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STEMI-OP in-hospital mortality prediction
algorithms: Frailty-integrated machine
learning in older patients undergoing
primary PCI

Check for updates

Tan Van Nguyen1,2, Quyen The Nguyen2,3 , Huong Quynh Nguyen4, Nghia Thuong Nguyen5,
Khai Duc Luong1,2, Lan Hoang Do Thi1,2, Tu Cam Nguyen1,2, Thuan Hoang Vo1,2, Phan Huu Le1,2,
Phuc Thien Tran1,2 & Thanh Dinh Le2,6

Despite advances in medical care, older patients with ST-elevation myocardial infarction (STEMI)
undergoing primary percutaneous coronary intervention (PCI) currently face high in-hospital mortality
rates. Traditional prognostic models, primarily developed in Caucasian populations with fewer older
participants and using classical statistical approaches, may not perform well in Southeast Asian
settings. This study explores the need for artificial intelligence-based risk assessment models—the
STEMI-OP algorithms—designed explicitly for STEMI patients aged 60 and older following primary
PCI in Vietnam. Machine learning (ML) models were developed and validated using pre- and post-PCI
features, with advanced feature selection techniques to identify key predictors. SHapley Additive
exPlanations and Causal Random Forests were employed to improve interpretability and causal
relationships between features and outcomes, highlighting the key factors, including the Killip
classification, the Clinical Frailty Scale, glucose levels, and creatinine levels in predicting in-hospital
mortality. The CatBoost model with ElasticNet regression for pre-PCI prediction and the Random
Forest model with Ridge regression post-PCI prediction demonstrated significantly superior
performance compared to traditional risk scores, achieving AUC values of 92.16% and 95.10%,
respectively, outperforming the GRACE 2.0 score (83.48%) and the CADILLAC score (87.01%). By
incorporating frailty and employing advanced ML techniques, the STEMI-OP algorithms produced
more precise, personalized risk assessments that could enhance clinical decision-making and
improve outcomes for older STEMI patients undergoing primary PCI.

Despite decades of application of primary percutaneous coronary
intervention (PCI), in-hospital mortality among older ST-elevation
myocardial infarction (STEMI) patients remains a critical concern. A
20-year registry in Germany revealed that in-hospital mortality in
women aged ≥75 years showed little change, from 25.1% in 2000 to
23.6% in 2019, and remained significantly higher than in younger
patients1. Similar data from Singapore indicated in-hospital mortality

rates of 11.9% in older patients compared to 3.6% in younger cohorts
following primary PCI2.

Prognostic models predict patient outcomes, guide clinical decisions
and improve care quality. However, significant gaps in the evidence
underlying thesemodels can reduce their accuracy and applicability in older
patients following primary PCI. Regional differences in healthcare systems,
patient demographics, and treatment approaches pose challenges for
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applying traditional models universally. Most widely recognized mortality
risk scores such as GRACE 2.0, CADILLAC, TIMI, PAMI, and ALPHA
were developed predominantly from Caucasian populations, with limited
representation from Asian populations, necessitating local adaptation and
validation, particularly in regions like Southeast Asia3–7.

Older populations, often characterized by multiple comorbidities and
higher risks of adverse outcomes, have been underrepresented in the clinical
trials and registries used for model development. Consequently, traditional
risk scores were developed based on cohorts primarily comprising younger
and less clinically complex populations, which raised concerns about
potential inaccuracies when these models are applied to older patient
groups3–7. Furthermore, a considerable number of younger STEMI patients
were enrolled in the Southeast Asia validation cohorts used to develop these
prognostic models. Notably, even the most recent machine learning (ML)
models designed explicitly for STEMI patients undergoing primary PCI in
Asia included a modest representation of older individuals within their
cohorts8–14. These limitations have further contributed to restricting the
applicability of these models to older populations within this region.

Additionally, to our best-known knowledge, existing traditional and
ML models lacked integration of geriatric-specific factors such as frailty,
cognitive function, and functional status, which are critical in predicting
outcomes in older patients3–14. Frailty, commonly measured by the Clinical
Frailty Scale (CFS)15, has been consistently associated with higher mortality
in older patients following primary PCI16–19. The exclusion of such factors
from conventional models may lead to an incomplete risk assessment and
underestimation of mortality in older populations. These gaps in evidence
highlight the critical requirement of incorporating geriatric-specific factors
to enhance the accuracy of mortality prediction models for older adults
undergoing primary PCI in Southeast Asia.

Traditional models assume linear relationships between risk factors
and mortality, which oversimplify the complexity of these interactions3–7.
ML algorithms offer a more nuanced approach, incorporating non-linear
relationships and leveraging ensemble models that combine multiple
algorithms to enhance prediction accuracy, reduce overfitting, and improve
model robustness20–22. To enhance interpretability, tree-basedmethods such
as RandomForest offered feature importance scores, revealing the impact of
each variable on the outcome23. Yet, as noted by Lundberg et al., these
metrics can sometimes be inconsistent24. To overcome this limitation, the
SHapley Additive exPlanation (SHAP) framework offers a more consistent
and interpretable approach to Feature Importance by attributing each fea-
ture’s contribution to the model predictions using Shapley values. In
addition,Causal RandomForests (CRF) have emerged as a powerful tool for
exploring causal relationships between features and outcomes25. Unlike
traditional methods, CRF estimates heterogeneous treatment effects, iden-
tifying howdifferent variables influence outcomes across diverse subgroups.
This approach improves the understanding of causal mechanisms and
enables the development of more robust and generalizable models.

By integrating SHAP, CRF, and accounting for frailty as a geriatric-
specific factor, this study aims to build a transparent and accurate ML risk
calculator—the STEMI-OP (STEMI-Older Persons) algorithms—for older
patients undergoing primary PCI in Vietnam. This comprehensive strategy
overcomes the limitations of traditional and previous ML models, enhan-
cing clinical decision-making and improving patient outcomes.

Results
The baseline characteristics of patients across the four centers included in
the cohort are detailed in Table 1. The data demonstrates significant inter-
centre variability in several key clinical parameters, which merit further
attention.

The prevalence of cardiac arrest occurring before or at admission was
markedly higher in Centers 3 and 4 (~3.0%) compared to Centers 1 and 2
(around 1.0%). Center 3 also exhibited significantly lower systolic blood
pressure than the other centers. A history of diabetes mellitus was observed
in approximately 17.0% of patients in Centers 1 and 3, whereas this pro-
portion increased substantially to around 35.0% in Centers 2 and 4.

The duration from symptom onset to hospital admission was notably
shorter at Center 4, with a median of 4 hours, compared to a significantly
longer median of 7–8 hours at the other three centers. This disparity
highlights the unique distribution of PCI-capable centres in developing
countries, such as Vietnam, which are predominantly located in central
urban areas. Consequently, most patients in this cohort experience pro-
longed travel times from their first medical contact to a PCI-capable center.

Anterior STEMI was the predominant type in Centers 2 and 4, com-
prising approximately 55.0%–60.0% of cases, in contrast to Centers 1 and 3,
accounting for ~45.0%. The incidence of ventricular fibrillation or ven-
tricular tachycardia was disproportionately higher in Center 4 (10.9%). Left
ventricular ejection fraction (LVEF) was comparable across Centers 1, 3,
and 4, ranging between 42.0% and 45.0%, but was notably higher in Center
2, at 51.9%.

