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Fault-tolerant quantum computation with quantum error-correcting codes has been considerably
developed over the past decade. However, there are still difficult issues, particularly on the resource
requirement. For further improvement of fault-tolerant quantum computation, here we propose a soft-
decision decoder for quantum error correction and detection by teleportation. This decoder can achieve
almost optimal performance for the depolarizing channel. Applying this decoder to Knill’s C4/C6 scheme for
fault-tolerant quantum computation, which is one of the best schemes so far and relies heavily on error
correction and detection by teleportation, we dramatically improve its performance. This leads to
substantial reduction of resources.

Q
uantum computers1,2 are expected to outperform current classical computers. Many problems intract-
able for classical computers are believed to be solved by quantum computers more efficiently1,3–11. The
most famous one is the prime number factoring problem3, the difficulty of which ensures today’s internet

security.
The origin of the speed of quantum computation is quantum superposition of physical states. This enables us to

perform a great number of calculations in parallel (quantum parallelism). Unfortunately, the quantum super-
position is very fragile. The destruction of the superposition is called decoherence. The decoherence induces errors
in quantum computation12 and makes quantum computers difficult to be realized.

The standard approaches to this problem are based on quantum error correction. Using quantum error-
correcting codes, we can make quantum computation fault-tolerant1,13. If the error probabilities of elementary
operations are lower than a threshold, we can, in principle, perform arbitrarily long quantum computation
reliably. This fact is known as the threshold theorem.

The threshold has gone up to about 1%14–19 as a result of theoretical advances over the past decade. Although
this value is comparable to error probabilities in state-of-the-art experiments2,20,21, this does not mean that the
realization of quantum computers is within reach. There are still difficult issues, particularly on resource require-
ment. First, the threshold is the value at which necessary resources become infinite. Therefore, the error prob-
abilities should be much lower than the threshold. Second, even if the error probabilities become as low as 0.1%,
the resources required for practical quantum computation will still be enormous22,23. Thus, further improvement
of fault-tolerant quantum computation has been desired.

Towards more efficient fault-tolerant quantum computation, here we propose a new decoder using soft-
decision decoding. Decoding is a crucial part of error correction in both quantum and classical situations. In
the history of classical error correction, the use of soft-decision decoding based on probabilistic inference, instead
of conventional hard-decision decoding based on algebraic techniques, was a key step to achieve the theoretical
limit24. This is natural because decoding is, in essence, a problem of probabilistic inference. In general, such a
problem is computationally hard. In the case of classical error correction, clever algorithms and approximations
with appropriate error-correcting codes have enabled efficient soft-decision decoding. In the case of quantum
error correction, an efficient soft-decision (optimal) decoding is possible for quantum concatenated codes, which
has been shown by Poulin25. The decoding has displayed high performance on a simple quantum channel called
the depolarizing channel. To the best of our knowledge, however, this has not been applied to fault-tolerant
quantum computation. The reason for this is probably as follows: this algorithm is based on conventional
syndrome measurements, which require many iterative fault-tolerant measurements13,26 and consequently may
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not be able to achieve high performance in fault-tolerant quantum
computation; probabilistic inference seems difficult in the case of
fault-tolerant quantum computation because the estimation of error
probabilities will be difficult.

Instead of syndrome measurements, here we focus on quantum
error correction by teleportation proposed by Knill16,27, which is
more efficient and therefore more suitable for fault-tolerant quan-
tum computation. We propose a soft-decision decoder for it. Using
the depolarizing channel, we found that the performance of this
decoder is very insensitive to the difference between the actual error
probability and that assumed for the decoding. This means that it is
unnecessary to estimate actual error probabilities accurately, and
consequently opens the possibility of applying soft-decision decod-
ing to fault-tolerant quantum computation. Applying this decoder to
Knill’s C4/C6 scheme for fault-tolerant quantum computation16,
which is one of the best schemes so far and relies heavily on error
correction and detection by teleportation, we improve its perform-
ance dramatically. This leads to substantial reduction of resources
and will open a new way to large-scale quantum computers.

