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Abstract: This study used visible/near-infrared hyperspectral imaging (HSI) technology combined
with chemometric methods to assess the freshness of pearl gentian grouper. The partial least square
discrimination analysis (PLS-DA) and competitive adaptive reweighted sampling-PLS-DA (CARS-
PLS-DA) models were used to classify fresh, refrigerated, and frozen–thawed fish. The PLS-DA
model achieved better classification of fresh, refrigerated, and frozen–thawed fish with the accuracy of
100%, 96.43%, and 96.43%, respectively. Further, the PLS regression (PLSR) and CARS-PLS regression
(CARS-PLSR) models were used to predict the storage time of fish under different storage conditions,
and the prediction accuracy was assessed using the prediction correlation coefficients (Rp

2), root mean
squared error of prediction (RMSEP), and residual predictive deviation (RPD). For the prediction
of storage time, the CARS-PLS model presented the better result of room temperature (Rp

2 = 0.948,
RMSEP = 0.255, RPD = 4.380) and refrigeration (Rp

2 = 0.9319, RMSEP = 1.188, RPD = 3.857), while the
better prediction of freeze was by obtained by the PLSR model (Rp

2 = 0.9250, RMSEP = 2.910,
RPD = 3.469). Finally, the visualization of storage time based on the PLSR model under different
storage conditions were realized. This study confirmed the potential of HSI as a rapid and non-
invasive technique to identify fish freshness.

Keywords: hyperspectral imaging; storage conditions; classification; prediction; visualization

1. Introduction

The quality and price of fish depend largely on the freshness [1]. Refrigeration is the
main method of short-term storage of fish. During the refrigeration process, fish experi-
enced three stages of rigidity, autolysis, and corruption, which led to a continuous decline
in their quality. Freezing is a commonly used effective method for long-term storage of
fish [2]. However, during the freezing and thawing process, fish will undergo a series of
physiological and biochemical reactions [3], including protein denaturation, fat oxidation,
ice crystal formation, tissue damage, enzyme activity changes, and the decomposition
of trimethylammonium oxide into trimethylamine, dimethylamine, and formaldehyde,
which lead to the gradual deterioration of the nutritional value, texture characteristics,
and freshness of fish [4,5].The above process will seriously affect flavor, texture, and color of
fish [6], so freezing and thawing will make the sensory and market value low [7]. In order
to make more profits, some illegal traders sell frozen–thawed fish as fresh fish. Therefore,
it is necessary to study a fast and effective method to identify fresh and frozen–thawed fish
and detect the storage time of fish.

At present, microbiological methods are mainly used to predict the remaining storage
time of fish [8]. Although the results are reliable, the operation is complicated, and the
fish is destroyed and loses its edible value. At the same time, too-long testing time can-
not be applied online or on a large scale, nor can it meet the requirements of fast and
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non-destructive testing. Many scholars at home and abroad used visible/near infrared
spectroscopy to detect the storage time of fish. Boknaes et al., (2002), Nilsen et al., (2002),
and Ting Wu (2018) used visible/near infrared spectroscopy to detect the storage time of
fish and achieved good detection results [9–11]. Hyperspectral imaging (HSI) emerges
as a non-destructive and rapid analytical tool for assessing food quality, safety, and au-
thenticity [12]. Sivertsen et al., (2011), Kimiya et al., (2013), and Khojastehnazhand et al.,
(2014) applied HSI technology to detect the refrigerated storage time of fish. Although
satisfactory results were obtained, none of them intuitively demonstrated the refrigerated
storage prediction time of each pixel on the fish image [13–15]. Traditional enzyme analysis
and physiological method [16], chemical, microbiological, and sensory methods [17] can
effectively identify fresh and frozen–thawed fish, but these methods are detrimental, time-
consuming, and require expensive consumables. Physical methods, such as colorimeter,
texture analyzer, conductivity meter, electronic nose, etc., can only detect a single parameter
related to freshness, which is far from enough to represent the various chemistry, biochem-
istry, physics, and microbial changes that occur during the freezing–thawing process of
fish [10]. Studies have shown that visible/near infrared spectroscopy is feasible for the
identification of fresh and frozen–thawed fish [5,18]. The HSI technology that integrates
spectral information and image information is a research hotspot in food non-destructive
testing. Sivertsen et al., (2011) and Kimiya et al., (2013) applied visible/near-infrared HSI
to identify fresh and frozen–thawed cod and Atlantic salmon, respectively [14,15]. Us-
ing K-nearest neighbor classifier (KNN) as a classification method, the whole fish fillet was
divided into multiple grids, the spectral information of each grid was analyzed, and the
whole fish fillet was displayed the correct recognition rate of different spatial locations
(different grids) in the form of a pseudo-color map. Junli Xu et al., (2017) used HSI to
identify optimum wavelengths carrying most important information to classify between
fresh organic, fresh conventional, chill-stored organic, and chill-stored conventional salmon
samples [19]. Kathryn E. Washburn et al., (2017) used HSI to realize the identification of
fresh, once-thawed, and twice-thawed cod samples, demonstrating that HSI had the poten-
tial for use as an online method for evaluation of fish freeze–thaw history [20]. Jiajia Shan
et al., (2018) achieved the classification of intact fish with scales, intact scaled fish, skin side
of fish fillets, and flesh side of fish fillets with high accuracy [7]. However, few studies have
predicted and visualized the storage time of fresh, refrigerated, and frozen–thawed fish
simultaneously by using HSI technology.

