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Abstract

Osteoporosis is a complex disorder and commonly leads to fractures in elderly persons. Genome-wide association studies
(GWAS) have become an unbiased approach to identify variations in the genome that potentially affect health. However,
the genetic variants identified so far only explain a small proportion of the heritability for complex traits. Due to the modest
genetic effect size and inadequate power, true association signals may not be revealed based on a stringent genome-wide
significance threshold. Here, we take advantage of SNP and transcript arrays and integrate GWAS and expression signature
profiling relevant to the skeletal system in cellular and animal models to prioritize the discovery of novel candidate genes
for osteoporosis-related traits, including bone mineral density (BMD) at the lumbar spine (LS) and femoral neck (FN), as well
as geometric indices of the hip (femoral neck-shaft angle, NSA; femoral neck length, NL; and narrow-neck width, NW). A
two-stage meta-analysis of GWAS from 7,633 Caucasian women and 3,657 men, revealed three novel loci associated with
osteoporosis-related traits, including chromosome 1p13.2 (RAP1A, p = 3.661028), 2q11.2 (TBC1D8), and 18q11.2 (OSBPL1A),
and confirmed a previously reported region near TNFRSF11B/OPG gene. We also prioritized 16 suggestive genome-wide
significant candidate genes based on their potential involvement in skeletal metabolism. Among them, 3 candidate genes
were associated with BMD in women. Notably, 2 out of these 3 genes (GPR177, p = 2.6610213; SOX6, p = 6.4610210)
associated with BMD in women have been successfully replicated in a large-scale meta-analysis of BMD, but none of the
non-prioritized candidates (associated with BMD) did. Our results support the concept of our prioritization strategy. In the
absence of direct biological support for identified genes, we highlighted the efficiency of subsequent functional
characterization using publicly available expression profiling relevant to the skeletal system in cellular or whole animal
models to prioritize candidate genes for further functional validation.
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Introduction

The feasibility of carrying out genome-wide association studies

(GWAS) has led to the rapid progression of the field of complex-

disease genetics over the past few years. Although the GWAS

approach has been successful in identifying novel candidate genes

leading to new discovery of pathways that are involved in the

pathophysiology of diseases, the genetic variants identified so far

only explain a small proportion of the heritability for complex

traits [1]. Due to the modest genetic effect size and inadequate

power to overcome the heterogeneity of genetic effects in meta-

analysis, true association signals may not be revealed based on a

stringent genome-wide significance threshold alone [2]. In

addition, the majority of the GWAS have not provided much

information beyond statistical signals to understand the genetic

architecture for those usually novel genes that have not been

studied for a particular trait/disease before. Thus, the necessity of

incorporating additional information when studying the GWAS

has become apparent. Expression profiling with gene signatures of

cellular models have been used to characterize gene’s involvement

in bone metabolism and disease processes. One such approach is

parathyroid hormone (PTH) stimulated osteoclastogenesis and

osteoblast maturation for osteoblastogenesis [3]. PTH indirectly

stimulated osteoclastogenesis via its receptors on osteoblasts, which

then signal to osteoclast precursors to stimulate osteoclastogenesis.

Impaired osteoblastic differentiation reduces bone formation and

causes severe osteoporosis in animals [4]. The TNFRSF11B/OPG

gene, a well-known candidate gene for osteoporosis, is involved in

osteoclastogenesis through the regulation of PTH [5]. Compared

to GWAS-identified candidate genes that do not show differential

expression in these cellular models, genes like TNFRSF11B/OPG

with differential expression are more likely to be involved in

skeletal metabolism and thus more likely to be truly associated

with osteoporosis. Given that the majority of the reported genome-

wide significant SNPs are in the intergenic or noncoding regions

[6], it is not clear which SNP/gene might be implicated as a causal

SNP/gene. Since intergenic or noncoding SNPs do not appear to

affect protein sequence, it is likely that these SNPs either are in

linkage disequilibrium with the causal variants or located within

the transcription regulation elements of nearby genes. The relative

quantification of gene transcripts may act as intermediate

phenotypes between genetic loci and the clinical phenotypes.

Expression quantitative trait loci (eQTL) analysis in specific tissues

is a valuable tool to identify potentially causal SNPs [7–10]. By

integration of genetic variants, transcriptome, and phenotypic

data, investigators have the potential to provide much-needed

support to prioritize the candidate susceptibility genes identified

from GWAS for further validation [11–13].

Previously, we conducted a pilot GWAS for osteoporosis-related

phenotypes in a small subset of the Framingham study participants

[14]. Osteoporosis is a skeletal disorder characterized by

compromised bone strength predisposing to an increased risk of

fracture. The heterogeneity of osteoporosis has both an environ-

mental and genetic basis. Although bone mineral density (BMD) is

frequently used in the diagnosis and prognosis of osteoporosis [15],

a growing body of evidence indicates that femoral geometry also

contributes importantly to hip fracture risk [16,17]. Both BMD

and hip geometry are strongly heritable, with heritability estimates

between 50% and 85% [18]. In an attempt to identify genes that

are involved in the regulation of bone health related phenotypes,

genetic linkage analyses [19,20], candidate gene association studies

[21] and recent GWAS [22–27] have been used to implicate

several loci and candidate genes, such as OPG/RANK/RANKL

[22–24,28], LRP5 [22,23,29], LRP4 [23], ESR1 [23,30], VDR [31],

and SP7 [24,25]. However, the majority of genes that contribute to

genetic susceptibility to osteoporosis remain to be elucidated.

Seeking to extend these initial observations, in the current study,

we first performed a large-scale GWAS analysis for BMD and hip

geometry in 2,038 women and 1,531 men from the Framingham

Osteoporosis Study using 550,000 SNPs, and then replicated the

top findings in 5,595 women and 2,126 men from two

independent cohorts of Caucasian individuals. We then prioritized

the genome-wide association findings by utilizing publicly

available experiments relevant to the skeletal system in cellular

or whole animal models, and provided supportive biological

information for future functional validation of their involvement in

bone metabolism. The expression experiments included (1) gene

signatures of a mouse embryo expression atlas and mouse cellular

models of osteoblastogenesis and PTH- stimulated osteoblasts; (2)

eQTL analysis in human primary osteoblasts, lymphocytes and

liver tissues; and (3) likelihood-based causality model selection

(LCMS) by integrating genetic variants, gene expression profiling,

and skeletal phenotypes in inbred mice to identify candidate genes

causally related to bone phenotypes. An overview of the study

design is provided in Figure 1.

Results

Stage I: GWAS in Framingham Osteoporosis Study
Significant differences of BMD and geometry indices were

found between men and women in the Framingham Study with p-

values ,0.001 (Table S1). Quantile-quantile plots of observed p-

GWAS and Expression Profiling for Osteoporosis
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values for single SNP association tests under additive genetic effect

models are shown in Figure 2. Except for the tail (likely comprising

true associations), the distributions of observed p-values did not

deviate from the null distribution, which rules out systematic bias

due to bad genotyping or population substructure in our study

samples. The estimated genome control lGC for each phenotype

ranged from 0.99 to 1.02. The regression coefficients analyzed

with and without adjusting for the PCs are highly correlated

(r = 0.95–0.98). Thus, we do not expect these principal compo-

nents to influence our results substantially. SNPs associated with

each phenotype at p-values ,1026 are listed in Table S2. For

women, the most significant association was found with neck width

(NW) for SNP rs16965654 (MAF = 0.01) located 13Kb away from

the 59 upstream region of the WD repeat and SOCS box-containing 1

(WSB1) gene on chromosome 17q11.1 (p = 4.1561028). For men,

the most significant association was found with neck-shaft angle

(NSA) for SNP rs11573709 (MAF = 0.23) located in intron 7 of the

RAD23 homolog B (RAD23B) gene on 9q31.2 (p = 2.3761027). We

also performed association tests by combining men and women

together. The most significant association was found with NW for

SNP rs16965654 (p = 6.89610210).