Results
Performance for the depolarizing channel. To evaluate the perfor-
mance of our soft-decision decoder, we first investigated the
performance for the depolarizing channel1,25, which is the standard
model for noisy quantum channels. On this channel, three Pauli
errors, X, Y, and Z, occur with equal probability pdep/3 on each
physical qubit, where pdep denotes the error probability for the
depolarizing channel. (Here, three Pauli operators are denoted by
X, Y, and Z, and an identity operator is denoted by I).

We estimated the decoding error probability for the depolarizing
channel by numerical simulation. In this simulation, it is assumed
that errors occur only on the channel and the other operations
(encoding and decoding) are performed perfectly (see Methods
and Supplementary Information for the details of the simulation).
The error-correcting code used in the present work is the C4/C6

code16 (see Supplementary Information for the details of the C4/C6

code).
In this case, we can design an optimal decoding if we know pdep

(see Supplementary Information). In actual channels, however, pdep

may be unknown, and therefore we must estimate pdep and use the
estimated value for the decoding. Here this value used for the decod-
ing is denoted by p0. If the performance of the decoding is sensitive to
the difference between pdep and p0, the decoding will be not useful
practically. Thus, we first examined the p0 dependence of the per-
formance of the decoding. The result is shown in Fig. 1, where pdep 5

10%. The result clearly shows that the performance of the decoding is
very insensitive to the difference between pdep and p0. (This is the case
for the other values of pdep.) This property is very significant for fault-
tolerant quantum computation because the accurate estimation of
error probabilities in fault-tolerant quantum computation will be
difficult.

Encouraged by the above result, we design our soft-decision
decoder such that it is optimal for the depolarizing channel with
error probability of 19%, which is associated with the threshold for
the depolarizing channel (see below). This decoder can achieve high
performance not only for the depolarizing channel but also for fault-
tolerant quantum computation, as expected. (See Supplementary
Information for the details of the decoder design).

The simulation results for the depolarizing channel are shown in
Fig. 2. Figures 2(a) and 2(b) correspond to Knill’s hard-decision
decoder16 and our soft-decision decoder, respectively (see Methods
and Supplementary Information for the two decoding algorithms).
The thresholds for them are 13.6% and 18.8%, respectively. When
pdep is much smaller than the threshold, power laws hold as shown in
Fig. 2.

Logical controlled-NOT gate. It is known that the error threshold
for fault-tolerant quantum computation is usually determined by
that for the logical controlled-NOT (CNOT) gate because it is the
noisiest elementary gate. In this sense, the logical CNOT gate is the
most important gate for fault-tolerant quantum computation.
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Figure 1 | Dependence of decoding error probability for the depolarizing
channel on p0. The depolarizing error probability, pdep, is 10%. The

decoder is designed such that it is optimal for the depolarizing channel

with error probability p0. Different symbols (colors) correspond to

different concatenation levels, as shown in the figures.
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Figure 2 | Decoding error probability for the depolarizing channel.
(a) and (b) correspond to the hard-decision and soft-decision decoders,

respectively. Different symbols (colors) correspond to different

concatenation levels, as shown in the figures. The thresholds are indicated

by the vertical dashed lines. When pdep is much smaller than the threshold,

power laws hold as shown in the figures.
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We numerically simulated logical CNOT gates to evaluate the
performance of our soft-decision decoder for fault-tolerant quantum
computation. In this simulation, we have assumed that errors occur
only on physical CNOT gates with probability pCNOT and the other
operations are perfect. This assumption is valid and useful in the
following sense: physical CNOT gates are usually the noisiest phys-
ical elementary gate; physical CNOT gates are used most frequently
in fault-tolerant quantum computation, and consequently their
effects are dominant23; if the other errors should be taken into
account, we can effectively model such a case by assuming noisier
physical CNOT gates and can use the present results. (The effect of
latency is beyond the scope of the present paper.) The model of a
noisy physical CNOT gate used here is the standard one16, where
15 two-qubit Pauli errors occur with equal probability pCNOT/15.
(See Methods and Supplementary Information for the details of
the simulation).

