
data during a longer observation period (30 s). The movement segments were grouped into nine clusters (Fig. 5A) 
based on the dendrogram of the Ward’s linkage method (Fig. 5B)43. In general, a vertical gradient was observed, 
indicating higher activity at the upper area and lower activity in the bottom area, as shown in the component 
plane visualization of the SOM (Fig. 5C). The upper clusters were subdivided into three clusters (clusters 1, 2, and 
3) to show linear and round movements with high speed. Segments representing the stop or minimum movement 
were broadly observed in cluster 9 at the bottom of the SOM (Fig. 5A). Movements with zigzag patterns were 
observed in the middle area of the SOM including clusters 5, 6, and 7. The movement patterns shown in Fig. 5A 
were typical examples of the parameter profiles displayed in Fig. 5C.

We then analyzed the characteristics of each cluster shown in the dendrogram for all strains and chemicals 
(Fig. 6). The nine clusters of the SOM were grouped into four general movement patterns: 1) “P1 +  P2 +  P3” 
for active movement either “from stop to movement” or “from movement to stop”; 2) “P4” for circling; 3) 
“P5 +  P6 +  P7” for zigzag; and 4) “P8 +  P9” for the least movement or stop. The percentages of the grouped pat-
terns are shown in Fig. 6 (see Supplementary Fig. S5 for the percentages of all nine movement patterns for all 
combinations of strains and treatments).

The active movements represented by “P1 +  P2 +  P3” were dominant before treatment, accounting for more 
than 40% of the observation time (6 h) for all strains (Fig. 6A). Circling was observed the least and accounted for 
slightly more than 10% of the observation time (6 h; Fig. 6B). The zigzag pattern and the least movement/stop were 
similar and accounted for 21–26% of the observation time (Fig. 6C,D). The percentages of the movement patterns 
did not vary significantly between the strains before treatment. Significant differences, however, were observed 
after treatment. The group “P8 +  P9” indicated that the stop/least movement increased after treatment with both 
formaldehyde and toluene for all strains (Fig. 6D) with the exception of formaldehyde-treated p53 mutants for 
which the increase was not evident (arrow in Fig. 6D). The active movements represented by “P1 +  P2 +  P3” 
decreased substantially after treatment with the same exception: the active movement pattern remained the same 
after the treatment of p53 mutants with formaldehyde (arrow in Fig. 6A). Similarly, the circling pattern “P4” was 
uniquely present at a high level in the p53 mutant after treatment with formaldehyde, whereas the pattern was 
either at the same level or slightly decreased for all strains treated with toluene and for formaldehyde-treated p38b 
mutant (arrow in Fig. 6B). The zigzag movement increased after treatment, except for the formaldehyde-treated 
p53 mutant (arrow in Fig. 6D). In summary, the formaldehyde treatment of p53 mutants differently affected 
their response mechanisms, whereas other cases generally showed similar behavior patterns. Formaldehyde and 
toluene had opposite effects on the behavior. Generally, the percentages of “P1 +  P2 +  P3” and “P4” were higher, 
while those of “P5 +  P6 +  P7” and “P8 +  P9” were lower in formaldehyde-treated groups and reverse patterns 
were observed in toluene-treated groups (Fig. 6).

Our SOM analysis helped to discriminate subtle behavior differences between the strains and treated chemi-
cals and categorize them accordingly, although the precise discrimination and categorization were not successful 
because of the complexity of the movement behavior. Since the behavior is an activity of the nervous system, 
having changed several behavioral parameters, toluene and formaldehyde affected the function or the structure 
(or both) of the nervous system. However, molecular mechanisms underlying the disruption of neural functions 
in response to VOC exposure are still unclear.