The use of ticagrelor was relatively limited in Centers 3 (26.7%) and 4
(1.7%), where clopidogrel remained the antiplatelet agent of choice. By
contrast, Centers 1 and 2 demonstrated a significantly higher adoption of
ticagrelor (~64.0%). These differences can be attributed to the timeline of
patient recruitment; Centers 3 and 4 primarily enrolled patients in
2017–2018, when clopidogrel was widely prescribed in Vietnam. Following
subsequent updates to guidelines highlighting ticagrelor’s superior efficacy
over clopidogrel in the primary PCI setting, its use saw a significant increase
in Centers 1 and 2.

Radial artery access was preferred in Centers 1 and 3 (over 90.0%),
whereas femoral artery access was predominantly used in Centers 2 and 4
(93.0%–100.0%). Left main coronary artery involvement was observed in
approximately 15.0% of cases in Centers 2 and 4, compared to around 5.0%
in Centers 1 and 3.

These demographic and clinical variations among centers likely
influenced in-hospital mortality rates, ranging from 10.0% to 12.0% across
most centers but reaching a peak of 17.9% in Center 2.

Pre-PCI models
Featureselection. The performancemetrics of variousMLmodels using
the complete set of features are outlined in Supplementary Table S1. The
Catboost model demonstrated strong performance, with an accuracy of
90.67% and an AUC (Area Under the Curve) of 91.66%, indicating its
effectiveness in differentiating diagnostic outcomes. In contrast, while the
RandomForestmodel achieved anAUCof 91.88%, its lower sensitivity of
43.64% suggested challenges in identifying true positive cases. These
results highlighted the need to improve model sensitivity without com-
promising accuracy or specificity. Feature selection methods help opti-
mise models by reducing complexity and improving computational
efficiency, making them more interpretable for clinical use.

The application of feature selection methods demonstrated that redu-
cing the feature set to 10 still maintained robust model performance. Speci-
fically, the CatBoost model, optimised with features selected through
ElasticNet regression, achieved an improved AUC of 92.16%, an increased
sensitivity of 59.74%, an enhanced G-Mean of 75.33%, and an F1 score of
90.21%. Thesemodels outperformed traditional risk-scoring systems, such as
GRACE 2.0 (AUC of 83.48%) and CADILLAC (AUC of 87.01%), as shown
in Table 2. DeLong’s test was conducted using CatBoost (ElasticNet) as the
reference model to assess the statistical significance of these differences. The
analysis confirmed that the improvements in AUC over all traditional scores
were statistically significant (all p values < 0.0001), further supporting the
superior discriminative performance of the proposed ML approach. The
complete performance comparisons of pre-PCI ML models with various
feature selection methods are presented in Supplementary Table S2.

Key features selected by each method are detailed in Supplemental
Table S3. Notably, the Killip class, the CFS, hemoglobin level, and heart rate
were among themost chosen features, underscoring their importance across
various predictive models.

Evaluation and interpretation of the top-performing model. The top-
performing ML model underwent a comprehensive evaluation to ensure
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Table 1 | Patient characteristics

Center 1 N = 749 Center 2 N = 285 Center 3 N = 251 Center 4 N = 175 P value

Demographic features

Age 69.8 ± 7.6 69.7 ± 8.3 70.5 ± 7.8 72.5 ± 9.9 0.041

Weight (kg) 57.8 ± 9.3 57.5 ± 10.5 57.8 ± 9.6 57.9 ± 9.3 0.981

Height (cm) 160.6 ± 6.8 166.0 ± 107.2 159.6 ± 6.9 160.1 ± 7.5 0.329

Gender 0.003

Female 203 (27.1) 98 (34.4) 93 (37.1) 45 (25.7)

Male 546 (72.9) 187 (65.6) 158 (62.9) 41 (74.3)

Smoking 292 (39.0) 63 (22.1) 95 (37.8) 54 (30.9) <0.001

Clinical presentations

Time from onset to
admission (hours)

8.0 (6.0–12.0) 7.0 (3.0–24.0) 8.0 (6.0–11.0) 4.0 (2.0–16.5) 0.019

Heart rate (bpm) 80.0 ± 19.4 81.5 ± 21.1 83.3 ± 21.5 77.5 ± 30.8 0.049

Systolic blood pressure (mmHg) 120.0 ± 26.4 127.4 ± 30.2 113.1 ± 28.7 126.6 ± 39.4 <0.001

Diastolic blood pressure (mmHg) 72.1 ± 15.8 77.3 ± 17.5 68.6 ± 17.8 74.0 ± 21.7 <0.001

Cardiac arrest before/at admission 9 (1.2) 2 (0.7) 7 (2.8) 6 (3.4) 0.050

Killip classification 0.039

I 579 (77.3) 211 (74.0) 199 (79.3) 130 (74.3)

II 86 (11.5) 33 (11.6) 24 (9.5) 22 (12.6)

III 17 (2.3) 20 (7.0) 11 (4.4) 13 (7.4)

IV 67 (8.9) 21 (7.4) 17 (6.8) 10 (5.7)

Clinical Frailty Scale 0.031

1 13 (1.7) 6 (2.1) 4 (1.6) 6 (3.4)

2 172 (23.0) 56 (19.6) 66 (26.3) 51 (29.2)

3 112 (15.0) 42 (14.7) 47 (18.7) 13 (7.4)

4 296 (39.5) 108 (37.9) 81 (32.2) 80 (45.7)

5 121 (16.2) 47 (16.5) 39 (15.6) 22 (12.6)

6 16 (2.1) 19 (6.7) 10 (4.0) 0 (0.0)

7 19 (2.5) 7 (2.5) 4 (1.6) 3 (1.7)

Comorbidities

Hypertension 539 (72.0) 223 (78.2) 181 (72.1) 143 (81.7) 0.085

Dyslipidemia 215 (28.7) 81 (28.4) 18 (7.2) 48 (27.3) <0.001

Diabetes mellitus 127 (17.0) 94 (33.0) 46 (18.3) 21 (38.2) <0.001

Chronic kidney disease 21 (2.8) 10 (3.5) 8 (3.2) 16 (9.1) 0.084

Stroke 39 (5.2) 7 (2.5) 13 (5.2) 13 (7.4) 0.151

Transient ischemic attack 12 (1.6) 4 (1.4) 5 (2.0) 13 (7.4) 0.063

Peripheral artery disease 3 (0.4) 0 (0.0) 0 (0.0) 3 (1.7) 0.122

Heart failure 45 (6.0) 11 (3.9) 1 (0.4) 10 (5.7) <0.001

Chronic lung disease 28 (3.7) 5 (1.8) 7 (2.8) 3 (1.7) 0.388

Prior angina 88 (11.7) 10 (3.5) 24 (9.6) 16 (9.1) <0.001

Prior myocardial infarction 30 (4) 11 (3.9) 11 (4.4) 16 (9.1) 0.335

Prior PCI 30 (4) 28 (9.8) 8 (3.2) 13 (7.4) <0.001

Prior CABG 2 (0.3) 0 (0.0) 1 (0.4) 0 (0.0) 1.000

Electrocardiographic features

Infarction wall <0.001

Anterior 342 (45.7) 145 (50.9) 114 (45.4) 115 (65.7)

Inferior 388 (51.8) 127 (44.6) 123 (49.0) 57 (32.6)

Posterior 12 (1.6) 7 (2.5) 11 (4.4) 3 (1.7)

Lateral 7 (0.9) 6 (2.1) 3 (1.2) 0 (0.0)

Left bundle branch block 40 (5.3) 9 (3.2) 6 (2.4) 6 (3.4) 0.064

Atrioventricular block 113 (15.1) 32 (11.2) 26 (10.4) 38 (21.7) 0.029

Atrial flutter/fibrillation 22 (2.9) 6 (2.1) 8 (3.2) 0 (0.0) 0.534
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Table 1 (continued) | Patient characteristics

