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ABSTRACT Developing rice varieties adapted to alternate wetting and drying water management is crucial
for the sustainability of irrigated rice cropping systems. Here we report the first study exploring the
feasibility of breeding rice for adaptation to alternate wetting and drying using genomic prediction methods
that account for genotype by environment interactions. Two breeding populations (a reference panel of
284 accessions and a progeny population of 97 advanced lines) were evaluated under alternate wetting and
drying and continuous flooding management systems. The predictive ability of genomic prediction for
response variables (index of relative performance and the slope of the joint regression) and for multi-
environment genomic prediction models were compared. For the three traits considered (days to flowering,
panicle weight and nitrogen-balance index), significant genotype by environment interactions were
observed in both populations. In cross validation, predictive ability for the index was on average lower
(0.31) than that of the slope of the joint regression (0.64) whatever the trait considered. Similar results were
found for progeny validation. Both cross-validation and progeny validation experiments showed that the
performance of multi-environment models predicting unobserved phenotypes of untested entrees was
similar to the performance of single environment models with differences in predictive ability ranging from
-6–4% depending on the trait and on the statistical model concerned. The predictive ability of multi-
environment models predicting unobserved phenotypes of entrees evaluated under both water manage-
ment systems outperformed single environment models by an average of 30%. Practical implications for
breeding rice for adaptation to alternate wetting and drying system are discussed.
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Rice is the world’s most important staple food and will continue to be
so in the coming decades. In the future, the necessary increases in rice
production to meet demand will have to come mainly from an in-
crease in yield per unit of land, water and other resources (CGIAR
Research Program on Rice 2016). At the same time, 15–20 million ha
of rice lands will suffer some degree of water scarcity (Tuong and
Bouman 2003; Mekonnen and Hoekstra 2016). The predicted in-
crease in water scarcity threatens the sustainability of rice production

(Rijsberman 2006). It is thus crucial to develop agronomic practices
that reduce water use while maintaining or increasing yields. A con-
comitant challenge is to adapt rice varieties to these water-saving
agronomic practices by improving their performance under water-
limited conditions.

In recent decades, different water management systems have been
developedwith the aim of reducingwater consumption by irrigated rice
(Tuong et al. 2005; Yang et al. 2007). Among them, the alternate
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wetting and drying (AWD) system, in which paddy fields are subjected
to intermittent flooding with dry periods managed by soil water poten-
tial measurements, is one of the most widely used (Linquist et al. 2015;
Lampayan et al. 2015). A meta-analysis of 56 studies comparing AWD
with continuous flooding (CF) reported an overall decrease in yield of
about 5% (Carrijo et al. 2017). However, marked variations were ob-
served mainly depending on the severity of the drying phase (i.e., the
soil moisture at the end of each drying cycle) and on soil characteristics
(Lampayan et al. 2015; Carrijo et al. 2017). Significant differences in
genotypic responses to AWD,measured by changes in grain yield, have
also been reported and attributed to modified biomass partitioning
(Bueno et al. 2010). Root architectural traits such as the number of
nodal roots and root dry weight at a depth of 10-20 cm 22-30 days
after transplanting also significantly contribute to yield stability
under AWD (Sandhu et al. 2017). Genome wide association anal-
ysis using a diversity panel revealed AWD-specific associations for
several agronomic traits including days to flowering, plant height,
tillering, and panicle and seed characteristics (Volante et al. 2017).
Thus, rice adaptation to AWD appears to involve typical complex
traits, whose improvement requires genome-wide breeding ap-
proaches that account for genotype by environment (G·E) inter-
actions, i.e., the amplitude of the response of the genotypes to a
shift from CF management to the AWD system.

In plant breeding, G·E interactions are usually assessed in
multi-environment trials and expressed as a change in the relative
performance of genotypes in different environments, with or with-
out change in the ranking of the genotypes (Freeman 1973). G·E
analysis plays a fundamental role in assessing genotype stability, in
predicting the performance of untested genotypes and in maximiz-
ing response to selection. Statistical methods for assessing G·E
interactions and estimating their sizes and opportunities to exploit
them are widely discussed in the literature (Freeman 1973; Cooper
et al. 1993; Malosetti et al. 2013; Elias et al. 2016; de Leon et al.
2016). One of the earliest and most widely used methods is linear
regression of the performance (often of yield) of the individual
genotype on the mean performances of all genotypes evaluated in
each test environment (Yates and Cochran 1938). The method,
known as joint regression analysis, was further formalized by
Eberhart and Russel (1966) to enable testing of the significance of
deviation of individual regression from the general linear compo-
nent of G·E. Most evaluations of the effect of the environment on
performance undertaken for the purpose of plant breeding rely on
multi-environmental field testing that represents target production
environments or a target population of environments (Cooper and
Hammer 1996). One specific case of G·E experiments is managed-
environment trials that aim to assess the effect of particular envi-
ronmental variables (e.g., abiotic stresses) or cropping practices
(e.g., fertilizer, irrigation, etc.) that influence crop performance in
the production environment concerned (Cooper and Hammer