Inhalation toxicity screening in Drosophila. We evaluated Drosophila as an alternative model for inha-
lation toxicity screening. The microarray analysis showed that inhalation of both toluene (1,000 μ g/m3) and for-
maldehyde (100 μ g/m3) for 24 h was sufficient to induce genome-wide gene expression changes in Drosophila. 
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The GO and pathway analyses for DEGs identified GO terms or pathways similar to those previously reported in 
a murine model including GO terms of immune response, xenobiotic metabolism, neurological system process, 
and pathways related to the cellular stress response such as NF-κ b, PI3K, and p38 MAPK pathways15–20. This indi-
cated that the inhalation of toluene and formaldehyde induced similar cellular responses in Drosophila compared 
to those in mammals. Our behavioral assay showed that both toluene and formaldehyde could also induce sub-
stantial behavioral changes in Drosophila, suggesting that the behavioral changes can be used as indicators of air 
quality. The finding that the p38b mutant was more susceptible to both VOCs implies that the p38 MAPK path-
way may be involved in this process and this mutant strain is a much better monitor than the wild-type. This result 
also suggests that more sensitive mutant strains can be identified by testing the strains that alter this pathway.

Because the primary goal of this study was to evaluate Drosophila as an alternative biomonitoring system for 
VOC pollution, we did not focus on the molecular and cellular mechanisms underlying the behavioral changes 
in response to VOC exposure. Therefore, further studies to understand the mechanisms will provide valuable 
information about the biology of VOC-induced neurotoxicity and efficient ways to apply the Drosophila model as 
a versatile biomonitoring system to inhalation toxicity screening.

Figure 5. Movement patterns of Drosophila on the self-organizing map (SOM) of different strains 
after treatment with toluene and formaldehyde (n = 15). Nine clusters classified by the SOM along with 
representative movement patterns (A); dendrogram according to Ward’s linkage method (B); components of the 
weight vectors matching the clusters based on the trained SOM (C). The values of the vertical bars in the bottom 
right corner indicate the ranges of parameters normalized to 0–1.
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Materials and Methods
Flies and maintenance. The flies were reared on standard fly food containing agar, sugar, dry yeast, corn-
meal, nipagen M, and propionic acid, unless otherwise noted. All flies used in this study were obtained from the 
collection of the Bloomington Drosophila Stock Center. Detailed information on the flies used in this study is 
given in Supplementary Table S4.

Exposure conditions. The exposure concentrations of toluene and formaldehyde for Drosophila were determined 
based on the permissible exposure level (PEL) by inhalation. International safety and occupational health agen-
cies have set the PELs of toluene and formaldehyde by inhalation. Most levels are based on the epidemiological 
and toxicological test outcomes obtained from both human and animal models for a certain exposure time or 
are based on health hazard assessments in the relevant toxicological literature. The occupational threshold limit 
values (TLV) are categorized as time-weighted average (TWA), short-term exposure limit (STEL), and ceiling 
(C) values, with the latter defining the exposure limit. The workplace toluene standards of 200 ppm (754 mg/m3)  
as an 8-hour PEL and 50 ppm (189 mg/m3) as a time-weighted average (TWA) have been recommended by the 
Occupational Safety and Health Administration (OSHA)44 and the American Conference of Governmental 
Industrial Hygienists (ACGIH), respectively, to protect against the effects on the central nervous system45. The 
STEL and PEL-TWA of formaldehyde have been set to 2 ppm in 15 min and 0.75 ppm by OSHA. The National 
Institute for Occupational Safety and Health (NIOSH) has set a more stringent STEL of 0.1 ppm and a recom-
mended exposure limit for occupational exposure of 0.016 ppm46. The most common STEL for formaldehyde is 
100 μ g/m3 as a 30-min average set by the World Health Organization (WHO), considering the portal-of-entry 
effects and sensory irritation of eyes and upper airways47. Considering these PELs set by various international 
safety and occupational health agencies and the concentration levels in the indoor environment, the flies were 
exposed to 1,000 μ g/m3 of toluene and 100 μ g/m3 of formaldehyde for 24 h transcriptomics and 100 μ g/m3 of tol-
uene and 10 μ g/m3 of formaldehyde for 6 h behavior analysis. All experiments (i.e., survival test, transcriptomics, 

Figure 6. Mean and standard deviation of the movement pattern percentages when strains of Drosophila 
melanogaster were treated with toluene and formaldehyde (n = 15). P1 +  P2 +  P3 (A), P4 (B), P5 +  P6 +  P7 
(C), and P8 +  P9 (D). C: Control; T: Toluene; F: Formaldehyde. Different letters at the top of the bars indicate a 
significant difference between the chemicals within the same strain and different Roman numerals at the bottom 
of the bars show a significant difference between the strains for the same chemical (p <  0.05) according to the 
multiple comparison tests.
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gene expression, and behavior analysis) were conducted in an inhalation chamber and the general experimental 
scheme is presented in Fig. 7.