Stage II: Meta-Analysis
All genotyped SNPs (n = 431–593 for sex-specific phenotypes) with

association test p-values ,1023 in Stage I were examined for

replication in the Rotterdam Study (both men and women) and

TwinsUK Study (women only). We performed meta-analyses by

combining results from the Framingham Study and Rotterdam Study

in men and all three cohorts in women. P-values ,4.361027 from

meta-analyses are considered as genome-wide significant associations

(See statistical methods section for details). We listed the most

significant SNP on each chromosome locus with meta-analysis p-

values ,1026 in Table 1. The most significant association for men was

found with NSA for SNP rs2278729 located in the intron 4 of TBC1D8

on chromosome 2q11.2 (p = 1.4861027). SNP rs7227401 located in

intron 4 of OSBPL1A (18q11.2) was found to be strongly associated with

NW (p = 4.2261027) in men. The most significant association for

women from meta-analysis was found with LS BMD for SNP

rs2062375 located in the intergenic region of TNFRSF11B and

COLEC10 genes on chromosome 8q24.12 (p = 2.68610211). SNP

rs494453 located in the intron 2 of RAP1A on chromosome 1p13.2 was

also strongly associated with NW (p = 2.8061027). The association

became more significant for SNP rs494453 when combining women

and men together (p = 3.661028). None of the above associated SNPs

are exonic coding SNPs. For SNPs listed in Table 1, no significant

heterogeneity across studies was found and the p-values (as well as

regression coefficients) were not changed with or without adjustment of

body weight. The quality scores of imputed SNPs in Table 1 were

.0.98 (IMPUTE confidence score) for the TwinsUK Study and

.0.84 (MACH variance ratio) for the Rotterdam Study.

eQTL in Multiple Human Tissues
Cis-eQTLs were analyzed for eight candidate genes located

within 500 kb in four genome-wide significant loci (Table 2). All

eight candidate genes were expressed in bone tissue estimated by

either expressed sequence tag (EST) in the CGAP EST cDNA

library (Figure S1) or human primary osteoblast samples (Table 2).

However, since transcripts were not presented on expression

arrays, expression of TBC1D8 was not available in human primary

osteoblast samples. P-values ,0.005 estimated by false discovery

rate (FDR) were considered as significant. SNP rs494453 was

found to be significantly associated with transcript levels of the

RAP1A gene. Allele C of rs494453 is in LD with allele A of

rs3767595 (haplotype). The haplotype CA was associated with

lower expression of RAP1A, but higher NW (stronger bone

structure) in women. We also performed eQTL analyses in human

lymphocytes and liver tissue. Expression level of the RAP1A gene

was not available for either lymphocytes or liver tissue. SNPs on

chromosome 2q11.2 (TBC1D8 and RLP31) and 8q24.12

(TNFRSF11B) loci were associated with gene expressions in

lymphocytes (Table 2). The most significant eSNP was found for

SNP rs2278729 (chromosome 2q11.2) with TBC1D8 expression in

lymphocytes (p = 2.58610210) and liver tissue (p,10216, Figure

S3). Allele A of rs2278729 was associated with smaller NSA in

men and also with lower expression of TBC1D8 transcript. The

same allele A was also associated with lower RPL31 expression in

lymphocytes and was marginally significant in osteoblasts.

Consistency between the direction of effect on transcript levels

in lymphocytes and LS BMD was observed for TNFRSF11B at the

chromosome 8q24.12 locus, which confirmed a previous report

that increased TNFRSF11B expression levels have been shown to

inhibit bone resorption [32]. A previous study also demonstrated

that alleles associated with decreased BMD were associated with

differential allelic expression of the TNFRSF11B in lymphocytes

[22]. However, we did not observe associations of genome-wide

significant SNPs in/near the TNFRSF11B gene region with

TNFRSF11B expression levels in human primary osteoblasts,

possible due to lack of power.

Mouse Expression Profiling Experiments
We investigated the candidate genes corresponding to the

genome-wide significant SNPs in 4 chromosomal regions by

looking at reported gene functions (including biological processes,

canonical pathways and organism processes in human and mouse),

microRNA targets and gene-related human diseases (Table S3).

Except for the TNFRSF11B gene, there were few additional data

regarding the potential biological significance of other candidate

genes being involved in skeletal development and bone remodel-

ing; therefore, we performed additional analyses on expression

profiles in animal experiments (Table 3). In experiment 1, we

Author Summary

BMD and hip geometry are two major predictors of
osteoporotic fractures, the most severe consequence of
osteoporosis in elderly persons. We performed sex-specific
genome-wide association studies (GWAS) for BMD at the
lumbar spine and femor neck skeletal sites as well as hip
geometric indices (NSA, NL, and NW) in the Framingham
Osteoporosis Study and then replicated the top findings in
two independent studies. Three novel loci were significant:
in women, including chromosome 1p13.2 (RAP1A) for NW;
in men, 2q11.2 (TBC1D8) for NSA and 18q11.2 (OSBPL1A)
for NW. We confirmed a previously reported region on
8q24.12 (TNFRSF11B/OPG) for lumbar spine BMD in
women. In addition, we integrated GWAS signals with
eQTL in several tissues and publicly available expression
signature profiling in cellular and whole-animal models,
and prioritized 16 candidate genes/loci based on their
potential involvement in skeletal metabolism. Among
three prioritized loci (GPR177, SOX6, and CASR genes)
associated with BMD in women, GPR177 and SOX6 have
been successfully replicated later in a large-scale meta-
analysis, but none of the non-prioritized candidates
(associated with BMD) did. Our results support the concept
of using expression profiling to support the candidacy of
suggestive GWAS signals that may contain important
genes of interest.

GWAS and Expression Profiling for Osteoporosis
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found that PTH negatively regulated expressions of OSBPL1A and

TNFRSF11B. RPL31, IMPACT and RAP1A genes were expressed in

PTH stimulated osteoblasts, but not regulated by PTH. TBC1D8

were not expressed in PTH stimulated osteoblasts. In experiment

2, we analyzed the differential expression of candidates during

osteoblast maturation. As a quality control measure, we looked at

a number of known osteoblast markers, including runt-related

transcription factor 2 (Runx2), collagen type 1, alpha 1 (Col1a1),

collagen type 1, alpha 2 (Col1a2), osteocalcin, osteopontin and

osteonectin. The expected expression patterns (differential expres-

sion during maturation) were observed in all cases. We observed

that the expression of OSBPL1A, IMPACT and COLEC10 was

Figure 1. Study design. A four-stage approach was applied. We first performed genome-wide association analyses of the BMD and hip geometry
traits in the Framingham Osteoporosis Study as a discovery stage (I) and replicated the top findings by meta-analysis (II), with a subsequent
assessment of the functional relevance of the replicated findings (III and IV).
doi:10.1371/journal.pgen.1000977.g001

GWAS and Expression Profiling for Osteoporosis
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significantly different across a time course (Day 4, 5, 6, 8, 16, 25

and 30 post-differentiation) of osteoblast development (p,0.0083).

In the third experiment using the LCMS algorithm in the

B6XC3H F2 intercross mice, we found that OSBPL1A, IMPACT,

RAP1A and COLEC10 genes were predicted to be causally linked

with bone phenotypes (detailed phenotypes listed in Table S4)

based on the evidence of significantly pleiotropic effects on trait

QTL and eQTL.