Therefore, the specific objectives of this study are to (1) analyze the average hyper-
spectra of different parts of pearl gentian grouper, and select suitable parts for follow-up
research; (2) establish partial least square discrimination analysis (PLS-DA) and compet-
itive adaptive reweighted sampling- PLS-DA (CARS-PLS-DA) models to identify fresh,
refrigerated, and frozen–thawed pearl gentian grouper; (3) establish PLS regression (PLSR)
and CARS-PLSR models to predict the storage time of pearl gentian grouper stored at room
temperature, refrigerating and freezing; and (4) visualize the storage time of each pixel of
fish under different storage conditions.

2. Materials and Methods
2.1. Sample Preparation

The origin of 22 pearl gentian grouper for the study was Wenzhou, China. The pearl
gentian grouper was cultured in circulating water, pH 7.5–8.2, culture water temperature
27–30 ◦C, dissolved oxygen ≥8.0 mg/L. The average weight of pearl gentian grouper with
the internal organs removed was 559.0 ± 29.2 g. We removed the head of the fish, washed
and dried, cut in half, and the skinless side of fish were prepared for HSI scanning. First,
all 22 fresh fish were scanned for HSI immediately (0 day). Then, the fish samples were
divided into three groups. One group of 2 fish were stored at room temperature of 10–25 ◦C
for 1, 2, and 3 days until future HSI scanning. Another group of 10 fish were stored at
a refrigerator of 4–7 ◦C for 1, 2, 5, 8, and 13 days. Two refrigerated fish samples were
taken out from the refrigerator each time, transferred to a room temperature of 10–25 ◦C,
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and left to equilibrate for 1 h for HSI scanning. And the third group of 10 fish were kept
in frozen condition of −28 ◦C for 1, 5, 10, 18, and 30 days until future HSI scanning.
Two frozen samples were taken out from the refrigerator each time, thawed in water (room
temperature) for 1 h, and left to equilibrate for another 1 h at room temperature before HSI
measurement. Fish sample under refrigeration and freezing conditions were not returned
to the refrigerator after hyperspectral image were collected.

2.2. HSI Equipment

The core components of the HSI system included: Aa high-performance CCD (Charge
Coupled Device Camera), a mobile platform for sample movement scanning, an imaging
spectrometer (ImspectorV10, Spectral Imaging Ltd., Oulu, Finland) and a computer in-
stalled with a data acquisition software. A lighting device was installed above the mobile
platform, which contained two 150 W quartz tungsten halogen lamps. The software con-
trolled the entire spectrum acquisition process, including the speed of the mobile platform
motor, exposure time, and wavelength range. Spectral images of the prepared samples
were acquired in the reflectance mode by employing a laboratory-based line scanning
HSI system covering the wavelength region of 900–1700 nm with spectral resolution of
approximately 3.37 nm. The acquired three-dimensional hyperspectral images were stored
in raw format and then exported to ENVI4.6 software (ITT Visual Information Solutions,
Boulder, CO, USA) for subsequent processing.