Microarray. For microarray analysis, newly emerged adult male flies were exposed to 1,000 μ g/m3 of tolu-
ene (Sigma-Aldrich #179418) and 100 μ g/m3 of formaldehyde (Sigma-Aldrich #F8775) for 24 h. The total RNA 
prepared from the exposed and control flies is based on the standard protocol of the RNeasy Mini Kit (Qiagen, 
Hilden, Germany). Five-microgram aliquots of each total RNA product were used for reverse and in vitro tran-
scription followed by the application to a GeneChip® Drosophila Genome 2.0 Array (Affymetrix, Santa Clara, 
CA, USA), which contained 18,880 probe sets and 18,500 unique Drosophila transcripts. The MAS5 algorithm 
was used for the expression summary and the signal calculation of Affymetrix D. melanogaster genome array 
data. Global scaling normalization was performed; the normalized data was base 2 log-transformed. The fold 
change and Welch t-test were applied to select differentially expressed genes; the fold change threshold was 2-fold. 
Furthermore, the probe sets with A calls in the compared groups were removed to filter false positives (each probe 
set of the Affymetrix GeneChip data has a detection call: P, present call is considered good quality; M, marginal 
call has intermediate quality; A, absent call has relatively low reliability). A Gene Set Enrichment Analysis was 
performed to investigate the functional relationships between the 2-fold DEGs using the high-throughput Gene 
Ontology Miner. The 2-fold DEGs of relevant pathways were mapped using the GenPlex™  v2.4 software (ISTECH 
Inc., Korea). The pathway resources were provided by the Kyoto Encyclopedia of Genes and Genomes database.

Ingenuity Pathway Analysis. Raw data from the Affimetrix chip CEL files were normalized using the 
Robust Multichip Average (RMA) implemented in R (www.R-project.org). The RMA consists of three steps: the 
background adjustment, quantile normalization, and summarization. Once the data was processed in R, the log 
2 value of each gene was converted into the fold change value and a cutoff value of 1.5-fold was chosen for IPA. 
For each gene within the cutoff value, the identification (ID) number (probe #) and corresponding fold change 
were tabulated in Microsoft Excel and imported into IPA (Ingenuity Systems, www.ingenuity.com) to construct 
networks of interacting genes. IPA contains a database that uses the most current knowledge available on genes, 
proteins, chemicals, normal cellular and disease processes, and signaling and metabolic pathways needed for 
pathway construction.

Generation, monitoring, and analysis of toluene and formaldehyde in the inhalation cham-
ber. To ensure the accuracy of toluene and formaldehyde concentrations in inhalation chambers, the cham-
bers were evaluated two weeks prior to the beginning of the study. The concentration in the chambers was 
adjusted using a flow meter to maintain the target concentration. The toluene concentrations were determined 
in the chambers as described in the National Institute for Occupational Safety and Health Manual of Analytical 
Methods (NMAM; No. 1500; “Hydrocarbons, AROMATIC”) and formaldehyde concentrations were determined 
based on the NIOSH Manual of Analytical Methods (NMAM; No. 2016; “FORMALDEHYDE”). The toluene 
sampling was performed using a model 497701 Escot Elf pump personal air sampler (MSA, Pittsburgh, PA, USA) 
connected to a Gemini twin port sampler (MSA) and a charcoal tube (50/100 mg). The sampler flow rate was 
0.2 L/min for 1 h. The toluene in the charcoal tube was measured by gas chromatography (GC) using a model 
6890 N apparatus (Agilent Technologies, Santa Clara, CA, USA). Formaldehyde sampling was conducted using a 
model 497701 Escot Elf pump personal air sampler (MSA, Pittsburgh, PA, USA) connected to a Gemini twin port 
sampler (MSA) and a 2,4-DNPH cartridge. The sampler flow rate was 0.5 L/min for 30 min. The formaldehyde in 
the 2,4-DNPH cartridge was measured using high-pressure liquid chromatography (HPLC, SURVEYOR, USA). 
The mortality tests were conducted by counting the dead flies after exposing one-day-old male flies to toluene (1, 
5, and 10 ppm) or formaldehyde (0.1, 0.5, and 1 ppm) for 72 h.