1996). A still more specific case of G·E experiments is managed
abiotic stress trials that aim to provide a measure of genotypic response
to stress based on yield loss under stress compared with under normal
conditions. Several indexes have been proposed to evaluate the stress
intensity and genotypic response in such experiments, mainly in the
context of selection for drought tolerance (Fischer and Maurer 1978;
Rosielle and Hamblin 1981; Fischer et al. 2003).

With the advent of molecular markers, new G·E analysis meth-
ods have been developed based on linear mixed models that con-
nect the differential sensitivity of genotypes to environments to
particular regions of the plant genome and to specific biological
mechanisms (Malosetti et al. 2004; Boer et al. 2007; van Eeuwijk
et al. 2010). More recently, the potential of genomic selection (GS)
to accelerate the pace of genetic gains in major field crops has
encouraged the development of multi-environment models for ge-
nomic prediction. The first statistical framework using a linear
mixed model to model G·E for the purpose of genomic prediction
was proposed by Burgueño et al. (2012). It extended the single-trait,
single-environment genomic best linear unbiased prediction (GBLUP)
model to a multi-environment context. Jarquín et al. (2014) proposed a
method of modeling interactions between a high-dimensional set of
markers and environmental that incorporates genetic and environmen-
tal gradients, as random linear functions (reaction norm) of markers
and environmental covariates, respectively. Lopez-Cruz et al. (2015)
proposed a marker · environment interaction (M·E) GS model that
can be implemented using regression of phenotypes on markers or
using co-variance structures (a GBLUP-type model). Cuevas et al.
(2016) further developed this approach by using a non-linear (Gauss-
ian) kernel to model the G·E: the reproducing kernel Hilbert space
with kernel averaging and the Gaussian kernel with the bandwidth
estimated using an empirical Bayesian method. Crossa et al. (2016)
extended the M·E model using priors that produce shrinkage (Bayes-
ian ridge regression) or variable selection (BayesB), and reported better
prediction performances for these models compared to single envi-
ronment and across-environment models. The latest multi-environ-
ment genomic prediction models fall back on a Bayesian approach
(Cuevas et al. 2017). Application of these methods to one maize and
four wheat CIMMYT data sets showed that models with G·E always
have higher prediction ability than single-environment models, regard-
less of the genetic correlation between environments. The predictive
ability of these Bayesian methods was also generally better than that
obtained with the G·E models proposed by Lopez-Cruz et al. (2015)
and Cuevas et al. (2016), when applied to the same datasets.

In the present study, we evaluated the effect of AWD on the
performance of two rice breeding populations: a reference panel
and a population of advanced lines both genotyped with 32 k SNP
markers.Our general objectivewas to explore the feasibility of genomic
selection for the adaptation of rice to AWD in the framework of a
pedigree breeding scheme. Our specific objectives were to: (i) access
expression of the response of the above-mentioned populations to
AWD compared to the CF irrigation system, and (ii) compare the
performance of different genomic predictionmodels that include G·E
interactions in answering the two well-known issues relevant in
breeding programs: predicting unobserved phenotypes of untested
lines and predicting unobserved phenotypes of lines that have been
evaluated in some environments but not others. The two issues are
analyzed in the context of intra-population prediction (cross-vali-
dation experiments), and across-populations prediction (progeny-
validation), as the population of advanced lines was derived from
biparental crosses between some of the members of the diversity
panel.
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MATERIAL AND METHOD