2.3. Data Analysis
2.3.1. Image Acquisition and Calibration

On each sampling day, each grouper sample was placed on the translation stage and
then conveyed to the field of view (FOV) camera with a constant speed of 11 mm/s to
be scanned line by line. Exposure time of the camera, frame rate, and the motor speed
were carefully adjusted to obtain equal pixel resolution of the horizontal and vertical axes
and to avoid distortions of images. The image acquisition process was carried out at
room temperature.

In order to reduce the influence of the dark current of the camera and the uneven
distribution of light source intensity in each band, it is necessary to correct the reflectiv-
ity of the original image (I0). In the same environment as the sample image collection,
the standard white calibration plate (reflectivity close to 100%) was scanned to obtain a
white calibration image (W), then the light source was turned off and the lens was covered
(reflectivity close to 0%) to collect a black calibration image (B). The corrected images (I)
were calculated according to the following formula [21]:

I =
I0 − B
W − B

× 100% (1)

All the corrected images were then used as the basis for subsequent analysis to extract spectral
data, important wavelength selection, classification, prediction, and visualization purposes.

2.3.2. Spectral Data Extraction

Background removal is a fundamental step to separate the sample from the back-
ground in hyperspectral image, as subsequent extracted data are highly based on the
precision of this process [22]. In this study, the remote sensing image processing ENVI4.6
software (ITT Visual Information Solutions, Boulder, CO, USA) was used for selecting the
Region of Interest (ROI) that did not contain background information for the corrected
hyperspectral image and extract ROIs for each sample. The reflectance spectra of all pixels
within the ROIs were averaged to represent each part of sample. Then Matlab9.4 R2018a
software (The Mathworks Inc., Natick, MA, USA) was used for subsequent processing.
The collected hyperspectral images have a total of 256 bands, and the first 19 bands and
the last 26 bands are noisy (Figure S1), so only 211 bands from 20 to 230 are used for
subsequent analysis.
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2.3.3. Data Processing and Modelling

PLS is one of the most widely used regression modeling method in spectral data
analysis since it can efficiently and reliably process complex spectral data [23]. In the PLSR
model, the principal components of the matrix X and the matrix Y are decomposed in
order to extract the most comprehensive variables with respect to the dependent variables
and maximize the correlation between the principal component and the concentration,
which overcomes the negative effects of the multiple correlation of variables and further
improves the reliability of the model [24]. The mathematical details of PLS description can
be found in the reference by Wold et al. [25] In this work, PLSR models were used to predict
the storage time of fish under room temperature, refrigeration, and freezing. PLS-DA
method was used as the supervised classification method to classify fresh, refrigerated,
and frozen–thawed fish.

HSI has a high dimensionality with collinearity and redundancy among contiguous
wavelengths [26]. Some congruent wavelengths are related to the similar constituents
while some bands may contain irrelevant information or noise. Therefore, wavelength
selection should be conducted to optimize data analysis and save time to compute. In this
study, CARS was applied to simplify and optimize regression or classification models.
The competitive adaptive weighted algorithm method, which imitates the evolution of
the “survival of the fittest” principle, phases out of the invariable wavelength [27,28].
The specific steps of the algorithm are as follows:

(1) Use Monte Carlo method to collect samples n times. Each time a certain proportion of
samples are randomly selected from the sample set as the calibration set.

(2) Establish the PLS regression model by using the extracted spectral matrix X (n × m)
and the concentration matrix Y (n × 1).

(3) Use the exponentially decreasing function (EDF) to delete the wavelength points with
small absolute value of regression coefficient. Collect samples for i times and deter-
mine the retention rate of wavelength points where a and k are constants according
to the EDF calculation formula. It is calculated as follows:

a =
(m

2

) 1
N−1 (2)

k =
ln
(m

2
)

N − 1
(3)

(4) In the process of N sampling, the wavelength variables with large absolute values
of the PLS regression coefficients are retained, while wavelength variables with
small absolute values of the regression coefficients are eliminated, and then the
optimal subset of wavelength variables is selected according to the RMSECV value in
the model.