Prioritization of the Genome-Wide Suggestive Candidate
Genes

A total of 109 suggestive genome-wide associated regions/genes

(most significant SNP with meta-analysis 4.361027, p-value #

561025) were selected based on the criteria that p-values showed

nominal association in the Framingham, Rotterdam and Twin-

sUK studies. Among them, 16 candidate genes were prioritized

with results either involving the differential expression in

osteoblasts or causally linked (LCMS algorithm) with bone

phenotypes in mice (Table 4). Among 16 prioritized candidate

genes/loci, PPAP2B, GPR177, TGFBI, DOCK1, SOX6 and PDGFD

gene expressions were regulated by PTH in osteoblasts. Significant

differential expression during osteoblast development was found

for GPR177, TGFBI, SOX6 and CDH2 genes. IRX2, TGFBI and

CDH2 genes showed strong expression in the skeleton compared to

24 other subsets of organ/tissue systems of the mouse embryo.

Using the LCMS algorithm in inbred mice, 12 genes were

predicted to be causally linked with bone phenotypes (detailed

phenotypes listed in Table S4). All of the prioritized candidate

genes are expressed in bone tissues. 10 genes were found to be

expressed in human bone tissue from the CGAP EST cDNA

library (Figure S1) and the remained genes (HECW2, CASR,

MMRN1, IRX2, SOX6 and SALL1) were found to be expressed in

human primary osteoblasts.

Gene Set Enrichment Test
To test the probability of our candidate genes clustering into a

particular biological pathway, we performed a gene set enrichment

test on 24 candidate genes (20 loci) from Table 2 and Table 4. Due

Figure 2. Quantile-Quantile plots for BMD and HSA in additive genetic models. The distributions of observed p-values did not deviate from
the null distribution, which rules out systematic bias due to bad genotyping or population substructure in our study samples.
doi:10.1371/journal.pgen.1000977.g002

GWAS and Expression Profiling for Osteoporosis
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to lack of biological or functional annotation, IRX2 and FBXO31

genes were excluded from analyses. We found a significant

clustering (Fisher exact test p = 1.6561024; Benjamini-Hochberg

multiple testing corrected p-value = 0.03) of genes involved in

adhesion of cells, including CASR, CDH2, PPAP2B, RAP1A, TGFBI

and TNFRSF11B genes. We also estimated expression abundance

by number of expressed sequence tag (EST) sequences per 200,000

tags in the CGAP EST cDNA library for these 24 candidate genes.

Among 48 human tissues and organs, candidate genes were

expressed in bone (17 candidate genes), liver (22 candidate genes),

muscle (18) and adipose tissue (12) (Figure S1 and Figure S2).

Expression levels of RAP1A (p = 2.5161024), RPL31

(p = 3.0361027) and TNFRSF11B (p = 1.6961023) genes showed

over-representation in bone (Figure S1).

Discussion

In this study we performed sex-specific genome-wide association

studies for BMD at the LS and FN skeletal sites as well as

geometric indices of the hip in adults from the Framingham

Table 2. Cis-expression quantitative trait locus analyses of genome-wide significant SNPs (p , 4.3 x 10-7) selected from Table 1
with transcript levels in human lymphocytes and primary osteoblasts.

Target
SNP

Allele, Effect
direction Genea

Nearby
Transcripts

Distance to
transcript (Kb) Lymphocytesb Primary osteoblastsc

P-value
Effect
direction

Surrogate
SNPs

r2, Distance (Kb)
to transcript P-value

Alleled, Effect
direction

rs2278729 G -. A, - TBC1D8 TBC1D8 Intron 4 2.58E-10 - rs6543018 0.75, Intron 1 n.a. n.a.

RPL31 32.7 1.11E-16 - rs6543018 0.75, 92.7 4.06E-02 T -. C, -

rs7227401 G -. T, + OSBPL1A OSBPL1A Intron 4 n.s. n.s. rs7226913 1.00, Intron 4 5.69E-01 C -. T, +

IMPACT 68.0 8.70E-03 - rs7226913 1.00, 68.3 6.71E-01 C -. T, +

rs494453 T -. C, + RAP1A RAP1A Intron 2 n.a. n.a. rs3767595 0.61, Intron 2 3.98E-03 G -. A, -

ADORA3 150.1 n.s. n.s. rs10489469 0.51, 32.3 3.11E-02 G -. T, +

rs2062375 C -. G, + TNFRSF11B TNFRSF11B 13.4 6.53E-06 + rs1032128 0.84, 21.9 2.47E-01 A -. G, -

COLEC10 101.7 n.s n.s. rs6469804 0.91, 5.2 8.20E-01 A -. G, -

a TNFRSF11B: The most significantly associated SNP located on the intergenic regions, the closest nearby gene was selected.
b Dataset with available imputed SNPs.
c Dataset without available imputed SNPs. Surrogate SNPs for the target SNP was used. r2 was estimated between target SNP and surrogate SNP.
b,c Experiments were performed in different study populations.
d The first allele is in LD with the major allele of the target SNP (haplotype). For example: Allele G of SNP rs2278729 is in LD with the allele T of rs6543018.
n.s. P-value . 0.005 (FDR).
n.a. Expression level was not available, since transcripts were not present on expression arrays.
doi:10.1371/journal.pgen.1000977.t002

Table 1. The most significant SNP in each locus with joint-analysis p-value ,1026.

SNP Allele

Cyto-
genetic
Loci Position Genea

Locationb/
Distance
(Kbps) to
nearby
gene Traitc Framingham Replication P-valuesd,e Meta-analysisf

MAF Beta P-value Rotterdam TwinsUK
Meta
P-value

Effect
direction P-value

Men

rs2278729 G -. A 2q11.2 101035289 TBC1D8 Intron 4 NSA 0.33 -0.19 3.07E-06 5.19E-03e n.a. 5.19E-03 - - 1.48E-07

rs12808199 A -. G 11p12 39284535 LRRC4C* 987.7 FN BMD 0.43 -0.21 2.06E-05 3.88E-03 n.a. 3.88E-03 - - 8.89E-07

rs7227401 G -. T 18q11.2 20192656 OSBPL1A Intron 4 NW 0.39 0.17 3.58E-06 8.57E-03e n.a. 8.57E-03 + + 4.22E-07

Women

rs494453 T -. C 1p13.2 111993645 RAP1A Intron 2 NW 0.24 0.14 2.19E-04 3.28E-04e 2.59E-01e 2.77E-04 + + + 2.80E-07

rs12151790 G -. A 2q37.1 234875466 SPP2* 251.4 FN BMD 0.04 0.40 1.88E-06 1.60E-02e 4.52E-01e 2.58E-02 + + + 4.64E-07

rs2062375 C -. G 8q24.12 120046973 TNFRSF11B* 13.4 LS BMD 0.45 0.14 8.07E-06 1.59E-03e 4.58E-05e 2.47E-07 + + + 2.68E-11

rs17184557 T -. A 18q22.2 65293837 DOK6 Intron 1 LS BMD 0.23 0.13 9.19E-04 1.62E-02e 3.13E-03e 1.45E-04 + + + 8.81E-07

a SNP locates within a gene. *: For most significantly associated SNP located on the intergenic regions, the closest nearby gene was listed.
b The SNP location is shown if SNP locates within a gene. The distance (Kb) from an intergenic SNP to the closest gene is shown if SNP locates in the intergenic regions.
c NL: Neck Length; NW: Neck Width; NSA: Neck Shaft Angle.
d In men, data were only available from Framingham and Rotterdam studies. Meta-analysis p-values of the replication in men are the p-values from Rotterdam Study.
e Imputed SNPs: IMPUTE confidence score . 0.98 for TwinsUK; MACH variance ratio . 0.84 for Rotterdam Study.
f Effect direction: In the order of Framingham, Rotterdam and TwinsUK studies.
doi:10.1371/journal.pgen.1000977.t001
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Osteoporosis Study and then replicated the top finding in two

independent studies. As a result of meta-analyses on 7,633 women

and 3,657 men, we discovered three novel genome-wide

significant loci, including chromosome 1p13.2 RAP1A locus

(p = 3.6261028; NW in men and women combined), 2q11.2

TBC1D8 locus (p = 1.4861027, NSA in men) and 18q11.2

OSBPL1A locus (p = 4.2261027, NW in men). We also confirmed

TNFRSF11B gene on chromosome 8q24.12 to be associated with

LS BMD in women only (p = 2.68610211).