Field trial and phenotyping
The plant material used in this study comprised a reference population
(RP) of 284 accessions belonging to the rice japonica subspecies, and
a progeny population (PP) of 97 advanced (F5-F7) inbred lines. The RP
is representative of the working collection of the Research Centre for
Cereal and Industrial Crops (CREA), Vercelli, Italy. The PPwas derived
from bi-parental crosses involving 31 accessions of RP, using a pedigree
breeding scheme.More information on the two populations is provided
in Ben Hassen et al. (2017). The two populations were phenotyped
separately for two consecutive years at the experimental station of
the CREA (45�19’24.00”N; 8�22’26.28”E; 134 m asl.): in 2012 and
2013 for RP and in 2014 and 2015 for PP. In each year, the phenotyping
experiment included two independent trials corresponding to the two
water management systems tested: CF and AWD. For the conventional
CF water management system, rice was dry seeded and the field was
flooded with 10-15 cm of water at the 3-4 leaf stage (typically 30 days
after sowing) and maintained flooded until mid-maturity. For the
AWD, after initial flooding at the 3-4 leaf stage, the field was subjected
to intermittent drying periods. The soil water potential was maintained
above -30 kPa by gravity irrigation whenever the soil moisture reached
this threshold. The soil water potential was monitored by a set of six
tensiometers distributed throughout the field and inserted to a depth of
20 cm. For each population and each year, the two water management
systems were conducted in two fields separated by a distance of about
100 m to avoid interference with respect to the water regime. The other
soil characteristics were identical (sand 47.8%, loam 42.8%, clay 9.4%;
pH-H2O 6.4). The experimental design, which was identical in the two
conditions, was a complete randomized design with three replicates for
RP and a complete randomized block design with three replicates for
the PP. The target traits for bothRP andPPwere days to flowering (FL),
panicle weight (PW), and the nitrogen balance index (NI) as described
in Ben Hassen et al. (2017).

Modeling of phenotypic data
Phenotypic data for each condition in the RP and the PP were analyzed
using mixed models. In order to identify possible outliers among indi-
vidual data points, a diagnostic analysis based on restricted likelihood
distance was implemented, for details see BenHassen et al. (2017). This
analysis led to the elimination of one accession in the RP in AWD
2012 and 2013 experiments, one data point for FL in AWD-2012,
and one data point for PW in AWD-2013. The discarded data were
considered as missing in the following steps of the analysis. The
following mixed models were applied to obtain adjusted means
per genotype:

Ym
ijk ¼ mm þ ymi þ gmj þ gymji þ emijk ðRP model 1Þ

Ym
ijkl ¼ mm þ ymi þ yrmik þ gmj þ gymji þ emijkl ðPP model 1Þ

where Ym is the observed phenotype for the water management sys-
temm; mm the overall mean; ym the year as fixed effect; yrm the within
year replication as fixed effect; gm the genotype as random effect
� Nð0; Is2

gÞ with I being the identity matrix, gym the interaction
between genotype and year as random effect; and em the residual
� Nð0; s2

e Þ. The analysis was performed with the proc mixed pro-
cedure of SAS 9.2 (SAS Institute, Cary NC, USA); the method of
estimation for the variance components was the restricted maximum
likelihood (REML). The formula by Holland et al. (2003) was used to
estimate broad sense heritability (H2) as well as the corresponding

standard error (SE) for each trait and each water management system
in each population:

H2 ¼ s2
g

s2
g þ

s2
gy

ny þ
s2
e

nr

;

where s2
g , s

2
gy and s

2
e are the variance components associated with the

genotype, the interaction between genotype and year and the residual,
respectively. ny is the harmonic mean of the number of years per
accession and nr, the harmonic mean of the number of plots across
years per accession. Conditional coefficients of determination (R2)
were also computed using the methodology described by Nakagawa
and Schielzeth (2013). The adjusted means per water management
system (Ŷ

m
j ¼ m̂m þ ĝmj ) extracted from the model were used as phe-

notypes in the following steps.
For each trait, genetic correlations (rG) between values measured

under the two watermanagement systems were calculated (Cooper and
DeLacy 1994; Cooper and Hammer 1996). The confidence interval of
rG was obtained by using Fisher transformation of the estimated cor-
relation (Ẑ ¼ 0:5ðlnð1þ r̂GÞ2 lnð12 r̂GÞ), estimating the lower and

upper bounds of Ẑ (Z1;2 ¼ Ẑ 6u12a
2

ffiffiffiffiffiffiffiffiffiffi
1

NP 2 3

q
, with a ¼ 0:05, and

NP = 284 and 97, for RP and PP respectively), and back transforming
the ẑ1 and ẑ2 bounds into r̂1 and r̂2. The ratio of correlated response
to selection under continued flooding (CRCF) and the direct response
under alternate watering and drying (DRAWD) was calculated as:

CRCF
DRAWD

¼ rG

ffiffiffiffiffiffiffiffiffi
H2

CF
H2

AWD

r
(Falconer 1989) where rG is the genotypic

correlation defined above, andH2
AWD andH2

CF represent the heritability
of the trait under AWD and CF, respectively.