In order to visually present dynamic change of fish freshness from diverse storage
time and temperature, a color hyperspectral map was generated [7]. The obtained optimal
PLS models were employed on each pixel of the ROIs in the corresponding HSI, and the
prediction value of each pixel based on the spectrum was calculated. With a linear color
scale change, color hyperspectral images were generated according to the prediction values.
In this way, it is easy to observe the change of fish freshness. All the related operations were
realized by an image processing program in Matlab 2018a software (The Mathworks, Inc.,
Natick, MA, USA). Key steps for the data processing are summarized in Figure 1.
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2.3.4. Model Performance Evaluation

Determination coefficient of calibration (Rc
2) and prediction (Rp

2), root mean square
errors of calibration (RMSEC), root mean square error for prediction (RMSEP), and residual
predictive deviation (RPD) are the main parameters for evaluating the prediction models.
Generally, a good prediction model should have high Rc

2 and Rp
2, low RMSEC and

RMSEP [29]. The quality of the PLSR model can be evaluated by the RPD values, a RPD
value greater than 2.0 indicates a good quantitative model, while larger than 3.0 means that
the model is excellent [30]. The performance of the PLS-DA models for discrimination of
fresh, refrigerated, and frozen–thawed fish was determined by the classification accuracy
both in the calibration and prediction sets.

3. Results and Discussion
3.1. Analysis of Different Parts of Fish

The raw reflectance spectra within the 6 parts (Figure 2b) of 22 fresh fish are presented
in Figure 2a; these parts of fish are collected from back, belly, and tail. In order to clearly
show the difference in the spectra of different parts of fish, the mean and standard deviation
spectra of six parts are displayed in Figure 2c. Some broadband peaks occurring in the
near infrared region can be well explained by the overtone and combination vibrations of
the molecular chemical bonds, such as O-H, C-H, and N-H [31]. The presence of water in
the pearl gentian grouper showed two absorption bands at 980 nm and 1450 nm due to
O-H stretching second and first overtones [32] in Figure 2c. Besides, one absorbance peak
located at 930 nm corresponded to the third overtone C–H stretching in the methylene
group of fat [33], the other absorption peak around 1220 nm was ascribed to the C-H stretch
second overtone of fat [34]. It was also observed that the spectral reflectance curves of
samples were quite smooth with similar trends across the whole tested wavelength region.
However, a remarkable difference in the magnitudes of spectral reflectance value among
different parts of fish was observed. The different reflectance spectra of different parts
are mainly due to the difference in fat content. The lower the fat content, the higher the
absorbance and the lower the reflectivity. Generally, the natural distributional pattern of fat,
increasing from back to belly, and from tail to head [35]. Parts 2, 3, and 4 are mainly located
on the back and have low fat content, so the reflectance spectrum value is low. While site 1
is located in the belly, the high fat content results in a large reflection spectrum amplitude.
However, fat content generally decreases from skin side to inside [35], the 5 and 6 parts of
the tail may be because the fish is very thin and very close to the skin, resulting in higher
fat content.
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3.2. Classification Model Development

In order to clearly show the differences in the spectra of fresh, refrigerated, and frozen–
thawed fish, the spectra of all samples under each condition were averaged and placed
in the same coordinate axis, as shown in Figure 3a. It was obvious that frozen–thawed
fish exhibited higher reflectance values in the whole wavelength range, and the reflectance
curves of fresh and refrigerated fish were approximate. This was caused by the changing
of the major chemical compositions in fish during the freezing process [36]. During the
freezing–thawing process of fish, the formation and growth of ice crystals can cause tissue
damage, texture deterioration, cell rupture, and organelle leakage; trimethylamine oxide
was decomposed into trimethylamine, dimethylamine, and formaldehyde. The interaction
between formaldehyde and fish protein not only accelerated protein denaturation, but also
leaded to the deterioration of texture. The denaturation of protein will further reduce
the water capacity of the protein. In summary, the water in the fish was lost during
the freezing–thawing process, and the water content of the thawed fish was reduced.
Meanwhile, water was the most important component of the fish meat, so the reflectance
spectrum values of the frozen–thawed fish meat were higher. However, the water loss of
refrigerated fish was less, and the ingredient content was very close to the fresh fish, so the
reflectance spectrum value was also close.