Center 1 N = 749 Center 2 N = 285 Center 3 N = 251 Center 4 N = 175 P value

Ventricular tachycardia/fibrillation 9 (1.2) 3 (1.1) 10 (4.0) 19 (10.9) <0.001

Echocardiographic features

Left ventricular ejection fraction (%) 42.8 ± 10.1 51.9 ± 13.3 45.2 ± 11.4 42.7 ± 14.1 <0.001

Pericardial effusion 20 (2.6) 6 (2.1) 6 (2.4) 10 (5.7) 0.769

Regional wall motion abnormality 710 (94.8) 243 (85.3) 174 (69.3) 130 (74.3) <0.001

Laboratory data

High-sensitivity Troponin T (pg/mL) 592.0 (74.0–1936.0) 352.7 (52–1472.0) 948.0 (71.0–2000.0) 297.0 (102.65–1717.5) 0.042

Hemoglobin (g/L) 129.8 ± 17.4 130.4 ± 17.4 131.3 ± 19.9 130.1 ± 19.0 0.618

White blood cell (K/µL) 12.6 ± 4.2 11.91 ± 4.5 11.9 ± 4.6 12.0 ± 5.4 0.027

Glucose (mg/dL) 155.7 ± 73.0 194.2 ± 118.9 157.5 ± 83.1 182.7 ± 69.9 <0.001

Creatinine (µmol/L) 93.8 ± 49.6 101.7 ± 40.7 105.0 ± 36.2 108.0 ± 31.6 <0.001

Medications at admission

Aspirin 749 (100.0) 285 (100.0) 371 (100.0) 55 (100.0) .

P2Y12 inhibitor <0.001

Ticagrelor 476 (63.6) 184 (64.6) 67 (26.7) 3 (1.7)

Clopidogrel 273 (36.4) 101 (35.4) 184 (73.3) 172 (98.3)

Statin 749 (100.0) 285 (100.0) 371 (100.0) 55 (100.0) .

PCI procedural data

Time from admission to
wiring (hours)

12.3 (9.0–18.2) 9.7 (5.8–27.3) 12.0 (9.0–16.0) 7.0 (4.3–16.9) 0.002

Vascular access site <0.001

Radial 716 (95.6) 20 (7.0) 231 (92.0) 0 (0.0)

Femoral 33 (4.4) 265 (93.0) 20 (8.0) 175 (100.0)

Number of diseased vessels <0.001

1 291 (38.9) 64 (22.5) 103 (41.0) 29 (16.6)

2 266 (35.5) 89 (31.2) 82 (32.7) 70 (40.0)

3 192 (25.6) 132 (46.3) 66 (26.3) 76 (43.4)

Left main coronary artery disease 54 (7.2) 46 (16.1) 9 (3.6) 22 (12.6) <0.001

Pre-PCI TIMI blood flow <0.001

0 413 (55.1) 176 (61.8) 127 (50.6) 111 (63.4)

1 72 (9.6) 33 (11.6) 27 (10.8) 35 (20.0)

2 143 (19.1) 60 (21.1) 97 (38.6) 29 (16.6)

3 121 (16.2) 16 (5.6) 0 (0.0) 0 (0.0)

Post-PCI TIMI blood flow 0.003

0 1 (0.1) 2 (0.7) 0 (0.0) 0 (0.0)

1 3 (0.4) 5 (1.8) 2 (0.8) 0 (0.0)

2 13 (1.7) 14 (4.9) 14 (5.6) 13 (7.4)

3 732 (97.7) 264 (92.6) 235 (93.6) 162 (92.6)

Balloon pre-dilation 559 (74.6) 267 (93.7) 147 (58.6) 165 (94.3) <0.001

Thrombectomy 64 (8.5) 20 (7.0) 18 (7.2) 16 (9.1) 0.794

Balloon post-dilation 239 (31.9) 161 (56.5) 85 (33.9) 102 (58.3) <0.001

Type of stent 0.005

No stent 19 (2.5) 5 (1.8) 0 (0.0) 0 (0.0)

Bare metal stent 27 (3.6) 4 (1.4) 4 (1.6) 0 (0.0)

Drug-eluting stent 703 (93.9) 276 (96.8) 247 (98.4) 175 (100.0)

In-hospital mortality 80 (10.7) 51 (17.9) 26 (10.4) 21 (12.0) 0.012

Values are mean ± SD, n (%), or median (Q1–Q3).
bpm beats per minute, CABG coronary artery bypass grafting, PCI percutaneous coronary intervention, STEMI ST-segment elevation myocardial infarction, TIMI thrombolysis in myocardial infarction
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a thorough understanding of its predictive capabilities and the factors
driving its performance. This evaluation included an analysis of feature
importance metrics, SHAP values, calibration plots, and causal effect
assessments to investigate the relationships between features and out-
comes. The evaluation incorporated SHAP summaries, causal effect
analyses, and dependence plots, providing detailed insights into how
individual features influenced model predictions and highlighting the
alignment between Feature Importance rankings and SHAP values.
Additionally, the causal effect analyses elucidated the direct and indirect
relationships between features and outcomes, reinforcing the robustness
and interpretability of the model.

Feature importance. As illustrated in Fig. 1, the CatBoost model, refined
through ElasticNet regression for feature selection, highlighted the CFS as
themost pivotal predictor of patient outcomes. This was closely followed by
glucose levels, the Killip class, systolic blood pressure, and the time interval
from symptom onset to hospital admission, which emerged as other critical
determinants influencing the model’s predictive accuracy. Additional
variables, including heart rate, creatinine levels, hemoglobin levels, patient
age, andventricular tachycardia/fibrillationat admission, alsodemonstrated
substantial significance, albeit with a lesser impact.

Performance of the top-ranking model. The comparative analysis of the
CatBoost model with ElasticNet feature selection, the Logistic Regression
model enhanced with RFE feature selection, and traditional risk models
provides valuable insights into the balance between model complexity and
interpretability in predictivemodeling. AdvancedMLmodels like CatBoost
excel at capturing intricate, non-linear patterns in data, yielding superior
predictive accuracy. However, these benefits come at the cost of reduced
interpretability and greater computational demands compared to simpler
models such as Logistic Regression.

Logistic Regression, particularly when paired with RFE feature selec-
tion, strikes a compelling balance by offering enhanced interpretability,
computational efficiency, and competitive performance, making it well-
suited for specific clinical applications. Among the Logistic Regression
approaches, the RFE-selected model stood out as the top performer.
Nonetheless, the CatBoost model with ElasticNet feature selection
demonstrated the highest AUC, outperforming all other models, including
the RFE-enhanced Logistic Regression.

Performance differences were apparent in several evaluation metrics,
including ROC curves, calibration plots, and precision-recall (PR) curves.
The CatBoost model exhibited the most reliable calibration (Fig. 2b),
aligning closely with the ideal diagonal across most probability ranges, with
only minor overestimations at higher probabilities. In contrast, the Logistic
Regression model with RFE displayed moderate calibration, exhibiting a
tendency to overestimate risk across all levels of observed probabilities.

TheCatBoostmodel consistentlymaintained superior precision across
all recall levels in the PR domain (Fig. 2c), particularly excelling in high-
recall scenarios. These findings underscore the CatBoost model’s superior
discrimination, calibration, and precision when applying ElasticNet feature
selection, highlighting its potential for robust application in clinical settings.

SHapley additive exPlanations and causal random forests analysis. The
CatBoost model, refined with features selected through ElasticNet regres-
sion, was evaluated using SHAP analysis (Figs. 3a and 4) and Causal Ran-
dom Forests (Fig. 3b), highlighting their distinct yet complementary
contributions to elucidating model predictions.