In addition to models for each condition, a model gathering data
from the two water management systems was also adjusted in order to
test the significance of the interaction between water management and
genotypes:

Yijkl ¼ mþmi þ yj þmyij þ gk þ gmik þ gyjk þ gmyijk

þ eijkl ðRP model 2Þ

Yijkln ¼ mþmi þ yj þmyij þmyrijl þ gk þ gmik þ gyjk

þ gmyijk þ eijkln ðPP model 2Þ

The same notation was used as for the model for each condition with
additional fixed and random effects: m the water management as fixed
effect; my the water management and year interaction as fixed effect;
myr the replication within water management and year as fixed
effect; gm the interaction between genotype and water management
as random effect; and gmy the interaction between genotype, water
management and year as random effect. The analyses were performed
with the proc mixed procedure of SAS 9.2 (SAS Institute, Cary NC,
USA) with REML.

Evaluation of genotypic response to water
management systems
The genotypic response to AWD water management was estimated in
two ways using adjusted means. First, an index of relative performance
was computed as follows:

Ij ¼
Ŷ
AWD
j 2 Ŷ

CF

j

Ŷ
CF
j

, where Ŷ
AWD
j and Ŷ

CF
j correspond to the adjusted

means of accession j under AWD and CF water managements, re-
spectively. This indexwas also calculated at population level to assess the
intensity of stress caused by AWDwater management compared to CF:
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I ¼ Ŷ
AWD

2 Ŷ
CF

Ŷ
CF

were Ŷ
AWD

and Ŷ
CF

are the average performances of all

genotypes within each population under AWD and CF, respectively.
Second, the slope bj was computed as defined in the joint regression
equation: Ŷ

m
j ¼ mj þ bju

m þ emj , where Ŷ
m
j is the adjusted mean of

the genotype j in the water managementm; um is the environmental
index calculated as the mean value of all genotypes in water man-
agement m; mj is the intercept of the regression line of genotype j;
and emj is the residual.

Genotypic data
The method used to genotype both RP and PP populations is detailed
in Ben Hassen et al. (2017). It relies on the genotyping by sequenc-
ing protocol developed by Elshire et al. (2011). Sequencing was per-
formed with a Genome Analyzer II (Illumina, Inc., San Diego,
USA). The different steps of analysis (raw data filtering, sequence
alignment, SNP calling and imputation) were performed with TASSEL
v3.0 and the associated GBS pipeline (Glaubitz et al. 2014). A work-
ing set of 32,066 SNPs was obtained with a heterozygosity rate , 5%
and minor allele frequency (MAF) . 5%.

Statistical models for genomic prediction

Single environment models: To predict the genomic estimated breed-
ing valueswithin eachwatermanagement system, hereafter referred to
as single environment, two different kernel regression models were
used. Thefirstmodel,which relies on a linear kernel, was theGBLUPas
it is one of the most popular methods for genomic prediction
(VanRaden 2008). For this model, the kernel matrix (K) was com-
puted as K ¼ XX’, X being the centered genotype matrix (-1, 0, 1)
with N·P dimension, where N is the number of genotypes and P the
number of markers. The second model, which is based on reproduc-
ing kernel Hilbert space (RKHS) approaches, used a Gaussian kernel
Kðxi; xjÞ ¼ expð2h  ∥xi 2 xj∥2Þ to build the kernel matrix between
the marker genotype vectors xi and xj, where ði; jÞ 2 f1; . . . ;Ng2.
The bandwidth parameter h was estimated using the method de-
scribed by Pérez-Elizalde et al. (2015) based on a Bayesian method
that relies on the estimation of the mode of the joint posterior distri-
bution of h and a form parameter f. We used the R function margh.
fun provided by Pérez-Elizalde et al. (2015) with a gamma prior
distribution for h, with a shape parameter equal to 3, and a scale
parameter equal to 1.5.

Multi-environment models: To predict the genomic estimated breed-
ing values with data from the twowatermanagement systems, hereafter
referred to as multi-environment prediction, we used the statistical
models described above with extensions that integrate environmental
effects. In the extended GBLUP model, the effects of m environments,
and the effects of the Pmarkers are separated into two components: the
main effect of the markers for all the environments and the effect of the
markers for each environment (Lopez-Cruz et al. 2015). For RKHS, we
used two extended models incorporating G·E: RKHS-1 corresponding
to the “Empirical Bayesian–Genotype 3 Environment Interaction
Model” proposed by Cuevas et al. (2016), and RKHS-2 corresponding
to the environmental model (3) proposed by Cuevas et al. (2017). Like
the extended GBLUP, the first model (RKHS-1) considers the effects of
m environments, and the effects of the markers are separated into a
main effect for all the environments and an effect specific to each
environment:

y ¼ mþ uo þ uE þ e

In this mixedmodel, y is the response vector,m is the overall intercept,
uo captures the marker information among environments, and uE
accounts for the marker information in each environment. The ran-
dom effects uo follow a multivariate normal distribution with mean
zero and a variance–covariancematrixs2

uoK0,K0 constructed with the
Gaussian kernel from the marker matrix X0:

The latter model (RKHS-2), considers that the performances of
accessions in different environments are correlated such that there is a
genetic correlation between environments that can be modeled with
matrices of order m·m, m being the number of environments:

y ¼ mþ uþ f þ e

In this mixed model, y is the response vector, m is the vector with the
intercept of each environment, u the random vector of individual
genetic values, f the genetic effects associated with individuals that
were not accounted for in component u, and e the random vector of
the error. u, f and e are independent andnormally distributed. Formore
methodological details concerning the extended GBLUP, RKHS-1
and RKHS-2 statistical models please refer to Lopez-Cruz et al.
(2015), Cuevas et al. (2016) and to Cuevas et al. (2017), respectively.

Implementation of the models: Analyseswere performed in theR 3.4.2
environment (R Core Team 2017) with the R packages BGLR 1.0.5
(Pérez and de los Campos 2014) and MTM 1.0.0 (De los Campos
and Grüneberg 2018). For both packages, 35,000 iterations for the
Gibbs sampler were used. For the inference, 3,000 samples were used
after removing the first 5,000 samples (burn-in) and keeping one in ten
samples to avoid auto-correlation (thinning). Convergence of Markov
chain Monte Carlo algorithm was assessed for all parameters of the
models with Gelman-Rubin tests (Gelman and Rubin 1992) using the
R-package coda 0.19-1 (Plummer et al. 2006).

Assessing predictive ability of genomic prediction
Predictive ability for the three traits and their related response to water
management (index and slope) were assessed with two different vali-
dation schemes. The first scheme used only the RP with random
partitions and is referred to hereafter as cross-validation. The second
validation scheme used information from the RP to predict the perfor-
manceof thePP(referredasprogenyvalidation).Thedetailsof these two
validation schemes are explained below.

Cross-validation within the reference population: Different types of
random partitions were performed depending on the phenotypic and
the genotypic information used in the statistical model. For traits in a
single environmentand for response variables, 80%of the284accessions
(i.e., 227 accessions) of the RP were used as the training set and the
remaining 20% (57 accessions) was used as the validation set. For
multi-environment models, two different methods of cross-validation
were applied. The first method (M1), which resembled what was done
in the single environment, used 80% of the observations as a training set
and the remaining 20% as the validation set and assumed that pheno-
typic observations for the two environments are available for the indi-
viduals composing the training set while no phenotypic data are
available for the individuals in the validation set. M1 corresponds to
the situation when the phenotypes of newly generated individuals have
to be predicted based only on their genotypic information (Burgueño
et al., 2012). The second method (M2) also used 80% of the observa-
tions as a training set and the remaining 20% as the validation set but
assumed that at least one observation in one environment was available
for the individuals in both the training set and the validation set. M2
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corresponds to the situation when phenotypes in one environment
have to be predicted with genotypic information and phenotypes from
the other environment (Burgueño et al. 2012).

One hundred replicates were computed for all random partitioning
in the trainingandvalidation sets.Thepredictive abilityof eachpartition
was calculated as thePearsoncorrelationcoefficient betweenpredictions
andphenotypes in thevalidation set.Formulti-environmentmodels, the
correlation was calculated within each environment. For each trait
(FL, NI and PW) and each statistical model (GBLUP, RKHS-1 and
RKHS-2), the same partitions were used to compute the predictive
ability.Theresultingestimatesofpredictiveabilitywereaveragedandthe
associated standard error was calculated.

To analyze the sources of variation of the predictive ability, the
predictive ability (r) of each prediction experiment was transformed into
a Z-statistic using the equation: Z ¼ 0:5 ½lnð1þ rÞ2 lnð12 rÞ� and
used as a dependent variable in an analysis of variance. A separate anal-
ysis was performed for each trait. After estimating the confidence limits
and means for Z, these were transformed back to r variables.

Progeny validation across populations: For progeny validation, the
model was trained on the RP in order to predict the performance of the
PP based on genotypic information. Three validation scenarios were
evaluated. In thefirst scenario (S1)only the31parental lineswereusedas
the training set. In the second scenario (S2), the CDmean method
(Rincent et al. 2012) was used to select 100 accessions in the RP for the
training set. In the third scenario (S3), all the RP accessions were in-
cluded in the training set. In all three scenarios, the validation set was
made up of all the PP lines. Like for cross-validation, predictive ability
was calculated as the Pearson correlation coefficient between predic-
tions and phenotypes in the validation set.