Figure 3b shows the results of principal component analysis (PCA) on the fresh,
refrigerated, and frozen–thawed fish. It can be seen that fresh and refrigerated sample
points were generally clustered into two groups based on their first two orthogonal PCs.
However, the effect of frozen–thawed sample classification was not good, and there was
a serious overlap with the previous two. Whether it was refrigerated or frozen fish,
the division into different clusters was mainly caused by different days of data collection.
The longer the refrigeration or freezing time, the more obvious the difference from fresh
fish. For refrigerated fish, the samples before the fifth day were basically distinguished
from the fresh fish, and they gradually became distinct after the fifth day. For frozen
fish, there was a clear overlap between the samples before the fifth day and the fresh
fish, while the samples after the 10th day had been clearly distinguished. In addition,
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the optimal variables extracted by CARS were used to build the PCA model (Figure S2),
but it was found that the effect was not as good as the full-spectrum model.
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PLS-DA and CARS-PLS-DA algorithms (Figure 3c) were used to classify the fish under
different storage conditions. The classification results are displayed in Table 1. As can
be seen, calibration set and prediction set were allocated according to 3:1. The results
showed that PLS-DA and CARS-PLS-DA algorithms could classify fresh, refrigerated,
and frozen–thawed fish well, but PLS models was better overall. The PLS-DA model
had 211 variables. For PLS-DA model developed with spectra of fresh fish, all fresh fish
were identified correctly. For refrigerated fish and frozen–thawed fish, there was one
sample misclassified, respectively, with accuracy of 96.43%. The CARS-PLS-DA model
selected 48 variables, far less than the PLS-DA model. The same results were observed
when CARS-PLS-DA models were developed with spectra from fresh and refrigerated fish,
with accuracy of 96.43%. However, the accuracy of frozen–thawed fish was only 89.29%,
with three samples misclassified as refrigerated fish. Although the classification accuracy
of the PLS-DA models was reduced, the efficiency of the programs was greatly improved.

Table 1. Classification results based on partial least square- discrimination analysis (PLS-DA) and competitive adaptive
reweighted sampling-PLS-DA (CARS-PLS-DA) models.

Model Variable Number Group
Calibration Set Prediction Set

1 2 3 Accuracy/% 1 2 3 Accuracy/%

PLS-DA 211
1 82 2 0 97.62 28 0 0 100
2 0 83 1 98.81 0 27 1 96.43
3 0 3 81 96.43 0 1 27 96.43

CARS-PLS-DA 48
1 81 3 0 96.43 27 1 0 96.43
2 1 81 2 96.43 1 27 0 96.43
3 0 14 70 83.33 0 3 25 89.29

Group 1: Fresh; Group 2: Refrigerated; Group 3: Frozen-thawed.
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3.3. Prediction Model Development

Figure 4 shows the PLSR and CARS-PLSR models of storage time under three storage
conditions using the entire spectrum. Figure 4a,c,d shows scatter distribution diagrams of
storage time predicted by PLSR model for prediction set samples. The abscissa is the real
refrigeration time, and the ordinate is the predicted time. The samples were distributed
around the ideal prediction line and were relatively close to the straight line, indicating that
the hyperspectral and PLSR algorithm could accurately predict the storage time of fish.
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To make the HSI system suitable for implementation in pearl gentian grouper process-
ing lines, it is important to reduce the high dimensionality of the hyperspectral cubes and to
build a simplified spectral model [37]. The above analysis based on the full spectral range
did not take into account that some spectral wavelengths might not contain any useful
information with regard to the storage time of the samples [32]. Therefore, the significant
variables/wavelengths reflecting the characteristics of spectra for predicting storage time
were collected using the CARS method. As a result, new reduced spectral matrices were
created and then used to replace the full wavelengths spectra for building new calibration
models to determine storage time under different storage conditions. The wavelengths
obtained of fish under different storage conditions (Figure 4b,d,f) were recognized as
the important variables for further predicting storage time in the fish. In combination
with Table 2, we can see that the number of variables extracted from the spectrum of fish
stored at room temperature, refrigeration, and freezing conditions were 49, 119, and 99,
respectively. Figure 4b,d,f shows scatter distribution diagrams of storage time predicted by
CARS-PLSR model for prediction set samples. The abscissa is the real refrigeration time,
and the ordinate is the predicted time. Visually, it can be seen that the prediction results of
samples stored at room temperature, refrigerator and freezer were sequentially worsening.