The SHAP summary plot (Fig. 3a) demonstrates individual features’
relative importance and contributions to the model’s predictions. Among
these, the Killip class emerged as themost critical predictor, followed by the
CFS, glucose, systolic blood pressure, and the time interval from symptom
onset to hospital admission. Higher feature values (depicted in purple) were
associated with an increasedmortality risk, whereas lower values (shown in
green) corresponded to a decreased risk. Other variables, including creati-
nine levels, heart rate, patient age, hemoglobin levels, and ventricularT
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tachycardia/fibrillation at admission, also played significant roles. This
visualisation encapsulates the magnitude and direction of each feature’s
impact while capturing the complex, non-linear, and interactive effects that
influence the model’s predictions.

SHAP dependence plots (Fig. 4) offer deeper insights into the rela-
tionships between individual features and their contributions to the model.

These plots illustrate several critical patterns: a strong positive association of
the Killip class and the CFS with mortality risk, non-linear glucose and
creatinine level effects, and an inverted U-shaped impact of systolic blood
pressure and heart rate. Furthermore, these plots underscore the critical role
of timely admission, revealing a strong correlation between delayed
admission and increased mortality risk.

b c

a

Fig. 2 | Pre-PCI model. CatBoost model with ElasticNet feature selection versus Logistic Regression model with RFE feature selection versus traditional models. a Receiver
operating characteristic (ROC) curves, b calibration plots, c precision-recall curves. AUC area under the curve, CI confidence interval, PR precision-recall.

Fig. 1 | Pre-PCI model. Feature importance of
CatBoost model after applying ElasticNet regression
method for feature selection.
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The Causal Random Forests analysis (Fig. 3b) complements these
findings by quantifying the direct impact of each feature on patient out-
comes, thereby providing a causal perspective. The presence of ventricular
tachycardia/fibrillation at admission exhibited the most substantial causal
influence, followed by the Killip class, corroborating its prominent role in
the SHAP analysis. Similarly, the CFS, glucose, and creatinine levels also
displayed significant causal effects. This alignment reinforces the conclu-
sions drawn from the SHAP analysis, affirming that the most influential
features identified by SHAP also hold substantial causal relevance.

SHAP analysis explains the magnitude and direction of feature con-
tributions to individual predictions, accounting for both linear and non-
linear interactions. In contrast, causal effect analysis focuses on direct
relationships between features and outcomes. The strong agreement
between SHAP-identified influential features—such as the Killip class, the
CFS, glucose, and creatinine levels—and their corresponding causal effects
highlight these variables’ robustness and clinical significance. This synergy
enhances the model’s interpretability, reliability, and clinical relevance,
providing a comprehensive understanding of patient mortality risk.

Post-PCI models
Feature selection. In the post-PCI assessment, ML models with a
complete set of features exhibitedmarked improvements in performance
metrics compared to pre-PCI models (Supplementary Table S4). These
improvements were achieved without feature selection, most likely
attributable to the inclusion of additional post-PCI features. The con-
sistently improvedmetrics acrossmodels highlight their capacity tomore
accurately differentiate clinical outcomes, paving the way for further
exploration of feature selection methods to refine these results while
balancing computational efficiency.

As shown in Table 3, the Random Forest with Ridge feature selection
achieved the highest AUC of 95.10%, outperforming its pre-PCI perfor-
mance, where the same method yielded an AUC of 91.36%. Additionally,
compared to traditional risk-scoring systems like GRACE 2.0 and
CADILLAC, the observed improvements in accuracy andAUChighlighted
the superior predictive capabilities of post-PCIMLmodels, especially when
combined with optimal feature selection methods. These improvements
were further supported by statistical comparison usingDeLong’s test, which
confirmed that the observed differences in AUCwere highly significant (all
p values < 0.0001). The complete performance comparisons of post-PCIML
models with various feature selection methods are presented in Supple-
mentary Table S5.

Key features selected by each method are detailed in Supplemental
Table S6. Once again, the Killip class and the CFS were the top two most
frequently chosen features across various types of models.

Evaluation and interpretation of the top-performing model
Feature importance. A comparison of Feature Importance between the pre-
PCI top-performingmodel (Fig. 1) and the post-PCI top-performingmodel
(Fig. 5) reveals distinct shifts in thekeypredictors of patient outcomes. In the
pre-PCI model, primary drivers of mortality risk included the CFS, glucose
levels, the Killip class, and systolic blood pressure, underscoring the pre-
dictive value of baseline clinical and laboratory parameters before inter-
vention. In contrast, the post-PCI model retained the Killip class, glucose
levels, the CFS, and creatinine levels as pivotal predictors but introduced the
significance of post-procedural factors, such as LVEF, post-PCI TIMI blood
flow, and the interval from symptom onset to wire crossing. This shift
highlights the evolving role of procedural and recovery-related variables in
shaping outcomes.

Fig. 3 | Pre-PCI model. SHAP summary plot and
causal effect of CatBoost model with ElasticNet
feature selection. a SHAP summary plot, b causal
effect.

a

b
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Performance of the top-ranking model. Consistent with the pre-PCI ana-
lysis, the Random Forest model with Ridge feature selection emerged as the
top performer, achieving the highest AUC and outperforming the Logistic
RegressionmodelwithLasso feature selectionandestablishedriskmodels like

GRACE 2.0 and TIMI. However, the performance gap between the Random
Forest and Logistic Regression models narrowed slightly in the post-PCI
context, suggesting that incorporating procedural and outcome-related fea-
tures enhances predictive capability across complex and simpler models.

Fig. 4 | Pre-PCI model. SHAP dependence plot of the 10 features of the CatBoost model with ElasticNet feature selection. bpm, beat per minute.
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Regarding calibration (Fig. 6b), the Random Forest model exhibited
robust reliability, aligning closely with the ideal diagonal line over most
probability ranges and demonstrating minimal underestimation at higher
probability levels. While this pattern was consistent with pre-PCI findings,
theLogisticRegressionmodel’s calibration in thepost-PCI scenario revealed
more significant deviations, overestimating risk across all levels of observed
probabilities.

The PR curves (Fig. 6c) further underscored the Random Forest
model’s advantage, maintaining superior precision across all levels of recall,
particularly inhigh-recall scenarios.Although this trend echoed thepre-PCI
results, the PR performance gap between the models was slightly less pro-
nounced post-PCI.

In summary, the Random Forest model with Ridge feature selection
consistently performed better in predicting post-PCI risk. However, the
reduced AUC performance gap relative to the Logistic Regression model
indicates that the enriched post-PCI feature set enhances predictive per-
formance across a broader range of model complexities.

SHapley additive exPlanations and causal random forest analysis. These
analyses unveiled critical predictors and their roles in understanding patient
outcomes. Compared to the pre-PCI analysis, the post-PCI findings high-
light the additional influence of procedural factors alongside baseline clin-
ical characteristics.

The SHAP summary plot (Fig. 7a) demonstrates that the Killip class,
the CFS, and glucose consistently ranked among the most influential pre-
dictors in pre- and post-PCI models. However, the post-PCI model further
underscored the significance of post-procedural variables, including LVEF,
post-PCI TIMI blood flow, and the time from symptom onset to wire
crossing.

Dependence plots (Fig. 8) reveal nuanced relationships, such as the
linear increase in risk associated with higher Killip class and CFS scores, the
non-linear associationsof glucose and creatinine levelswithoutcomes, anda
U-shaped relationship for systolic blood pressure, where deviations from an
optimal range elevated risk. Delays in intervention were strongly linked to
poorer outcomes, while high post-PCI TIMI blood flow correlated with
improved survival rates.