Figure 7. The experimental scheme of exposure to toluene and formaldehyde in Drosophila using an 
inhalation chamber. 

http://www.R-project.org
http://www.ingenuity.com
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Quantitative real-time-polymerase chain reaction. For quantitative real-time-polymerase chain reac-
tion (qRT-PCR) analysis, wild-type flies were exposed to 1, 5, and 10 ppm of toluene and 0.1, 0.5, and 1 ppm of 
formaldehyde for 72 h in an inhalation chamber. The gene expression was analyzed using IQTM SYBR Green 
SuperMix (Bio-Rad). The quantitative RT-PCR was carried out on selected genes using a Chromo4 Real-Time 
PCR detection system (Bio-Rad). The primers were designed by the online Primer-BLAST software of the NCBI 
and are described in Supplementary Table S6. The qRT-PCR conditions were optimized and efficiency and sensi-
tivity tests were performed for each gene prior to the main experiment. Three biological replicates were measured 
in each qRT-PCR analysis.

Behavior observation system. The movement tracks of the test organisms were recorded in two 
dimensions using an observation system consisting of an observation arena, a CCD camera (Hitachi KP-D 
20 BU®), a timer, an A/D interface (Matrox Morphis®), and software for image recognition (0.25 s/frame; 
Supplementary Fig. S6). Three strains, one wild-type strain and two mutants (p38b and p53), were reared under 
standard culture conditions (temperature of 25 °C ±  1 °C and humidity of 50% ±  5%; mean ±  standard deviation; 
SD).

A robust background subtraction algorithm based on frame differencing with a filter was used for image rec-
ognition in this study48. The algorithm has previously been used to observe and record whole-body movements 
of relatively small indicator species such as drosophila49, daphnia50, and zebrafish51.

Based on the previous studies of the geotaxis behavior52, the vertical arena (150 mm height ×  50 mm 
width ×  10 mm depth) was selected for the observation of D. melanogaster. The average speed of the flies in pre-
liminary studies was 1.52 ±  0.40 mm/s without treatment. The size of the arena was equivalent to 30 and 100 
movement sequences in the horizontal and vertical directions, respectively. This number of movement sequences 
was sufficient to present the diverse movement behavior such as the patterns expressed on the SOM (Fig. 5). 
The test organisms were randomly chosen from stock populations and were placed individually in an observa-
tion arena in a vertical position. Two volatile organic compounds, toluene and formaldehyde, were diluted and 
sprayed on the cotton placed within the observation cage at concentrations 100 and 10 μ g/m3, respectively. Fifteen 
organisms of each group (three strains ×  three treatments) were observed separately for 6 h without treatment and 
for additional 6 h after treatment with different chemicals.

Measurement of the movement parameters. The time frame to determine the position of the indi-
viduals was set to 0.25 s because we aimed to monitor general movement changes of the individuals (i.e., 2-D 
location) in response to the chemical treatment for a relatively long period of time (i.e., 6 h). The 0.25-s segments 
were sufficiently short to present the general displacement of the organisms53. The extremely fast behavior due to 
intoxication, such as compulsion and trembling, may be expressed in less than 0.25 s; however, we did not intend 
to record this type of behavior in this study. The total observation time (6 h before and after treatment) was suffi-
ciently long to record the response behavior, considering the response time of the chemical treatments51.