The RAP1A gene (chromosome 1p13.2) was predicted to be

causally linked with bone phenotypes in B6xC3H F2 intercross

mice. Compared to other tissues, expression levels of RAP1A

showed over-representation in human bone tissue. An eSNP

(rs494453) located in intron 2 of RAP1A gene was also found to be

significantly associated with RAP1A gene expression in human

primary osteoblasts. A marginally significant differential expres-

sion during osteoblast maturation was also found in our study.

RAP1A, a GTPase that mediates calcium signal transduction, has

been found to mediate activities of JnK [33]. JnK has been

reported to be involved in late stage osteoblast differentiation [34]

and apoptosis of osteoblasts [35]. Therefore, variants in the RAP1A

gene may change the activities of JnK and then impact osteoblast

maturation. Further experiments are necessary to explore the role

of the RAP1A gene. Both OSBPL1A and IMPACT genes located in

chromosome 18q11.2 region were predicted to be causally linked

with bone phenotypes in mice. Expressions of both genes were

found to be significantly differential during osteoblast maturation.

However, only expression of the OSBPL1A gene in osteoblasts was

regulated by PTH. No significant eQTL was found in this region.

Given the genome-wide significant SNPs were located in the

OSBPL1A gene, we still cannot rule out the involvment of the

nearby IMPACT gene. In addition, an in vitro study has shown that

DDIT3 over-expression enhances osteoblastic differentiation in

ST-2 stromal cells, a mechanism that may involve the formation of

heterodimers with C/EBP-b and the sensitization of the BMP/

Smad signaling pathway [36]. IMPACT protein has found to

decrease expression of mouse DDIT3 protein [37]; therefore,

IMPACT may negatively regulate bone formation.

We estimated the statistical power of our meta-analysis at an a-

level of 1027. In women, the power was 62–99% and .80% for

effect size (h2) equal to 1% and 2%, respectively. In men, the

statistical power was 35–75% and .70% for effect size equal to

1% and 2%, respectively. Inadequate statistical power seems to

be one of the limitations in our study. Therefore, we prioritized

16 candidate genes/loci out of 109 suggestive genome-wide

suggestive candidate genes (4.361027,p#561025) based on the

expression profiling and the LCMS modeling relevant to the

skeletal system. Among 16 prioritized candidate genes/loci,

PPAP2B, GPR177, SOX6 and CDH2 genes have been reported

to be involved in Wnt-signaling. CASR, TGFBI and CACNB2

genes are involved in ossification, endochondrial bone formation

in cartilage and calcium ion transportation, respectively (Table

S5). CASR knockout mice have demonstrated decreased bone

density and abnormal bone mineralization [38]. Variants in

GPR177, SOX6 and CASR genes were associated with LSBMD in

women. Variants in GPR177 and SOX6 (2 out of 3 above genes)

have been successfully replicated in a large-scale meta-analysis of

BMD on 19,195 Caucasian subjects (majority of whom were

women) with association p-values ,1029 [27], but none of the

non-prioritized candidates (associated with BMD) did. These

results support the concept of our prioritization strategy.

Candidate gene/SNP prioritization strategies by gene expression

and bioinformatic databases leverage the complexity of the

disease phenotypes, which offers some advantages over tradition-

al association studies that rely on strictly p-value driven

approaches. A recent study demonstrated that using functional

information in published references to identify the key biological

relationships between genes was able to predict the success of

validation in replication genotyping [39], which also provides

additional evidence for the soundness of using biological

Table 3. Expression profiles for 4 genome-wide significant loci in mice osteoblast gene expression experiments and Likelihood-
based Causality Model Selection (LCMS) regulatory network analysis in inbred mice.

Cytogenetic Loci The closest Genea Nearby Transcriptsb Experiment 1c Experiment 2d Experiment 3e

PTH stimulated
primary osteoblasts

Differential expression during
osteoblast development

LCMS analysis for significant
eQTL and trait QTL pairs

Expression, Direction P-value # Traits Max # pairs

2q11.2 TBC1D8 TBC1D8 0 8.23E-01 0 0

RPL31 ++ n.a. n.a. n.a.

18q11.2 OSBPL1A OSBPL1A +++ Q 4.59E-03 1 2

IMPACT ++ 3.17E-03 1 2

1p13.2 RAP1A RAP1A ++ 2.12E-02 3 3

ADORA3 n.a. n.a. 0 0

8q24.12 TNFRSF11B* TNFRSF11B +++ Q 7.61E-01 0 0

COLEC10* COLEC10 n.a. 1.54E-03 1 2

a SNP locates within a gene. *: For most significantly associated SNP located on the intergenic regions, the closest nearby gene was listed.
b Transcripts: Transcripts from (1) the closest gene; or (2) genes with target SNP located less than 500K bps on the 5’ upstream flanking region.
c PTH stimulated primary osteoblasts: 0: not expressed; ++: expression level . 100 in all 3 replicates; +++: expressed in all 3 replicates and regulated by PTH.
d ANOVA was used to test the differential expression across 7 time points (Day 4, 5, 6, 8, 16, 25 and 30 post-induction) during osteoblast development. Bold: p-value ,

0.0083 ( = 0.05/6 available transcripts).
e LCMS analysis: Likelihood-based Causality Model Selection to predict candidate genes causally linked with bone phenotypes. Six bone related traits were tested. For
each trait test, at least 2 significant pleiotropy of eQTL and trait QTL pairs was considered evidence for a causally relation to the candidate gene.
c,d,e Results of experiment 1,2 and 3 were obtained from different mice strains and different laboratories.
n.a. Expression level is not available, since transcript is not presented on expression arrays.
doi:10.1371/journal.pgen.1000977.t003
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functional relevance to prioritize candidate genes from GWAS

for future validation.