Causal effect analysis (Fig. 7b) reinforced these findings, with theKillip
class exhibiting the most significant causal impact on mortality. Other
variables, such as the CFS, glucose, and creatinine, also displayed notable
causal contributions. Procedural metrics, particularly post-PCI TIMI blood
flow, further highlighted the critical role of successful intervention in
shaping patient outcomes.

Both pre- and post-PCI models consistently identified the Killip
class, theCFS, andglucose as pivotal predictors, underscoring their central
role in mortality prediction. However, the post-PCI model expanded the
pre-PCI framework by integrating procedural features, offering a more
nuanced and comprehensive understanding of post-intervention risk.
This enhancedperspective bridges baseline clinical factorswith the impact
of procedural success, providing valuable insights into optimizing post-
PCI patient care.

Discussion
ML models of the STEMI-OP project have shown significant promise in
predicting in-hospital mortality among older patients undergoing primary
PCI, consistently surpassing traditional risk-scoring systems across pre- and
post-PCI phases. The STEMI-OPpre-PCImodel demonstrated exceptional
predictive accuracy using only clinical and basic laboratory data available at
admission. These advancements are particularly significant in resource-
constrained settings like Vietnam, where limited health insurance coverage
often leavespatients facing substantialfinancial burdens forPCIprocedures.
The enhanced predictive accuracy of pre-PCI models supports more
informed decision-making regarding treatment strategies and financial
planning for patients and their families. The STEMI-OP post-PCI model
demonstrated even greater predictive power by incorporating procedural
and post-intervention data. These findings underscore the criticalT
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importance of procedural outcomes in refining mortality risk assessments
and optimizing patient care.

Previous studies have consistently demonstrated the superior
performance of ML models over traditional risk scores. In Malaysia,
ML models outperformed the TIMI score, achieving AUCs of 89% in
the general population and 93% in females with STEMI, compared to

TIMI’s 81%8,9. Similarly, in Korea, the XGBoost model achieved an
AUC of 93.8%, surpassing TIMI (86.6%) and GRACE (92.1%)10. In
Israel, a full-feature Random Forest model reached an AUC of 80.4%,
significantly exceeding the GRACE score of 76.4%, while a simple
Random Forest model achieved an AUC of 78.7%, comparable to
GRACE11.

Fig. 5 | Post-PCI model. Feature Importance of
Random Forest model after applying Ridge regres-
sion method for feature selection. PCI percutaneous
coronary intervention.

b c

a

Fig. 6 | Post-PCI model. Random Forest model with Ridge feature selection versus Logistic Regression model with Bayesian feature selection versus traditional models.
a Receiver operating characteristic (ROC) curves, b calibration plots, c precision-recall curves. AUC area under the curve, CI confidence interval, PR precision recall.
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Feature Importance, SHAP values, and CRF offer complementary
insights into the predictive modeling process, each addressing distinct yet
interconnected aspects of feature interpretation and application. Feature
Importance provides an initial perspective on the contribution of each
feature to the model after the feature selection process is completed; how-
ever, it does not account for interactions betweenvariables, nor can it specify
the directionality or elucidate the underlying mechanisms of these con-
tributions. In contrast, SHAP leverages game theory to elucidate the mag-
nitude and direction of each feature’s impact on individual predictions and
account for interactions between variables, thereby offering nuanced
interpretability at the level of individual patients or cases. As a result, SHAP
provides a more detailed and comprehensive understanding of each vari-
able’s influence within the model compared to the Feature Importance
method. However, the overall ranking and contribution levels of features
remained largely consistent between the two methods in both the pre-PCI
and post-PCI models. Notable shifts in feature order predominantly
occurred among variables with similar levels of importance—for instance,
the interchange in rank between the CFS and blood glucose in the pre-PCI
model or between left ventricular ejection fraction and the time from
symptom onset to wire crossing in the post-PCI model. This demonstrates
the stability of feature contributions, whether assessed in isolation or with
interactions between variables taken into account.

However, neither Feature Importance nor SHAP alone can reliably
infer causality, which can only be thoroughly established through rando-
mized controlled trials. To address this gap in the context of real-world
settings, CRF explicitly estimates conditional causal effects, enabling prac-
titioners to assess how deliberate interventions on certain features can affect
clinical outcomes or prognoses. Specifically, a variable may demonstrate

only a limited association with the outcome at a given cross-sectional point
—for instance, post-PCI TIMI blood flow, which had the lowest SHAP
impact in the post-PCI model—yet holds the potential to produce themost
substantial change in the outcome if effectively modified through inter-
vention, as indicated by its large effect size in the CRF analysis. This high-
lights that SHAP andCRF provide distinct yet complementary insights into
the influenceof individual features on themodel, eachcontributing aunique
perspective to the interpretation process.

Determining the optimal number of variables for inclusion in a pre-
dictivemodel requires a careful trade-off betweenmaximising performance
and ensuring clinical practicality. While models with fewer variables are
inherently more straightforward and user-friendly in real-world settings,
theyoften fall short in predictive power. Traditional risk scores, for instance,
typically rely ononly 6–8 variables, which contributes to their ease of use but
also partly explains their modest performance, with AUCs seldom
exceeding 0.9—both in their original development studies and their external
validations3–7,26–28. On the other end of the spectrum, models enriched with
numerous features generally achieve higher accuracy but at the cost of
complexity that undermines their clinical usability. More critically, such
models are highly susceptible to overfitting, limiting their generalization
ability across various populations. Recent ML models serve as illustrative
examples for this pattern, as they often includemore than tenpredictors and
consistently outperform traditional risk scores regarding predictive
accuracy8–14,29. However, this increase in complexity comes with trade-offs.
The sheer number of features further compounds the inherent complexity
ofMLmodels,making themeven less interpretable andmore challenging to
integrate into routine clinical practice. Although the STEMI-OP project
acknowledges the limitation of arbitrarily selecting ten features for both the

Fig. 7 | Post-PCI model. SHAP summary plot and
causal effect of Random Forest model with Ridge
feature selection. a SHAP summary plot, b causal
effect. PCI percutaneous coronary intervention.

a

b
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pre- and post-PCI models, this decision was intentional. The primary
objective was to balance enhancingmodel performance over traditional risk
scores and maintaining simplicity, interpretability, and clinical feasibility.
Moreover, by constraining the number of features, themodel design aims to
minimize the risk of overfitting, thereby increasing the likelihood that the

models will preserve acceptable performance during external validation
across diverse patient populations in future applications.

The STEMI-OPproject represented thefirst knownattempt to develop
ML models specifically to predict in-hospital mortality in older patients
following primary PCI. Both conventional models and recent ML

Fig. 8 | Post-PCI model. SHAP dependence plot of the 10 features of the Random Forest model with Ridge feature selection. bpm beat per minute, PCI percutaneous
coronary intervention.
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approaches have been developed and validated on data from the general
population, with a relatively low representation of older patients3–14,26–29. In
addition to key features such as the Killip class, blood pressure, heart rate,
LVEF, glucose, and creatinine levels, age consistently emerged in both tra-
ditional and ML models as one of the most critical predictors influencing
model performance8–14,29.However, there is increasing emphasis on geriatric
assessments, driven by the aging population and evidence supporting the
prognostic significance of geriatric syndromes, particularly frailty, in pre-
dicting cardiovascular outcomes in older adults16–19,30. Recently, with deeper
insights into geriatrics, frailty, as a marker of biological age, proved to be a
more accurate predictor of poor outcomes, underscoring the greater
importance of frailty over chronological age in risk assessment for older
patients16–19. Frailty is defined by a breakdown in the coordination of mul-
tiple physiological systems, disrupting the body’s ability to maintain
dynamic homeostasis, depleting its physiological reserves, and rendering it
more vulnerable to illness and death31. It often manifests as an impaired or
dysfunctional response to stressors, such as acute events like myocardial
infarction, setting off a damaging cycle of functional decline. This cascade of
decline amplifies the harmful effects of acute events, escalating the risk of
severe adverse outcomes and mortality. In both the STEMI-OP pre- and
post-PCI models, age, historically a strong predictor in traditional and ML
models3–7,26–28, lost much of its predictive power when frailty, measured by
the CFS, was introduced. The CFS, following the Killip class, consistently
ranked as the second most significant predictor in the majority of pre- and
post-PCI ML models.