Data Availability
Thegenotypicandphenotypicdataareavailable in theTropGenedatabase
in the tab “Studies” as “GS-Ruse”: To access the TropGene database go to
http://tropgenedb.cirad.fr/tropgene/JSP/interface.jsp?module=RICE.

Supplemental material available at Figshare: https://doi.org/10.25387/
g3.6170999.

RESULTS

Analysis of the phenotypic variations and responses to
water management
The partitioning of the observed phenotypic variation into different
sources of variation via the mixed model analysis is shown in Table S1.
Models were adjusted separately for each population (RP and PP)
and each water management system (CF and AWD). Conditional R2

ranged from 0.33 to 0.96, indicating moderate to good fit of the model
(Table 1). The lowest R2 values were obtained for NI trait in both
populations and both conditions. The highest R2 values were obtained
for FL.Whatever the trait or water management system considered, the
genotype contributed significantly to the phenotypic variation in each
population. A higher contribution of the genotype effect to the pheno-
typic variation was observed for FL compared to NI and to a lesser
extent to PW. Broad-sense heritability (H2) tended to confirm this
trend (Table 1). Indeed, depending on the population and the condi-
tion,H2 ranged from 0.85 to 0.94 for FL, from 0.75 to 0.90 for PW, and
from 0.56 to 0.77 for NI. A slight increase in H2 was observed in CF
water management compared to in AWD for FL and PW in RP. There
was no significant difference in PP.

The three traits investigated exhibited normal distribution in the RP
and PP under both AWD and FC (Figure 1). The AWD water man-
agement resulted inmedium intensity stress for FL (7.4% and 10.8% for
RP and PP, respectively) and NI (-15.6% and -7.6%), and in rather
severe stress intensity for PW (-26.6% and -27.9%). On average, both
populations flowered significantly later under AWD than CF. The
average FL values were 100.3 (102.8) in AWD and 93.4 (92.9) in CF,
for RP and (PP). Conversely, significantly lowerNI and PWvalues were
observed in AWD compared to CF in both populations. For PW, the
average differences between the two water management systems were
89.4 g for RP and 77.7 g for PP. For NI, in addition to differences in

n Table 1 Sources of phenotypic variation and derived summary statistics of days to flowering (FL), nitrogen balance index (NI) and
panicle weight (PW) in two populations of rice (reference RP and progeny PP) conducted in two consecutive seasons under two water
management systems (continuous flooding – CF and alternate wetting and drying – AWD)

Pop Trait System Mean SD S2
Fixe

(1)

Variances accounted by
the random effects(2)

Total
phenotypic
variance R2

Cond
(3) H2ðSEÞ (4) r̂G[ r̂1; r̂2] (5) CR

DR
(6)G Y x G R

RP FL AWD 100.3 7.8 44.12 57.68 10.90 11.28 123.98 0.91 0.89 (0.01) 0.955 [0.943;0.964] 0.98
CF 93.4 7.0 8.43 47.78 4.36 5.95 66.52 0.91 0.94 (0.01)

NI AWD 20.1 2.0 0.91 4.99 1.22 14.71 21.83 0.33 0.61 (0.05) 0.589 [0.508;0.661] 0.56
CF 23.7 2.5 1.50 6.17 4.09 16.75 28.50 0.41 0.56 (0.05)

PW AWD 252.9 57.9 720.96 3435.39 949.48 3142.66 8248.49 0.62 0.76 (0.03) 0.773 [0.722;0.816] 0.82
CF 342.3 71.1 119.98 5088.95 850.38 2437.24 8496.55 0.71 0.85 (0.02)

PP FL AWD 102.8 6.1 40.94 35.15 8.17 11.78 96.04 0.88 0.85 (0.03) 0.897 [0.850;0.930] 0.90
CF 92.9 5.2 27.97 23.20 7.38 2.27 60.81 0.96 0.85 (0.03)

NI AWD 17.1 1.5 1.55 3.03 0.00 5.32 9.90 0.46 0.76 (0.04) 0.731 [0.622;0.812] 0.75
CF 18.4 2.0 2.63 4.12 0.70 3.72 11.16 0.67 0.80 (0.04)

PW AWD 199.9 51.3 889.23 2487.80 466.32 522.24 4365.59 0.88 0.88 (0.02) 0.848 [0.781;0.896] 0.86
CF 277.6 53.0 258.26 2698.52 415.49 554.00 3926.27 0.86 0.90 (0.02)

(1) Variance accounted for by the season effect: Season effect: 2012 vs. 2013 for the reference population and 2014 vs. 2015 for the progeny population.
(2) Random effects: G: accession, Y x G: Season x Accession, R: Residual.
(3) R2

Cond : Conditional coefficient of determination.
(4) H2ðSEÞ: Broad sense heritability for single environment analysis.
(5) Pearson correlations between adjusted means of accessions under AWD and CF.
(6) Ratio of correlated response in CF to direct response in AWD.
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the average performance of the two water management systems, signif-
icant differences in distribution were also observed between RP and PP,
for the extent of diversity, much larger for the RP, and for the frequency
of individuals with low NI, much higher in the PP (Figure S1).