The symbols (circle, square, triangle, and cross) in Fig. 3 were
obtained by the simulation. Since power laws hold again and the
exponents are nearly equal to those for the depolarizing channel,
we have assumed that the error probabilities of logical CNOT gates
can be modeled by the depolarizing channel. Thus, the curves in
Fig. 3 were estimated with the results for the depolarizing channel
(see Supplementary Information for the detailed estimation).

Discussion
First, we discuss the results for the depolarizing channel (Fig. 2). The
threshold for the soft-decision decoder is very close to a theoretical
limit known as the hashing bound (18.9%)25,28. This shows the high
performance of the soft-decision decoder. More importantly, one
should pay attention to the exponents for the power laws which hold
when pdep is much smaller than the threshold. The exponents rep-
resent the minimum number of physical-qubit errors inducing
decoding errors. The exponents for the hard-decision decoder are
approximately a Fibonacci sequence (1, 2, 3, 5, 8, …). This fact has
been pointed out by Knill16. On the other hand, the exponents for the
soft-decision decoder are approximately the geometric sequence,
2l21, where l is the concatenation level. Since the code distance of
the C4/C6 code is given by 2l, each exponent is approximately equal to
a half of the corresponding code distance. This indicates that the soft-
decision decoding is almost optimal. (A quantum code with distance
d has the potential to correct (d 2 1)/2 qubit errors1.) Since the
geometric sequence is much greater than the Fibonacci sequence
for high concatenation levels, the decoding error probability for
the soft-decision decoder becomes lower much faster than that for
the hard-decision one as pdep becomes smaller. This also shows the
high performance of the soft-decision decoder. Here it should be
noted that these high performances can be achieved by computation-
ally efficient decoding calculations (see Supplementary Information
for the details of the calculations).

Next, we discuss the results for logical CNOT gates (Fig. 3). The
error probability for level-4 encoding with the soft-decision decoder
is a little lower than that for level-5 encoding with the hard-decision
decoder. Since the total number of physical qubits required for the
preparation of a level-l encoded qubit (l $ 2) is given by 4 3 12l21 (see
Supplementary Information for the derivation and validity of this
formula), where it is assumed that necessary and sufficient auxiliary
qubits for fully parallel computation are used, this result concludes
that the qubit resource for the C4/C6 scheme is one order of mag-
nitude reduced by using the soft-decision decoder, as expected. On
the other hand, if level-5 encoding is used, the soft-decision decoder
allows one to use much noisier physical CNOT gates to achieve the
same value of the logical-CNOT error probability. These dramatic
improvements are the consequence of the almost optimal perform-
ance of the present decoder.

Finally, we discuss the resource requirement for factoring a 1000-
bit integer by Shor’s algorithm3,22,23. From our estimation, this
application requires about 1014 logical CNOT gates (see Supplemen-
tary Information for the detailed estimation). Thus, the error prob-
ability of a logical CNOT gate should be lower than 10212%. Using the
hard-decision decoder, we can achieve this value by level-5 (324-
qubit) encoding if the error probability of a physical CNOT gate is
lower than 0.1%. On the other hand, the soft-decision decoder
enables one to achieve the same value by level-4 (108-qubit) encoding
under the same condition. These results are surprisingly good in
comparison with the recent results for surface codes22,23, where a
logical qubit is encoded into several thousands of physical qubits
under similar conditions. If we count auxiliary physical qubits, then
the total number of physical qubits for an encoded qubit is given by
the above formula. That is, a level-4 logical qubit requires 6912 phys-
ical qubits, which is comparable to the cases of surface codes. While
surface codes have a remarkable advantage that they require only
nearest-neighbor interactions (the C4/C6 scheme requires more com-
plicated interactions), the C4/C6 scheme has the potential for further
reduction of the number of physical qubits because 6804 of the 6912
qubits are auxiliary ones. Thus, the soft-decision decoder will open a
new way to practical quantum computers.