Core clinical variables—such as Killip classification, systolic blood
pressure, heart rate, duration of ischemia, and serum creatinine—have long
stood as pillars in risk stratification, consistently featured across both tra-
ditional scoring systems and more recent ML models3–14,26–29. In our study,
these variables remained among themost influential predictors of outcomes
in both top-performing pre- and post-PCImodels. Among them, the Killip
class stands out as a particularly potent prognostic indicator, persistently
included in virtually all priormodels. Interestingly, in addition to frailty, the
STEMI-OP models also incorporated several more predictors that were
either underrepresentedor entirely absent in conventional risk scores3–7,26–28.
For example, hemoglobin in the pre-PCI model or post-PCI TIMI blood
flow in the post-PCImodel—seen only in the CADILLAC score5—or radial
artery access in the post-PCI model—exclusive to the ALPHA score6—are
notable additions. This discrepancy may partly be attributed to the more
constrained variable selection strategies employed in traditional models,
which often relied on a limited set of 6–8 predictors and largely overlooked
procedure-specific features related to PCI. Consequently, thesemodelsmay
have inadvertently omitted features that, although individually weak pre-
dictors, still contributed meaningfully to overall model performance. As a
result, conventional risk scores may have fallen short in capturing the full
complexity of patient outcomes, potentially explaining their relatively lim-
ited predictive performance. On the other hand, modern ML-based
approaches embrace a broader spectrum of features, enabling the inclusion
of nuanced clinical and procedural variables and, in turn, achieving sub-
stantial gains in performance. By integrating such predictors—despite their
relatively modest individual impact—into both pre- and post-PCI models,
the STEMI-OP models enriched the predictive scope of traditional risk
scores without introducing excessive complexity, offering a balanced yet
more powerful alternative.

A notable strength of the STEMI-OP project lay in its prospective data
collection approach, which allowed for the proactive collection of all feature
data across individual patients, significantly reducing missing data. Most
prior studies developingMLmodels have utilized retrospective data, where
certain featureswere excludeddue to ahighproportionofmissing values8–14.
The subsequent use of imputation algorithms in these cases resulted in
datasets that did not fully express the true nature of the features. Addi-
tionally, evaluating frailty using the CFS is impractical when relying on
retrospective medical records. Frailty assessment has only gained attention
in recent years, and as such, older medical records lacked any documented
frailty information.

In summary, the STEMI-OP models, with the combination of
advancedML algorithms, robust feature selectionmethods, SHAP andCRF
for model interpretability, the novel inclusion of frailty as a feature, and the
use of prospective data, have proven to be a highly effective strategy for
predicting in-hospital mortality in older patients undergoing primary PCI.
Thesemodels not only outperformed traditional risk scores but also offered
the necessary transparency for clinical adoption, marking a significant
advancement in the application of artificial intelligence in geriatric
healthcare.

Despite the innovations in approach and implementation, the STEMI-
OP project had several limitations. First, constraints in resources and time
allocated to this studyhave limited the advancement of ourmodels into fully
functional platforms designed for direct engagementwith clinicians, such as
interactive visualization tools or mortality risk assessment applications.
Second, the STEMI-OPprojectwas limited to several tertiary cardiovascular
centers in southern Vietnam, which may restrict the generalizability of the
models to the broader older population in the country. While employing
Leave-One-Center-Out Cross-Validation as a rigorous internal validation
technique, the absence of external validation remains a limitation. Vali-
dating these STEMI-OP models using independent datasets from different
geographic regions and healthcare settings would ensure their general-
izability. Prospective validation in real-world clinical environments would
further strengthen the models’ credibility by assessing their performance in
real-time decision-making scenarios. Expanding research to encompass
diverse populations and performing external validation studies across var-
ious regions ofVietnamand Southeast Asiawould enhance the applicability
and robustness of the findings, increasing their relevance to a broader
demographic. Third, although the STEMI-OP project did not implement
Local Interpretable Model-agnostic Explanations (LIME), it remains a
promising tool for improving interpretability. Future research could explore
LIME as part of visualization tools to provide localized insights for each
individual prediction, complementing SHAP’s global and local feature
explanations and further enhancing model transparency and clinical
applicability. Another limitation is the shift in the distribution of P2Y12
inhibitor usage following guideline updates, whichmay have contributed to
differences in mortality between the two timelines, potentially introducing
bias in model development and interpretation. However, during model
development, the P2Y12 inhibitor type was incorporated into the feature
selection process to evaluate its influence on the model. This represents an
attempt, to some extent, to mitigate the potential bias associated with this
issue. Lastly, frailty assessment in older patients remains under-prioritized
in Vietnam, creating substantial barriers to the application of these models
in clinical practice.

The implementation of ML models in real-world clinical settings
requires addressing critical challenges such as scalability, cost-effectiveness,
and compatibilitywith existing healthcare systems.Tomaximize the clinical
utility of the STEMI-OP models, future research should prioritize creating
advanced visualization tools that translate complex predictions into clear,
actionable insights for clinicians. For instance, interactive dashboards
combining SHAP plots with causal effect summaries could enable practi-
tioners to delve into how key predictors shape individual risk profiles. Such
toolswould act as a critical interface, bridging the gap between sophisticated
ML algorithms and their practical clinical application while fostering trust
and enhancing usability. The STEMI-OP models could be implemented
either as an exclusive application on smart devices or as components of
clinical decision support systems embedded within electronic health record
platforms. Such integration facilitates real-time access to patient data,
enabling the generation of instantmortality risk prediction that can be used
to inform treatment strategies.

An increasing body of evidence suggests the potential to prevent
and reverse frailty through several straightforward interventions based
on physical activity (e.g., multicomponent exercise incorporating
resistance training) or nutritional strategies (e.g., the Mediterranean
diet)32,33. These approaches simultaneously represent lifestyle mod-
ifications associated with improved outcomes for patients undergoing
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primary PCI. Consequently, reversing or decelerating frailty progres-
sion may contribute significantly to improving the prognosis of older
patients after primary PCI. Our proposed prognostic model may serve
as a critical reminder to clinicians of a novel prognostic geriatric-
specific factor that significantly impacts mortality and holds the
potential to be preventable and even reversible. This emphasizes the
necessity of early identification and timely intervention to address this
factor, thereby advancing healthcare quality for the aging population.

Methods
Study design and patient cohorts
The STEMI-OP project included 1460 older patients diagnosed with
STEMI who underwent primary PCI. Among them, 426 patients were
prospectively enrolled from two national cardiovascular centers in
southern Vietnam between February 2017 and April 2018, while an
additional 1034 patients were recruited prospectively from two other
cardiovascular centers in the same region between February 2021 and
May 2024.