Table 2. Prediction results based on PLS regression (PLSR) and competitive adaptive reweighted sampling-PLSR (CARS-
PLSR) models.

Condition
Model Variable

Number
Calibration Set Prediction Set

Number Rc
2 RMSEC Number Rp

2 RMSEP RPD

room temperature PLSR 211
162

0.9464 0.259
54

0.9448 0.263 4.144
CARS-PLSR 49 0.9557 0.235 0.948 0.255 4.380

refrigeration PLSR 211
243

0.9426 1.081
81

0.9304 1.200 3.865
CARS-PLSR 119 0.9370 1.133 0.9319 1.188 3.857

freeze PLSR 211
243

0.9500 2.353
81

0.9250 2.910 3.469
CARS-PLSR 99 0.9324 2.735 0.9152 3.094 3.222

The statistical results of calibration and prediction models are presented in Table 2.
For fish stored at room temperature (Rp

2 = 0.948, RMSEP = 0.255, RPD = 4.380) and
refrigerator (Rp

2 = 0.9319, RMSEP = 1.188, RPD = 3.857), the model after the feature band
extraction had a better prediction effect than the PLS regression model based on the full
band. However, PLSR prediction results of fish stored at freezer were more satisfactory
than CARS-PLSR, for which Rp

2 was 0.250 (RMSEP = 2.910, RPD = 3.469).
In addition, we screened out the same characteristic bands of fish under room tem-

perature, refrigerated, and freezing conditions (Figure S3), and used these characteristics
to build the model; the results obtained are shown in Table S1, but the prediction results
under the three conditions were not as good as the previous models.

3.4. Storage Time Visualization

It can be seen from Table 2, for fish stored at room temperature and refrigerator,
the prediction results of PLSR and CARS-PLSR were extremely close. However, for fish in
frozen condition, PLSR obtained relatively obvious better prediction results. In compre-
hensive consideration, PLSR was selected as the optimal model. The optimal model was
employed on each pixel of HSI, and the prediction values were calculated and presented in
corresponding color. The predicted time value of each pixel was then mapped with a linear
color scale, where the different time values from small to large were shown in different
colors from blue to red. The color images visually showed the storage time change of fish
under different storage conditions in Figure 5. Generally speaking, pixels with similar
spectral characteristics would have similar predicted value of the storage time, leading to a
similar scale in the generated color images.
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As can be seen from the linear color bar in the lower right corner of the figure, dark blue
represents the shortest refrigeration time of 0 days, and dark red represents the longest
storage time, 3 days, 12 days, and 30 days, respectively. The gradient from dark blue to dark
red represents the extension of storage time, and different colors represent different days.
In Figure 5a, from top to bottom, there were three samples stored for 0, 1, 2, and 3 days
at a room temperature of 10–25 ◦C. The color gradually changed from dark blue to red.
In Figure 5b, from top to bottom, samples were refrigerated for 0, 1, 2, 5, 8, and 13 days.
The color gradually changed from dark blue to red. Figure 5c shows samples from 0, 1, 5,
10, 18, and 30 days later under freezing conditions from top to bottom. The color gradually
changed from dark blue to light red. In brief, the actual storage time under the three storage
conditions were basically consistent with the predicted refrigeration time corresponding to
the color in the figure, indicating that the PLSR models established by the average spectrum
can accurately predict the storage time of each pixel on the unknown samples.
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It can be seen from Figure 5a that the yellow and orange pixels of fish under the
storage condition of 10–25 ◦C at room temperature increased significantly after three days,
indicating that the freshness of fish were rapidly decreasing. The fish images on the
third day were almost all red pixels, indicating that the fish had basically deteriorated at
that time.