Methods
Soft-decision decoding. The goal of decoding for quantum error correction by
teleportation is to decide a reliable result of the encoded Bell measurement, {bx, bz},
with the data of the physical measurements (see Supplementary Information for
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Figure 3 | Logical-CNOT error probability. (a) and (b) correspond to the

hard-decision and soft-decision decoders, respectively. The symbols

(circle, square, triangle, and cross) are the simulation results. The curves

were estimated with the results for the depolarizing channel (see the text).

Different symbols (colors) correspond to different concatenation levels

and the lowest bold lines correspond to level 5, as shown in the figures.
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details). In Knill’s hard-decision decoding for the C4/C6 code16, at each level of
concatenation, the value of each encoded qubit is decided as 0, 1, or E, where E is a
symbol indicating ‘error detected’. (Since both C4 and C6 are error-detecting codes,
the decoding result includes ‘error detected’.) We call this decoding ‘hard-decision’
because only the three values are used in each step of the decoding. Also note that bx

and bz are decided independently, that is, their correlation is ignored.
Our soft-decision decoding is as follows. In this decoding, we calculate the

conditional probability, P(bx, bz), that {bx, bz} becomes {0, 0}, {0, 1}, {1, 0}, or {1, 1} on
the condition that the data of the physical measurements are given. (The detailed
algorithm is presented in Supplementary Information.) We call this decoding
‘soft-decision’ because real-valued quantities (probabilities) are used for the
decoding. Furthermore, the correlation between bx and bz is taken into account as the
joint probability P(bx, bz), unlike the hard-decision decoding.

For this calculation, we must know the error probabilities for the physical mea-
surements. Instead of estimating the error probabilities in each case, the decoder is
designed such that it is optimal for the depolarizing channel with error probability of
19%, as mentioned in the Results section. Note that this calculation is efficiently
performed (see Supplementary Information).

Obtaining P(bx, bz), we decide the result of the Bell measurement as the value
maximizing P(bx, bz). Thus, the error correction by teleportation with the soft-
decision decoding is achieved.

This decoding can easily be modified for error detection, as suggested by Poulin25. If
the maximum probability obtained in the decoding is lower than a specific value set
appropriately in advance, then the decoder outputs E (‘error detected’). This error
detection is useful for preparing encoded states by postselection. In fact, we have used
this decoder in the state preparation and achieved the lower error probabilities of
logical CNOT gates (see Supplementary Information for details).

Simulation methods. The simulation for the depolarizing channel is done as follows
(see Supplementary Information for details). In this case, errors occur only on the
channel (the other operations are perfect). First, a logical Bell pair is prepared. Next,
the first logical qubit of the Bell pair is transmitted through the depolarizing channel,
where depolarizing errors occur. After that, we correct the errors by teleportation.
Then, the Bell pair is disentangled by a transversal CNOT gate. Finally, the two logical
qubits are measured and decoded in an appropriate manner. If both the measurement
results are 0, the decoding has succeeded. Otherwise, the decoding has failed.

The simulation for the logical CNOT gate is done as follows (see Supplementary
Information for details). In this case, errors occur only on physical CNOT gates used
in the logical CNOT gate the error probability of which is to be estimated (the other
operations are perfect). First, two error-free logical Bell pairs are prepared. Next, an
error-free transversal CNOT gate is performed on the first logical qubits of the two
Bell pairs, which is followed by the noisy logical CNOT gate on the first logical qubits.
Here the noisy logical CNOT gate is implemented by a noisy transversal CNOT gate
followed by error correction by teleportation with noisy physical CNOT gates, as
Knill did in Ref. 16. Finally, after the two Bell pairs are disentangled with two error-
free transversal CNOT gates, the four logical qubits are measured and decoded in an
appropriate manner. If all the measurement results are 0, the logical CNOT gate has
succeeded. Otherwise, the logical CNOT gate has failed.

The simulators used in the present work are described in Supplementary
Information.
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