To characterize the movement parameters, the general and specific activities were measured in 5-s segments 
comprising 20 consecutive 0.25-s sub-segments: speed (mm/s, average speed of the sub-segments), acceleration 
(mm/s2, difference between two consequent speeds), locomotory rate (mm/s, movement distance per unit time 
excluding stop time), meander (rad/mm, angular change per movement distance between sub-segments), stop 
duration (total duration without movement; less than 1/10 of body size, 0.1 mm), and slipping number (n, total 
number of slips onto the vertical arena). In addition, the total duration of stay (s) in different locations of the 
arena (top, bottom, and food area) was obtained during the observation period.

The general feature of the images of the movement tracks was extracted using the fractal dimension based on 
the box-counting method41.

=D N rlog( )/log(1/ ), (1)

where N is the number of boxes with points (positions of flies in this study) and r is the box size. While the topo-
logical dimension of a line is 1.0 and that of a surface is 2.0, the fractal dimension may be any number between 1.0 
and 2.0 because the observations were performed in two dimensions in this study. The duration of the movement 
tracks was set to 30 min, which was sufficiently long to differentiate the chemical effects from the behavior of 
other animals such as chironomids54.

Self-organizing map (SOM) analysis. The self-organizing map (SOM), consisting of two layers of input 
and output, represents the non-linear projection of data onto a two-dimensional space and provides a patterned 
map of input data trained with unsupervised learning55. Data-driven (or heuristic) methods, including SOM, are 
superior to conventional statistical methods in information extraction (e.g., clustering, grouping, and associative  
relationships) of nonlinear data and have been extensively used in ecological sciences56,57. The size of the SOM 
was determined heuristically, in such a way that the variation of the movement patterns on the map are compre-
hensible to the reader. The optimal size was adjusted based on the degree of discrimination between the grouped 
nodes after training. The starting point of the node size determination is approximately 5√ n, where n is the num-
ber of samples58. Approximately 2/3 of the total nodes may be occupied by input data, while 1/3 remains empty, 
which serves as a delimiter between the occupied nodes. The vertical size of the SOM was allowed to be slightly 
longer than the horizontal size. This way, the highest variance in the input data will be projected along the vertical 
axis, while the next highest variance is presented on the horizontal axis. The adjusted size of 14 ×  10 nodes was 
used in this study.

The Euclidian distance, dj (t), at the j-th node on the SOM between the weight at the iteration time t and the 
input vector was calculated using learning processes:
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where xi is the value of the i-th parameter, wij(t) is the weight between the i-th parameter and the j-th node on the 
SOM, and P is the number of parameters. In this study, six parameters were used as input data for the SOM (see 
Measurement of Movement Parameters section).

The best matching neuron with the minimum distance was chosen as the winner. The weight vectors for the 
best matching neuron and its neighbor neurons were updated as:

+ = + −w t w t a t x t w t( 1) ( ) ( )[ ( ) ( )], (3)ij ij ij

where t is the iteration time and α(t) is the learning rate. The learning process of the SOM was conducted using 
the SOM Toolbox developed by the Laboratory of Information and Computer Science of the Helsinki University 
of Technology (http://www.cis.hut.fi/projects/somtoolbox/) in Matlab environments (Mathworks, R2011)58. For 
initialization and training processes, we followed the suggestions by the SOM Toolbox allowing the optimization 
of the algorithm. A detailed description of the application of the SOM to ecological data is given by Park et al.59.

The weights of the best matching unit and the computation nodes close to it were adjusted towards the input 
vector by interactive calculations because the input data were fed to the SOM for training [Equation (3)]. A draw-
back, however, is that no measure could be given with respect to determining the distance between the grouped 
nodes after training, whereas the degree of the data variation (e.g., eigenvalue) is provided in statistical methods. 
To reveal the degree of association between the grouped SOM units, the Ward’s linkage method was used to clus-
ter the movement data based on the dendrogram using the Euclidean distance matrix48,49. The linkage distances 
were rescaled to 0–100%. After clustering, the distance between the clusters depending on a different degree of 
the closeness was provided, as shown in the dendrogram (Fig. 5B).

Data plotting and statistical analysis. Sigma Plot 12.0 was used for data plotting and statistical analysis. 
The statistical significances of the combined survival data were analyzed using the Survival LogRank test.
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