We exploited eSNP/eQTL in multiple human tissues. Given

that (1) disease-related human tissues are often difficult to obtain

for research purposes; (2) eQTL analysis requires a large sample

size to reach the statistical power necessary to observe subtle

changes in gene expression [40]; and (3) all of the selected

candidate genes were expressed in bone tissues, we believe that

performing eQTL in multiple tissues, although not replacing

eQTL analysis in bone tissue, does provide complementary

information. Genetic control of biological functions may be

tissue-specific. Analysis of cis- eQTL in the tissue type directly

relevant to the phenotype has been generally shown to be more

informative than the same analysis in unrelated tissue types (such

as blood). However, studies have found that cis-eQTLs are

conserved across tissues, when genes are actively expressed in

those tissues [10,12,13,41–44]. eQTL analyses in liver, adipose,

brain and muscle tissues from the same individual mice suggested

that, for a gene exhibiting significant cis-eQTL associations in one

tissue, 63–88% (dependent on tissue types) of them also exhibit cis-

eQTL associations in another tissue [42]. Two recent studies,

quantifying allele-specific gene expression in four human cell lines

(lymphoblastoid cell, two primary fibroblasts and primary

keratinocytes) from the same individuals, observed that only 2.3–

10% of the mRNA-associated SNPs showed tissue-specific cis-

expression across these cell lines [43,44]. They also found that the

variation of allelic ratios in gene expression among different cell

lines was primarily explained by genetic variations, much more so

than by specific tissue types or growth conditions [43]. Among the

highly heritable transcripts (within the upper 25th percentile for

heritability), 70% of expression transcripts that had a significant

cis-eQTL in adipose tissue also had a significant cis-eQTL in blood

cells [45]. Comparing eQTL in human primary fibroblasts,

Epstein-Barr virus-immortalized B cells and T cells revealed that

cell-type-shared eQTL tend to have larger effects, higher

significance and to cluster tightly around the transcription start

site [46]. As for bone tissue, comparing gene expression in 58

human primary osteoblast samples and 57 lymphoblastoid cell

samples, despite tissues obtained from different individuals,

indicated that overall, there is a large overlap in genes expressed

in these two cell types, as well as the associated functional

pathways [47]. 60% of the top 100 eSNP in human lymphoblas-

toid cells also showed associations in human primary osteoblasts,

which indicated that both tissue-independent and dependent

eSNP were observed in primary osteoblasts and lymphoblastoid

cells [47]. Taken together this evidence suggests that if genes are

expressed across tissues, their allele-specific expression can be

preserved and highly correlated across tissues. Thus, the

expression of a gene in liver or other non-bone tissues may not

directly cause a change in bone; however, it is possible that its

allele-specific expression in liver is highly correlated with allele-

specific expression in bone. Because of these correlations it is

possible that a gene’s expression in adipose or liver can serve as

surrogate markers to study the eQTL; however, the real causal

relationship would be occurring in bone.

It is important to note that a lack of evidence from mining

publicly available gene expression experiments does not necessar-

ily exclude a gene’s involvment in skeletal metabolism, given that

(1) experimental models such as osteoblastogenesis or early skeletal

development, do not represent all relevant processes related to

osteoporosis; (2) variation in a gene leading to disease may affect

protein function but not expression; and (3) absence of association

between a transcript and disease-associated SNP may be due to

limited statistical power or under different environmental
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conditions. An inherent limitation in most of the cell line in-vitro

gene expression profiling experiments, such as our PTH treated

osteoblasts or Epstein-Barr virus-immortalized lymphoblastoid cell

lines used to perform eQTL analysis in most of the GWAS, is that

the expression profiling of the cultured cells may be varying from

actual expression within in-vivo cells [10]. An additonal challenge

of using available experimental data is that most of the studies

performed gene profing using commercialized ‘‘genome-wide’’

chips, which usually have a fixed number of genes and often do

not include all set of genes of given interest. Therefore,

prioritization of candidate genes will be biased towards well-

studied genes.

Few published GWAS have addressed the potential sex-

difference in genetic risks of diseases. BMD and hip geometry

for men and women are known to differ, as does the prevalence of

osteoporotic fractures [48]. Gender differences in the heritability

of osteoporosis-related phenotypes have been reported (reviewed

in [49]). In the current study, few overlapping associated SNPs

between men and women were found, which may be expected

based on epidemiological and clinical data and may also be due to

lack of power. Sex-specific associations may be due to lifestyle and

environmental variation between men and women. However, it

also indicates that common genetic effects for both genders may be

relatively rare and therefore, larger sample sizes of men and

women is needed to detect their existence. Another limitation is

that we are unable to distinguish the gender-specific differential

expressions, since gene expression is measured in a pooled mixture

of osteoblasts from males and females, although, differentiated

expression between sexes is actually less likely to occur in-vitro.

In summary, our study identified three novel genome-wide

significant loci and prioritized 16 genome-wide suggestive

candidate genes for BMD and hip geometry traits. Beyond

generating a list of top associated SNPs by statistical signals, we

highlighted the efficiency of our approach to reasonably prioritize

association findings by utilizing publicly available expression

profiling relevant to the skeletal system in cellular or whole animal

models; and to provide supportive biological information for

future functional validation of their involvements in bone

metabolism. Resequencing of these loci is needed to determine

the causal variants and genes, along with experimental functional

studies to establish their precise mechanism linked to bone health

related phenotypes.

Materials and Methods

A four-stage approach was applied (Figure 1). We first

performed genome-wide association analyses of the BMD and

hip geometry traits in the Framingham Osteoporosis Study

(discovery stage I) and replicated SNPs with association test

p,1023 using meta-analysis by combining results from the

Rotterdam Study, TwinsUK Study and Framingham Study (Stage

II), with a subsequent assessment of the functional relevance of the

replicated findings (Stage III and IV). All study subjects were of

self-reported Caucasian origin.

Discovery Stage (I)
Framingham Osteoporosis Study. The Framingham

Osteoporosis Study (FOS) is an ancillary study of the

Framingham Heart Study (FHS) [50]. The current study

involved participants from the FHS Original Cohort [51] and

Offspring Cohort [52]. The Original Cohort participants

underwent bone densitometry by DXA with a Lunar DPX-L

(Lunar Corp., Madison, WI, USA) during their examination 22

(1992–1993) and examination 24 (1996–1997). The Offspring

Cohort was scanned with the same machine at or between their

examination cycle 6 or 7 (between 1996 and 2001). Participants in

current study were a subset from the Original and Offspring

cohorts who provided blood samples for DNA and had DXA scans

of the hip and spine. Other than being selected on the basis of

having bone phenotypes and DNA, the participants were not

selected on any trait. In total, 2,038 females and 1,531 males had

both available genotyping and bone phenotypes (Table S1).

Informed consent was obtained from participants before entry into

the study. This study was approved by the Institutional Review

Boards for Human Subjects Research at Boston University and

the Hebrew Rehabilitation Center.

Quantitative bone phenotypes and covariates. Femoral

neck (FN) and L2–L4 lumbar spine (LS) BMD (g/cm2) was

measured by DXA with a Lunar DPX-L for all FOS participants.

The coefficients of variation (CV) in normal subjects for the DPX-

L have been previously reported to be 0.9% for the LS and 1.7%

for the FN BMD [50]. A hip structure analysis computer program

(HSA) [53] was used to derive a number of hip geometry variables

from the femoral DXA scans. The regions assessed were the

narrowest width of the femoral neck (NN), which overlaps or is

proximal to the standard Lunar femoral neck region. Although the

program derived a number of structural variables, in the current

study we only performed analyses for femoral neck length (NL,

cm), neck-shaft angle (NSA), as well as subperiosteal diameter

(neck width, NW, cm), which are direct measurements

independent of the DXA machines (Figure 3). The maximum

coefficients of variation were previously reported to be 4.2%, 1.8%

and 2.6%, respectively for NL, NSA and NW [54]. Covariates

potentially influencing BMD and hip geometry were obtained at

the time of DXA measurements along with an overall medical

history. Details of these measurements have been reported

previously [50]. These variables included age, sex, height,

weight, and estrogen use/menopausal status (for women). Each

woman was assigned to one of two estrogenic status groups: 1)

premenopausal or postmenopausal on estrogen replacement

therapy (estrogen-replete) or 2) postmenopausal not on estrogen

(estrogen-deplete) where menopause was defined as having no

menstrual period for at least one year.