Partitioning of the phenotypic variation from the two water man-
agement systems into different sources of variation revealed the exis-
tence of significant interactions between genotypes and water
management systems in both RP and PP, for all traits except FL in
RP (Table S2). For all traits and populations, the ranking of the
individuals was affected by water management and the Spearman’s
rank correlation coefficients between traits values under the two water
management systems were medium to high (Figure 2). As a result, for
each trait the ratio of correlated response to selection under FC, relative
to direct response to selection under AWD, ranged from medium
(0.56 and 0.75 for NI) to very high (0.98 and 0.90 for FL), suggesting
indirect selection for adaptation to AWD is feasible (Table 1).

The two computed variables (index and slope) characterizing the
accessions’ response to AWD, revealed a Gaussian distribution for the
three phenotypic traits considered (Figure S1). An ANOVA of these
computed variables revealed significant genotype effects on the three
traits in both RP and PP populations (Table S3). By construction, the
correlations between phenotypic values per condition and the slope
were higher than those with the index whatever the trait and the pop-
ulation considered. Interestingly, the index behaved differently in each
trait (Figure S1). For FL, low correlations were found either with AWD
or CF. For NI, higher correlations were found with CF (- 0.51 for RP
and - 0.58 for PP) than with AWD (0.39 for RP and 0.13 for PP). For
PW, correlations were higher with AWD (0.42 for RP and 0.71 for PP)
than with CF (- 0.23 for RP and 0.24 for PP). For the three traits
considered, there was almost no correlation between the index and
the slope variables (Figure S1): FL (0.12 for RP and 0.17 for PP), NI
(0.-0.16 for RP and -0.31 for PP) and PW(-0.03 for RP and 0.04 for PP).

Predictive ability of genomic prediction for the
response variables

Predictive ability in the reference population: The average predictive
abilities obtained for the two response variables were compared with
those obtained for the observed variables in each water management
system considered as references (Table 2). The overall mean predictive
ability for the observed variables (the three traits under the two water
management systems), and for the response variables, was 0.54 but the
range extended from -0.12 to 0.88, depending on the prediction model,
the trait and the type of variable (Figure 3, Table S4). Themost significant
factor influencing predictive ability was the type of variable (Table 2).
Indeed, regardless of the trait or the statistical model, predictive abil-
ity for the index was lower than for the slope: 0.31 against vs. 0.64 on
average (Figure 3). Interestingly, NI, which presented the highest
G·E, was the trait with the lowest predictive ability for the index
(0.17 and 0.21). However, index predictions were less accurate for
FL, the trait with the lowest G·E, (0.29 and 0.30) than for PW (0.43
and 0.48) with intermediate G·E. In agreement with the medium to
high correlations at phenotypic level, the predictive abilities for the
slope and the variables under each condition were comparable. How-
ever, different trends were observed depending on the trait. For FL
and PW, predictive abilities for the slope were closer to predictive
abilities under AWD than underCF. For NI, the opposite was observed.
In all cases, slope prediction was as accurate as the best single-
environment prediction. The level of predictive ability depended
second on the trait (Table 2). On average, predictive ability was higher
for FL (0.6) than for PW (0.58) and NI (0.45). The statistical models
differed significantly from each other although the effect was small.
RKHS performed better than GBLUP in almost all cases with differ-
ences in predictive ability of up to 0.05. The interactions between
factors influencing predictive ability were not important, except for
the one between the response variable and the trait (Table 2).

Figure 1 Distribution of adjusted phenotypic values of days to flowering (FL), nitrogen balance index (NI) and panicle weight (PW) within the
reference and progeny populations in continuous flooding (blue) and alternate wetting and drying (orange) conditions.

2324 | M. Ben Hassen et al.