For fish under refrigerated conditions at 4–7 ◦C (Figure 5b), there were mostly blue
pixels in the images within 1–2 days, yellow and orange pixels began to increase, and the
freshness of the fish were decreasing. The yellow and orange pixels in the images on
the fifth to eighth day increased significantly, and the freshness of the fish at this stage
decreased rapidly. The fish images on the 13th day were basically full of red pixels, and at
this time the fish were close to deterioration. Compared with fish under room temperature,
the deterioration rate of fish under refrigeration was significantly slower.

For fish in frozen condition (Figure 5c), there were mostly blue and green pixels in the
images of 0–5 days, and the color change speed was relatively slow over time, indicating
that the freshness of the fish decreased slowly at this stage. In the images from 10 to 30 days,
the yellow and orange pixels only began to increase, indicating that the freshness of the
fish decreased to a large extent. However, the decline rate was still very slow, much slower
than fish under refrigerated conditions.

In addition, due to the natural heterogeneity of fish tissue, the physical and chemical
properties of each pixel were not completely consistent, and the predicted value of storage
time were not completely consistent [38]. Therefore, although the storage time of the same
sample was the same, the color on the image was not completely uniform, but the freshness
of the sample can still be judged based on the color of most pixels. The bluer the color,
the fresher the fish, and the redder, the less fresh the fish. Different from previous studies,
this study visualized the storage time of fish under three storage conditions, visually and
intuitively showing the freshness status and distribution of fish. In the actual production,
processing, and sales in the future, producers can cut and grade the fish according to
different freshness requirements, and at the same time, it is convenient for consumers to
quickly choose and judge.

4. Conclusions

In this paper, HSI technology was used to study the identification of fresh, refrigerated,
and frozen–thawed pearl gentian grouper, and realized the rapid and accurate prediction of
storage time and distribution visualization of pearl gentian grouper under different storage
conditions. First, by analyzing the average reflectance spectra of different parts of the fish
sample, three parts with smaller spectral values were selected for subsequent analysis.
The PLS-DA and CARS-PLS-DA classification models were used to identify the fresh,
refrigerated, and frozen–thawed fish. The results showed that the PLS-DA classification
results were better overall, and the accuracy of fresh, refrigerated, and frozen samples were
100%, 96.43%, and 96.43%, respectively. Additionally, the PLSR and CARS-PLSR models
were developed to predict the storage time of the prediction set samples under three
storage conditions. Both models have achieved high modeling and prediction accuracy.
For fish under room temperature and refrigeration, the results of CARS-PLSR were better
(Rp

2=0.948, RMSEP = 0.255) the Rp
2 were 0.948 and 0.9319, respectively, the RMSEP were

0.255 and 1.188, respectively, and the RPD were 4.380 and 3.857, respectively. For fish under
freezing conditions, PLSR performed the better results, the Rp

2 was 0.9250, the RMSEP was
2.910, and the RPD was 3.469. Finally, the PLSR models were used to predict the storage
time of each pixel on the sample images of the prediction set, combined with the image
programming technology of MATLAB software, to realize the visualization of the predicted
storage time in the form of a pseudo-color map. This research laid the foundation for the
widespread application of HSI technology in the field of aquatic product processing and
the automation of aquatic product processing in the future.

Supplementary Materials: Supplementary materials can be found at https://www.mdpi.com/1424
-8220/21/2/583/s1. Figure S1: Full band spectrum of fish sample. Figure S2. Classification results

https://www.mdpi.com/1424-8220/21/2/583/s1
https://www.mdpi.com/1424-8220/21/2/583/s1
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performed by principal component analysis (CARS-PCA) model. Figure S3. The same characteristic
bands of fish under room temperature, refrigerated and freezing conditions. Table S1. Prediction
results based on the common characteristic bands performed by PLS regression (PLSR).
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