The study included individuals aged 60 years or older, aligningwith the
definitionof olderadults establishedby theUnitedNations34. This definition
is uniformly recognized across all ASEAN member states35.

STEMI was defined in line with the 2023 European Society of Cardi-
ology guideline for acute coronary syndrome management30. Patients were
excluded if they had: (a) age <60; (b) suspected STEMI but did not undergo
coronary angiography; or (c) culprit lesions but did not undergo
primary PCI.

All primary PCI procedures and medications followed standard
techniques and adhered to the 2023 European Society of Cardiology
guideline for acute coronary syndrome management30. The study received
approval from the local ethics committee of the University ofMedicine and
Pharmacy at Ho Chi Minh City.

The STEMI-OP project workflow is illustrated in Fig. 9, detailing each
phase, fromdata collection to the development ofMLmodels for predicting
in-hospital mortality.

Data collection
Financial barriers in developing countries like Vietnam consistently limit
access to advanced medical procedures such as primary PCI. Health
insurance typically provides insufficient coverage for high-cost, specialized
treatments, leaving patientswith significantfinancial burdens for life-saving
interventions. Consequently, patients and their families face difficult
financial decisions under time pressure, underscoring the need for the
STEMI-OP project to develop reliable pre-PCI predictive models to assess
in-hospital mortality and inform treatment decisions.

To address this issue, pre-PCI predictive models were developed using
basic admission data, including clinical characteristics, comorbidities, and
fundamental laboratory tests. These models aim to predict mortality risk
before PCI, providing critical information for decision-making. Addition-
ally, the STEMI-OP project developed post-PCI models to improve pre-
dictive accuracyby incorporatingmore detailed data, including serumhigh-
sensitivity troponin levels, echocardiographic findings, and PCI procedural
characteristics. Comprehensive data on demographic information,
comorbidities, and clinical presentationwere thoroughly documented upon
admission.

Frailty, a key geriatric-specific predictor of adverse outcomes, was
assessed using the CFS version 2.0 at admission15. The CFS is a nine-tier
framework grounded in the cumulative deficit frailty model. It provides a
concise clinical representation of biological age by incorporating key factors
such as illness severity, comorbidities, functional impairments, and cogni-
tive deficits15. Notably, the CFS has been recognized as a highly effective tool
for evaluating frailty in patients with acute coronary syndrome (ACS),
offering robust predictive validity and ease of use in clinical practice36,37.

Fig. 9 | The STEMI-OP project workflow and applied methodology. AUC area under the curve, PCI percutaneous coronary intervention, STEMI ST-segment elevation
myocardial infarction.
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Frailty levels were assessed using the CFS through direct patient
interviews or consultations with their relatives. The evaluation targeted the
patient’s condition two weeks before hospital admission to minimize the
influence of hospitalization-related healthdeterioration.Unlike other frailty
assessments that require domain-specific instruments, the CFS relies
exclusively on questionnaire data derived from recollections of the patient’s
basic and instrumental activities of daily living. This retrospective approach
was deemed feasible, as patients were presumed to have stable health sta-
tuses before the onset of STEMI.

Trained geriatric resident physicians conducted the CFS evaluations,
documenting their findings independently in medical records. To ensure
objectivity, the collected frailty data were blinded to the principal investi-
gators,who subsequently gathered clinical outcomes.Thequestionnairewas
administered directly to patients when possible, as this method yielded the
most reliable data. However, for patients unable to communicate—such as
those in cardiogenic shock or requiring intubation—information was
obtained from relatives. If patients later regained communicative ability
during their hospital stay, any data previously collected from relatives were
superseded by new data directly provided by the patients.

Electrocardiographic features and essential laboratory tests were
recorded along with these clinical features. Information regarding medi-
cations that could influence PCI outcomes and mortality, such as aspirin,
types of P2Y12 inhibitors, and statins, was also documented before the
procedure. Post-PCI data, including procedural details, echocardiographic
findings, and troponin levels, were then gathered further to improve the
predictive power of the pre-PCI models. The pre- and post-PCI model
development features are outlined in Supplementary Table S7.

The STEMI-OP final ML models were evaluated by comparing
their performance to eight established prediction models, including
GRACE 2.0, TIMI, Zwolle, CADILLAC, PAMI, NCDR CathPCI v4,
ALPHA, and APEXAMI, with relevant features from thesemodels also
being collected3–7,26–28.

Data imbalance management
To address the issue of class imbalance in the dataset, the RandomO-
verSampler (ROS) technique is employed38. This method operates by
increasing the representation of minority classes in the data through
random duplication of samples. By replicating instances of the
underrepresented class, the process ensures a more balanced dis-
tribution of classes, which is crucial for improving the performance
and fairness of classification models. ROS is particularly effective in
scenarios where the imbalance could lead to biased predictions,
allowing ML algorithms to learn equally from all classes. This strategy
enhances the model’s generalization ability by mitigating the bias
introduced by imbalanced data, improving predictive accuracy across
all categories. By applying ROS solely to the training set, we tried to
minimize the risk of biased predictions on the test set and improved the
model’s ability to generalize across all classes and to the real-world
population, thereby enhancing its overall predictive accuracy.

MLmodels
The STEMI-OP project selected several ML algorithms for their
robustness in classification tasks, particularly in healthcare predic-
tions. The models included AdaBoost39, Naive Bayes40, Gradient
Boosting41, XGBoost41, Support Vector Machine42, Random Forest43,
Logistic Regression44, andCatboost45. AdaBoost andGradient Boosting
aim to iteratively reduce errors, while Naive Bayes offers a probabilistic
approach well-suited for high-dimensional data. Random Forest and
XGBoost excel in managing large and complex datasets with built-in
feature importance mechanisms. SVM was included due to its cap-
ability to handle high-dimensional spaces, and Logistic Regression was
chosen for its simplicity and extensive use in medical research. Cat-
Boost was selected for its ability to handle categorical features effec-
tively and mitigate target leakage, making it particularly robust in
structured data tasks common in healthcare.

Leave-one-center-out cross-validation
Leave-one-center-out cross-validation (LOCO-CV) is a robust validation
method commonly used inmulti-center studies to assess the generalizability
and stability of predictive models across heterogeneous datasets46. In this
study, LOCO-CVwas implemented using data collected from four different
cardiovascular centers. Each center represented distinct characteristics
regarding data collection methods, patient demographics, and treatment
protocols. The LOCO-CV procedure involved standardizing data from the
centers to minimize differences due to data formatting or collection
methods, training themodels on data from three centers, and evaluating the
performance of the remaining hospital’s data. This process was repeated
four times, with each center serving as the test set once. The results from
each iteration were aggregated to provide a comprehensive evaluation of
model performance. This approach not only tested the model’s stability
across the four centers but also simulated real-world scenarios where a
particular center may challenge the model’s robustness. Although LOCO-
CV can be computationally expensive, the implementation of the data from
these four centers wasmanageable, and the results provided reliable insights
into the model’s generalizability across diverse clinical environments.

In addition, LOCO-CV was concurrently applied to eight traditional
risk scores for a fair comparison. Importantly, the original published coef-
ficients and variables for each traditional risk score were used without
refitting on the test fold in each LOCO-CV iteration, treating these scores as
externally validatedmodels. This approachmirrors real-world applications,
where traditional risk scores are typically used on new populations without
retraining. By consistently applying LOCO-CV across all models, we
ensured an equal evaluation framework, allowing for fair and comprehen-
sive comparisons between ML models and established clinical scores.