Genotyping and exclusion of SNPs. Genotyping was

conducted by the FHS SHARe (SNP Health Association

Resource) project, for which 549,827 SNPs (Affymetrix 500K

mapping array plus Affymetrix 50K gene center array) were

genotyped in over 9,274 FHS subjects from over 900 families [55].

By estimation, we expected 80% genomic coverage (pair-wise

genotype correlation r2.0.8) of the HapMap Phase I+II common

SNPs (minor allele frequency, MAF $0.05) for the Caucasian

population [56]. We excluded 793 individuals with an average

SNP call rate ,0.97. We also excluded SNPs with call rate ,0.95

(34,868 SNPs; 6.3%); Hardy-Weinberg equilibrium (HWE) test p-

value ,1026 (8,531 SNPs; 1.6%); MAF ,0.01 (66,829 SNPs;

12.2%); or unknown genomic annotation (6,089 SNPs; 1.1%).

Ultimately, 433,510 SNPs were used in the genome-wide analyses.

Population substructure. Principal components analysis

(PCA) was used to estimate population substructure in

Framingham Study. We first applied PCA by EIGENSTRAT

[57] to all available genotypic data to infer continuous axes of

genetic variation (principal components, PCs) describing ancestral

heterogeneity (top eigenvectors of a covariance matrix). Since the

Framingham Study is family-based, the top 10 PCs were first built

using a subset of 200 biologically unrelated subjects and projected

to all study samples. The first two PCs showed gradients similar to

those previously reported in individuals of European ancestry,

such as northwest, southeast European and Ashkenazi Jewish [58].

GWAS and Expression Profiling for Osteoporosis
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Next, we assessed the association between top 10 PCs and each of

the 5 phenotypes using regression models to examine if PCs were

significantly associated with each phenotype with adjustment of

age, sex, cohort, height and BMI. The top 4 PCs, PC1 to PC4

were all associated with FNBMD, LSBMD and NL at nominal p-

values less than 0.05. However, the top 4 PCs together only

Figure 3. Hip geometry indices. Red arrows indicate three hip geometry indices in a typical DXA image of the right hip. NL: Femoral neck length
(cm); NW: Narrow neck width (cm); and NSA: Neck-shaft angle.
doi:10.1371/journal.pgen.1000977.g003
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accounted for 0.1,0.7% of the variation in phenotypes. PCs were

not significantly associated with NW and NSA. To account for

potential population substructure in the SNP-phenotype

association tests in Framingham Study, we adjusted PC1 to PC4

along with other covariates in the mixed effect regression models.

Statistical analysis. Sex- and cohort (Original and

Offspring)-specific standardized residuals (mean = 0; SD = 1) of

phenotypes were calculated using multivariate regression. For

BMD phenotypes, the covariates adjusted in the regression models

included PC1–PC4, age, age2 and estrogenic status (in women

only). For hip geometry, the covariates included height, BMI,

PC1–PC4, age, age2 and estrogenic status (in women only). Age2

was considered in the models to account for potential non-linear

age effects. These residuals were used in association analyses

described below. We performed both sex-specific and combined-

sexes GWAS using linear mixed effects regression models (LME),

with fixed SNP genotype effects, and random individual effects

that correlate within pedigree according to kinship relationship

[59]. The R package KINSHIP was used in the analyses.

Although LME accounts for the within family correlation, like

any population-based test for association, LME is sensitive to

population admixture; therefore, PC adjusted residuals were used.

Single SNP association tests were performed, using an additive

genetic effect model that estimated the effect of one copy

increment of the minor allele. To estimate how well the

distribution was calibrated, for each phenotype, we estimated

the genomic inflation factor (lGC) based on the median chi-

squared test of all study participants [60].

Replication Stage (II)
Joint analysis for results from both discovery and replication

stages almost always results in greater power than analyzing

discovery and replication stages separately [61]. We selected SNPs

with association test p-values less than 1023 from Stage I discovery

GWAS, and replicated them using meta-analysis by combining

results from the Framingham Study and two independent

population-based cohorts including the Rotterdam Study and

the TwinsUK Study. Since both the Rotterdam and TwinsUK

studies performed whole-genome genotyping using different

platforms (Illumina platforms), SNP imputation was performed.

Fixed effect meta-analyses were then used to estimate combined

p-values.

Rotterdam Study. The Rotterdam Study is a prospective

population-based cohort study of chronic disabling conditions in

Dutch elderly individuals aged 55 years and over [62]. Microarray

genotyping was performed in the whole original Rotterdam Study

cohort using the Infinium II HumanHap550K Genotyping

BeadChip version 3 (Illumina). The detail of genotyping

procedures and quality control was reported elsewhere [27]. For

population substructure, 102 individuals (.3 standard deviations)

and 129 individuals (.97% probabilities) deviating from

population mean of the IBS clustering [63] were excluded from

association analysis. MACH [64,65] was used to impute all

autosomal SNPs from the HapMap I+II project. To account for

the uncertainty of imputation, instead of using the ‘‘best guess’’

genotype for each individual, the additive dosage of the allele from

0 to 2, which is a weighted sum of the genotypes multiplied by

their estimated probability, was used to perform association tests

(MACH2QTL package). The ratio of the empirically observed

dosage variance (from the imputed genotypes) to the expected

(under binomial distribution) dosage variance (computed from the

estimated minor allele frequency) was estimated for every SNP as a

quality score for imputation. SNPs with the variance ratio ,0.3

were excluded.

Age, gender and the distributions of phenotypes are shown in

Table S1. Hip structural analysis measurements were done as

described previously [66]. Sex-specific standardized residuals of

phenotypes were calculated using general linear regression models

adjusted for age, age2, height (for hip geometry only), and BMI (for

hip geometry only). A linear regression model with additive genetic

effect was used to estimate p-values for single SNP GWAS. The

lGC for each trait ranged from 0.98 to 1.06, suggesting that there

was no major residual confounding by population stratification,

systematic genotyping error, or little evidence of cryptic related-

ness between individuals.

TwinsUK study. The TwinsUK cohort consists of

approximately 10,000 monozygotic (MZ) and dizygotic (DZ)

adult Caucasian twins aged 16 to 85 years recruited from the

general population all over the United Kingdom [67]. This study

was approved by the Research Ethics Committee of St. Thomas’

Hospital, and written informed consent was obtained from each

participant. BMD measurements (g/cm2) of the lumbar spine (L1–

L4) and femoral neck were performed by DXA using a Hologic

QDR 2000W densitometer (Hologic, Bedford, MA, USA). HSA

software developed by Beck et al. [53] was used to measure hip

geometry from the DXA scans as described in Framingham Study.

The genotyping methods and quality control have been described

previously [22]. In brief, 2,820 participants were genotyped by the

Hap300Duo, Hap300 or Hap550 SNP Infinium assay (Illumina,

San Diego, CA, USA). For potential population substructures, the

STRUCTURE program was used to assess participants’ ancestry

genetic background [68]. After excluding 14 outliers (individuals)

that lay outside the CEPH cluster from STRUCTURE analysis,

the lGC for the distribution of test statistic of BMD and hip

geometry ranged from 0.99 to 1.02, suggesting that there was no

residual confounding by population stratification, nor any

apparent systematic genotyping error, and little evidence of

cryptic relatedness. IMPUTE [69] was used to impute all

autosomal SNPs in the HapMap I+II project based on Map

(release 22, build 26, CEU population) reference panel. The ‘‘best-

guess’’ imputed genotypes were used in analyses. For each SNP, a

confidence score was calculated as the average of the maximum

posterior probabilities of the imputed genotypes. Individual

genotypes with confidence score less than 0.9 were excluded.

2,734 women with both BMD and genotypes were in the final

analyses (Table S1); however the sample size was smaller for HSA

as these measurements have not been completed in all cohort

members. Standardized residuals of phenotypes were calculated

using general linear regression models adjusted for age, age2,

height (for hip geometry only), and BMI (for hip geometry only). A

score test implemented in MERLIN [70] was used to estimate p-

values for single SNP analyses. An additive genetic effect model

was tested.

Joint analysis using fixed effect meta-analysis

model. We combined results from Framingham, Rotterdam

and TwinsUK studies using inverse-variance fixed effect meta-

analysis approaches to estimate combined p-values. The METAL

program (http://www.sph.umich.edu/csg/abecasis/Metal/) was

used. All association results were expressed relative to the forward

strand of the reference genome based on HapMap (dbSNP126).

The Cochran’s Q heterogeneity test across studies was also

estimated. Cochran’s Q p-values less than 0.05 indicate large

heterogeneity beyond chance. However, since only 2 or 3 cohorts

were meta-analyzed, there was insufficient number of studies for

the Q -statistics to be accurate calculated.

Multiple-testing. Recent GWAS have used different

genome-wide significant thresholds in between 561027 and

561028 [71–76]. Several GWAS on multiple correlated traits

GWAS and Expression Profiling for Osteoporosis
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estimated the genome-wide significant thresholds by FDR

[73–76]. We performed gender-specific GWAS on 5 correlated

traits (LS BMD, FN BMD, NSA, NL and NW). Since the pair-

wise genetic correlation is 0.7 between LSBMD and FNBMD,

Bonferroni correction for multiple testing is considered too

conservative for correlated association tests. Therefore, we

estimated genome-wide significant threshold by false discovery

rate (FDR) [77]. A total of 4,336,025 association tests were

performed in the discovery stage and in the meta-analysis

replication stage. We then estimated the q-value (positive false-

discovery rate) of each association test [78]. Based on the q-value

and the number of significant tests (defined as an association test

with q-value less than a particular q-value cutoff), we estimated the

maximum number of false associations at each q-value cutoff. We

set up the threshold for genome-wide significance of p-values as

4.361027, and this threshold resulted in #1 expected false

discovery of genome-wide significant association tests in our

GWAS. The corresponding q-value is 0.011.

Expression Profiling (Stage III): Human Tissues
We conducted expression quantitative trait locus (eQTL)

analysis to evaluate whether the genome-wide significant SNPs

for each locus also influence transcript levels of nearby genes as a

cis-effect regulator (eSNP) in human primary osteoblasts, lympho-

cytes and liver tissue. In each locus, we selected nearby genes in

which the genome-wide significant SNP was located within

500 Kb in the 59 upstream of candidate genes with the assumption

that SNPs are located in (or in LD with the variants located in)

regulation elements of candidate genes. Expression experiments in

primary osteoblasts, lymphocytes and liver tissues were conducted

in three different study samples. For un-genotyped SNPs, imputed

SNPs (MACH variance ratio .0.3) were used in the lymphocyte

expression dataset and surrogate SNPs with LD r2$0.5 were used

in primary osteoblasts and liver tissue datasets.

Primary osteoblasts. A gene expression profile with 18,144

known genes (Illumina Human Ref8v2 BeadChips) and genome-

wide genotyping of 561,303 SNPs (Illumina 550k Duo chips) were

available in 95 human Caucasian primary osteoblast samples.

Human trabecular bone from the shaft of proximal femora

obtained from donors undergoing total hip replacement. Primary

osteoblasts were derived from bone tissue. Tissue collection, RNA

and DNA isolation, expression profiling, and DNA genotyping

have been described in detail [79]. All gene expression levels were

adjusted for sex and year of birth. We studied the cis-expression

quantitative trait loci (cis-eQTL) of genome-wide significant SNPs

or their proxy (eSNP) with selected transcripts within 500 kb of the

SNP position. The linear regression model implemented in

PLINK [63] was used to determine association between adjusted

expression levels and genotypes.

Lymphocytes. Expression experiments in two different

samples were performed. A gene expression profile with 20,599

genes (Affymetrix U133 Plus 2.0) and genome-wide genotyping of

408,273 SNPs (Illumina HumanHap300 Genotyping Beadchip)

were available on 400 children from families recruited through a

proband with asthma. The detailed study design was described

elsewhere [9]. We also profiled expression levels using the Illumina

Human 6 BeadChips on additional 550 children from the UK

(recruited from families with atopic dermatitis probands). These

individuals were genotyped using Illumina HumanHap300

Genotyping Beadchip. Inverse normal transformation was used

to normalize the skewed distribution in both samples. MACH [64]

was used to impute un-genotyped SNPs based on Phase II

HapMap CEU panel. Association analysis was applied with

FASTASSOC option implemented in MERLIN [80]. Only cis-

effects within 500 Kb of the transcript were tested.

Liver tissue. A gene expression profile with 34,266 known

genes (Agilent custom array) and genome-wide genotyping of

782,476 SNPs (Affymetrix 500K and Illumina 650Y SNP

genotyping arrays) were available on 957 human Caucasian liver

samples. Liver samples were either postmortem or surgical

resections from organ donors. Tissue collection, RNA and DNA

isolation, expression profiling, and DNA genotyping have been

described previously [12]. All gene expression levels were adjusted

for age, sex, race, and center. We studied the cis-eQTL of

genome-wide significant SNP or its proxy (eSNP) with selected

transcripts within 500 kb of the SNP position. The Kruskal-Wallis

test was used to determine association between adjusted expression

levels and genotypes.

Expression Profiling (Stage III): Animal Models
Experiment 1: PTH stimulated gene expression profiling

of mouse primary osteoblasts. Primary osteoblastic cultures

were obtained from 2–3 day-old wild type C57BL/6J neonatal

mice calvariae, half samples from males and half from females.

Osteoblastic cell culture and PTH treatments were described

elsewhere [81]. The 48-hour treatment cycle (incubation in

medium with PTH for 6 hours, and incubation for the next

42 hours in medium without PTH) was repeated for 2 weeks. Cells

were harvested and total RNA was isolated at day 14, after the last

6 hours of PTH exposure. Triplicate arrays were run for each

condition/treatment with Affymetrix Mouse Genome 430A 2.0

arrays (approximately 14,000 genes per chip). Differences in gene

expression levels between PTH and vehicle samples were

evaluated. PTH-regulated genes were defined as follows: i) gene

expression was detectable in all 3 PTH- and/or 3 vehicle-treated

samples, ii) the average level of gene expression in PTH-treated

samples was at least 1.5-fold higher or lower than in vehicle-

treated samples, iii) gene expression levels differed by $1.5 fold

between PTH and vehicle-treated samples in at least 7 out of 9

comparisons (each PTH-treated sample compared to vehicle-

treated sample).

Experiment 2: Differential expression during osteoblast

maturation. To determine whether the top associated genes

were differentially expressed in maturing osteoblasts, we analyzed

gene expression profiles of D3 murine embryonic stem cells that

were undergoing directed differentiation toward the osteoblast

lineage by treatment with vitamin D3, b-glycerophosphate and

ascorbic acid. The gene expression dataset is publicly accessible via

Gene Expression Omnibus, NCBI (GEO accession GSE3792).

Gene expression patterns were generated using Affymetrix Mouse

Genome 430A arrays at seven time points (Day 4, 5, 6, 8, 16, 25

and 30 post-induction). Triplicate arrays were run for each time

point. The arrays were processed using the R AFFY package [82].