Feature selection and feature importance
The determination of the optimal number of features incorporated into the
models was driven by the balance between model performance and clinical
applicability. Conventional risk scores such as GRACE, TIMI, and
CADILLAC typically incorporate only 6–8 variables4,5,7, while recent ML
models demonstrate that expanding to 10–15 features markedly improves
models’ predictive accuracy8–11,47,48. While incorporating additional features
often improves performance, an excessive number of variables can be
impractical in clinical practice andmay induce overfitting, thus limiting the
model’s generalizability to various populations. For these reasons, the
STEMI-OP project selected the ten most important features for model
development.

Four feature selection techniques were employed, including Recursive
Feature Elimination49, SelectKBest49, Sequential Forward Selection50, and
Sequential Backward Selection51, to reduce dimensionality while preserving
key features, improving model performance and interpretability.

For models capable of generating feature importance metrics (e.g.,
Random Forest, Gradient Boosting), the top ten features were retained
based on their respective importance scores. In contrast, for models lacking
inherent feature importance mechanisms, mutual information was utilized
to select the ten features with the highest mutual information values52.

To further support model-specific feature selection strategies,
regression-based analyses were conducted in parallel to identify the ten
features most significantly associated with the outcome. Lasso, Ridge,
ElasticNet, and Bayesian regression-based feature selection methods were
deliberately chosen for their regularization capabilities, which mitigate
overfitting while simultaneously ranking features by importance53. These
regression techniques are particularly advantageous in scenarios with
multicollinearity or high-dimensional datasets, as they assign weights to
features, enabling precise identification of those with the greatest predictive
value. Following the selection of their respective sets of ten features by the
four regression-based techniques, these variable subsets were subsequently
employed inMLmodels to generate combinations between eachMLmodel
and its corresponding feature selection method.

By integrating these regression-based methods and model-specific
feature selection strategies, tailored feature sets were created for each ML
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model. This holistic approach ensures the inclusion of the most relevant
features, bolstering the robustness and generalizability of the feature selec-
tion process across diverse models.

Model performance
Model evaluation. The STEMI-OP model performance was evaluated
using keymetrics, includingweighted accuracy, sensitivity, specificity, G-
Mean, F1 score, andweightedAUC. For the threshold-dependentmetrics
(e.g., accuracy, sensitivity, specificity, G-Mean, and F1 score), a prob-
ability threshold of 0.5 was used to dichotomize predicted probabilities
into class labels for metric calculation. AUC is considered a more robust
metric than accuracy, especially in imbalanced datasets. Accuracy, while
commonly used, can be misleading when one class dominates. It mea-
sures the overall correctness of predictions but does not account for the
probability estimates of classifiers. In contrast, AUC provides a more
nuanced evaluation by analyzing the trade-off between true positive and
false positive rates across varying thresholds, making it especially useful
for class-imbalanced datasets or when probability estimates are critical54.
Similarly, the F1 score, which harmonizes precision and recall, is parti-
cularly valuable for imbalanced datasets, as it captures the balance
between correctly identifying positive instances and minimizing false
positives55. Weighted AUC and weighted accuracy further refine per-
formance evaluation by accounting for the class imbalance in the dataset,
ensuring that each class contributes proportionally to the overallmetric56.
Consequently, these metrics, particularly weighted AUC, have become
preferred tools for ranking and comparing models due to their ability to
offer deeper insights into predictive performance.

In our study, these metrics, with weighted AUC serving as the decisive
criterion, were used to identify the top-performing ML model and to
compare its performance with traditional risk scores. Given that the logistic
regression model is commonly preferred in clinical settings due to its sim-
plicity and interpretability—contrasting with themore complex, non-linear
nature of ML models—a top-performing logistic regression model was
likewise identified. This model was then directly compared to the best ML
model for both predictive performance and alignment with observed
outcomes.

To further ensure the validity of comparisons, pairwise comparisons of
AUC values were performed using DeLong’s test, with the top-performing
MLmodel serving as the reference. This non-parametric approach accounts
for the correlation between predictions on the same dataset, offering a
rigorous statistical evaluation of differences in model performance.

Model calibration. Calibration in ML ensures that predicted prob-
abilities closely reflect actual outcome probabilities57. Calibration plots
are commonly used to compare predicted probabilities with observed
class probabilities. Ideally, a well-calibrated model will produce a 45-
degree diagonal line on this plot, indicating that predicted probabilities
align with empirical outcomes. This process is crucial for real-world
applications where both model accuracy and the reliability of probability
estimates are essential. Calibration is necessary for probabilistic classi-
fiers, where miscalibrated predictions could affect decision-making and
risk assessments.

In our study, calibration plots were employed to benchmark the pre-
dictive accuracy of the top-performing ML model against the best logistic
regressionmodel, allowing us to determinewhichmodel best approximated
the actual mortality outcomes.

SHapley additive exPlanations
Although conventional feature importance metrics offer some under-
standing of how individual features affect a model’s output, they frequently
fail to capture feature interactions or account for the specific contribution of
each feature to a particular prediction. To overcome this limitation, SHapley
Additive exPlanations was employed, providing both global and individual
insights into feature contributions of the STEMI-OPmodels58. In our study,
SHAPwas used on the top-performingMLmodel of both the pre- andpost-

PCI phases to quantify the contribution level of each predictor. The SHAP
summary plot uses Shapley values to give a comprehensive view of features’
impact across the entire dataset. It visualizes the distribution of Shapley
values for each variable, showing the intensity anddirectionof each feature’s
impact on the model’s predictions. This plot helps identify the most influ-
ential features andhow their contributions vary acrossdifferent samples.On
the other hand, the SHAP dependence plot focuses on the relationship
between a single predictor and the model’s output. It uses Shapley values to
illustrate how the value of a specific feature affects the prediction while also
considering interactions with other variables. This plot allows us to observe
how the impact of a feature changes with its value and how it interacts with
other predictors in the model.

Causal Random Forests
To explore causal relationships between features and in-hospital mortality
of the STEMI-OPmodels, Causal Random Forests were applied to the top-
performingMLmodel for both pre- and post-PCI phases25. TheCRFmodel
estimates the Conditional Average Treatment Effect, which quantifies the
effect of a feature on the outcome for each individual in the dataset. Unlike
standard random forests, which prioritize prediction accuracy, causal ran-
dom forests estimate heterogeneous treatment effects. This allows for the
identification of how specific features produce variations in outcomes while
accounting for interactions of covariates. In essence, this method helps
pinpoint which features have the most significant causal effects on the
outcome and how those effects may differ based on other factors in the
dataset.

Statistics
Continuous variables were summarized either as means with standard
deviations or as medians accompanied by interquartile ranges (IQR:
25%–75%). Categorical variables were reported as counts and percentages.
To compare categorical variables, the Chi-square test or Fisher’s exact test
was applied, while continuous variables were evaluated using either the
Student’s t test or theMann–WhitneyU test, depending on the normality of
the data distribution.

In the dataset, certain features exhibited a missing data rate of
1%–1.5%, including LVEF in 23 cases (1.6%), creatinine in 17 cases (1.2%),
high-sensitivity troponin T in 24 cases (1.6%), and smoking history in 21
cases (1.4%). Missing data were assumed to be completely at random. To
handle thesemissing values, amultiple imputation approachwasperformed
using the ‘mice’ package in R59.

Data availability
The data that support the findings of the STEMI-OP project are available
from Pham Ngoc Thach University of Medicine, but restrictions apply to
the availability of these data, which were used under license for the current
research and so are not publicly available. Data are, however, available from
the authors upon reasonable request and with permission of Pham Ngoc
Thach University of Medicine.

Code availability
The underlying code for this study [and the dataset] is not publicly available
but may be made available to qualified researchers at a reasonable request
from the corresponding author.
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