The robust multi-array average (RMA) algorithm was used for

normalization [83]. ANOVA was used to identify genes whose

expression differed across time points.

Experiment 3: Likelihood-based causality model

selection. To identify causal relationships for the top

associated genes discovered in our GWAS, we used the

likelihood-based causality model selection (LCMS) algorithm by

incorporating information of genotype, expression, and clinical

traits together to construct regulatory networks. The description of

the cross, genotyping and gene expression analysis have been

described previously [12,84]. The expression data is available via

NCBI’s Gene Expression Omnibus (GEO) database for adipose

(GSE11065), liver (GSE11338) and muscle (GSE12795) tissues.

The trabecular density measurement of the L5 vertebra from each
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F2 mouse was determined using a desktop mCT imaging system

(mCT 40; Scanco Medical, Bassersdorf, Switzerland). The

trabecular region was defined by contouring the inner section of

the vertebral body with exclusion of the growth plate. Quantitative

measurements of bone volume fraction (BV/TV), trabecular

number (TbN), trabecular thickness (TbTh), trabecular separation

(TbSp), mineral density of the bone volume fraction (DBV) and

total femoral areal BMD (BMD) from mice were calculated using

the Scanco software. mCT-derived trabecular bone data were

evaluated against a hydroxyapatite standard in the same setting.

LCMS procedure has been previously described [13,31]. LCMS

has been shown capable of recovering known causal relationships

and we recently validated this approach by characterizing

transgenic or knockout mouse models for 10 genes predicted

causal for obesity by LCMS, seven of which significantly affected

fat mass [85]. LCMS requires evidence of significant pleiotropy of

eQTL/clinical trait QTL pairs using a likelihood modeling to test

the fit of pleiotropy versus close linkage models. Three potential

models were tested including: 1) Causal model: DNA variation

affects a gene’s expression which affects a clinical trait; 2) Reactive

model: DNA variation affects a clinical trait which affects a gene’s

expression; and 3) Independent model: DNA variation

independently affects both a gene’s expression and clinical trait.

The model with the lowest Bayesian Information Criteria (BIC)

deemed the best fit. Reliability of each model call was determined

by repeating LCMS on 1000 bootstrap samples. Candidate genes

with at least 2 significant pleiotropy for eQTL and trait QTL pairs

were considered to be causally related to differences in bone-

related traits.

Experiment 4: Embryonic mouse in vivo gene expression

atlas database. To determine where and when genes in the

genome are expressed in the developing embryo in vivo [86], we

ascertained the anatomic locations that genes were expressed during

embryonic development in E10.5 and E14.5 wild type murine

embryos from EURExpress database. Gene expression profiling on

whole mounts and tissue sections of murine embryos were carried

out by RNA in-situ hybridization with non-radioactive probes. Level

and pattern of expression within each single organ or region are

scored according to a standard scheme. Three different levels of

expression were defined as (A) weak expression, (B) medium

expression, and (C) strong expression. If no colored precipitate is

seen, the gene expression is not detectable [87].

Prioritization of genome-wide suggestive candidate

genes. To prioritize candidate genes from the list of suggestive

genome-wide associated SNPs for further functional validation, we

selected 109 suggestive candidate genes in which SNPs located

within those regions were required to have all of the following

criteria: (1) meta-analysis p-values of association test in the range of

4.361027,p#561025, (2) p-values from the discovery stage

,1023, (3) p-values #0.05 from the replication stage and (4) the

same direction of effect from both discovery and replication stages.

We then prioritized these candidate genes based on results from

either (1) two significant results supported by three expression

signature profiles including PTH regulated genes (+++) from

experiment 1, differentiated expression during osteoblast

maturation (p,4.5961024, Bonferroni correction for 109 tests)

from experiment 2 and at least moderate expression in skeletal

sites of mouse embryos from experiment 4; or (2) candidate genes

with at least 2 pairs of significantly pleiotropic QTL/eQTL effects

from LCMS modeling (experiment 3).

Bioinformatic Approaches (Stage IV)
Gene-set enrichment tests on functional similarity. To

explore functional similarity of our prioritized associated genes,

we performed a gene-set enrichment test to examine the

probability of our candidate genes clustering in particular

biological/functional pathways as defined by the Gene

Ontology (GO) project [88]. The GO Consortium provides

controlled vocabularies, which model ‘‘Biological Process’’,

‘‘Molecular Function’’ and ‘‘Cellular Component’’ that are

structured into directed acyclic graphs based on published

literature and databases. Gene products may be annotated to

one or more GO nodes. To determine whether any GO terms

annotate a specified list of genes at a frequency greater than that

would be expected by chance, a p-value was calculated using the

hyper-geometric distribution [89]. To correct for multiple testing,

false discovery rate (FDR) was estimated [77].

Gene-set enrichment tests on expression abundance in

human tissues. It has been well accepted that the content of

the expressed sequence tag (EST) pool for a given tissue type

reflects the composition of original mRNA samples used for

creation of the complementary DNA library [90]. We estimated

gene expression abundance for our top associated genes in an

EST cDNA library (48 types of human normal tissues

and organs) from the Cancer Genome Anatomy Project,

National Cancer Institute (http://cgap.nci.nih.gov/Tissues).

We estimated the expected expression levels and performed

hyper-geometric tests to evaluate over- or under-representation

of individual genes in selected tissues, including bone, liver,

muscle and adipose tissue.

Supporting Information

Figure S1 Observed and expected expression levels (number of

EST sequences) in human bone and liver tissues from cDNA

Library. * 10210#p,0.0017; ** 10220#p,10210; *** p,10220.

Found at: doi:10.1371/journal.pgen.1000977.s001 (0.46 MB TIF)

Figure S2 Observed and expected expression levels (number of

EST sequences) in human muscle and adipose tissues from cDNA

Library. * 10210#p,0.0017; ** 10220#p,10210; *** p,10220.

Found at: doi:10.1371/journal.pgen.1000977.s002 (0.42 MB TIF)

Figure S3 Relative transcript levels (standardized residuals) in

human liver tissue for top associated candidate genes (from meta-

analysis) by genotype of top associated SNPs (or proxy) in Table 2.

Found at: doi:10.1371/journal.pgen.1000977.s003 (0.19 MB TIF)

Table S1 Descriptive characteristics of study participants by

Cohorts.

Found at: doi:10.1371/journal.pgen.1000977.s004 (0.02 MB

XLS)

Table S2 SNPs with association test p-value ,1.0E-06 in the

Framingham Study.

Found at: doi:10.1371/journal.pgen.1000977.s005 (0.02 MB

XLS)

Table S3 Molecular and functional characteristics of the

selected candidate genes in each region reported in Table 2.

Found at: doi:10.1371/journal.pgen.1000977.s006 (0.02 MB

XLS)

Table S4 Genes were predicted to be causally linked with bone

phenotypes using the Likelihood-based Causality Model (LCMS).

Found at: doi:10.1371/journal.pgen.1000977.s007 (0.02 MB

XLS)

Table S5 Molecular and functional characteristics of the

selected candidate genes in each region reported in Table 4.

Found at: doi:10.1371/journal.pgen.1000977.s008 (0.03 MB

XLS)
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90. Boon K, Osório EC, Greenhut SF, Schaefer CF, Shoemaker J, et al. (2002) Proc

Natl Acad Sci USA 99: 11287–11292.

GWAS and Expression Profiling for Osteoporosis

PLoS Genetics | www.plosgenetics.org 16 June 2010 | Volume 6 | Issue 6 | e1000977