Predictive ability across populations: On average, across generation
prediction for both observed and computed response variables was less
accurate (0.28) than prediction within the reference population (Table
S5). Predictive abilities ranged from-0.01 to 0.38,with an average of 0.25
for FL, from-0.1 to 0.45, with an average of 0.22, forNI, and from0.14 to
0.56, with an average of 0.38 for PW, depending on the type of variables
(observedvariables, indexandslope), the scenarioand themodel (Figure
4). Among these factors, the most influential was again the type of
response (Table S5), with the lowest average predictive ability of 0.12
for index and the highest average predictive ability of 0.35 for slope. The
predictive ability under the single environment AWD and CF averaged
0.34 and 0.32, respectively. The effect of the scenario came in second,
with an average predictive ability of 0.27 for S1, 0.22 for S2, and 0.35 for
S3. The statistical models GBLUP and RKHS performed similarly on
average (predictive ability of 0.28) but the range of variation was slightly
wider in RKHS (-0.1 to 0.56) than in GBLUP (-0.01 to 0.51). These
average similar performances hide differences for NI but only for the
scenario 1 where the predictive ability for RHKS (-0.02) was lower than
for GBLUP (0.21). The poor performance of RKHS model in this
context is likely related to a problem of model convergence due to

the small size of the calibration data in combination with low herita-
bility for trait NI.

Predictive ability of genomic prediction using
multi-environment models

Predictive ability in the reference population: The focus here was on
multi-environmentmodels and the twodifferent cross-validationmeth-
ods (M1 and M2), using single environment models as the baseline.
Average predictive abilities ranged from 0.47 to 0.96, depending on
(in decreasing importance): the trait, the type of model (i.e., single vs.
multi-environment), the cross-validation strategy, the statistical model
and the water management system (Figure 5, Table S6). The average
predictive ability was of 0.79, 0.56 and 0.69 for FL, NI and PW
respectively. Whatever the trait or the water management system,
multi-environment models with the M1 strategy performed similarly
to the single environment model with a decrease of up to 0.02 for
GBLUP and up to 0.03 for RKHS-1 and RKHS-2. As expected, the
multi-environment models with the M2 strategy outperformed single
environment models with an average gain of 0.23 and 0.27 for FL,
0.14 and 0.10 for NI and 0.20 and 0.20 for PW in AWD and CF,
respectively. These gains in predictive ability were in agreement with

Figure 2 Reaction norm between the two conditions (continuous flooding – CF and alternate wetting and drying – AWD) for all the genotypes of
the two populations (the reference population and the progeny population). The three traits are represented: days to flowering (FL), nitrogen
balance index (NI) and panicle weight (PW). Spearman’s rank correlation coefficient (r) is indicated in each panel.
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the level of G·E found for each trait. Among the significant interac-
tions between factors, the trait · cross validation strategy interaction
was the most important and corresponded to a scale interaction
(Table 3). Among the multi-environment prediction models, RKHS-
1 and RKHS-2 performed similarly, with average predictive ability of
0.72 and 0.71, respectively, and performed systematically slightly better
than GBLUP, with a gain in predictive ability of up to 0.04.

Predictive ability across populations: The overall mean predictive
ability was 0.33, with values ranging from -0.03 up to 0.58 (Figure 6,
Table S7), mainly depending on traits and scenarios for the composi-
tion of the training set. The average predictive ability was of 0.30, 0.27,
and 0.44 for FL, NI and PW, respectively. The average predictive ability
of the three scenarios was 0.32, 0.28 and 0.40 for S1, S2 and S3, re-
spectively. The range of variation in predictive ability for the remaining
factors (single vs. multiple environment, target environment and pre-
diction model) did not exceed 0.03. These latter factors influenced the
predictive ability mainly in interactive mode.

DISCUSSION

Impact of AWD water management system on
rice performance
TheAWDwatermanagement implemented in this study (anew cycle of
irrigation was triggered when soil water potential reached -30 kPa)
resulted in medium intensity stress for FL and NI traits, rather severe
stress intensity for PW when evaluated in terms of relative perfor-
mance. The effects of AWDwe observed on PW (-27% on average), are
similar to those reported byCarrijo et al. (2017) on yield, in their review
of 56 studies with 528 side-by-side comparisons of yield under AWD
and CF. These authors reported an average decrease in yields of 5.4%,
almost no yield losses under mild AWD (i.e., when soil water potential
was kept $ 220 kPa), and yield losses of 22.6% relative to CF under
severe AWD, when the soil water potential went beyond 220 kPa.
However, in contrast with our experiment, which pioneered the analysis
of genotypic responses to AWD within a diversity panel representing
a large share of diversity of one of the sub-species of rice (O. sativa,

japonica), the majority of the studies included in Carrijo et al.’s (2017)
meta-analysis used only a small number of rice varieties and the crop
was established by transplanting. Among the few studies reporting on
traits other than grain yield, Sudhir-Yadav et al. (2011) reported crop
maturity delay of 5–10% under severe AWD, similar to our results
(9% on average).

Genomic prediction of response to AWD
The two computed variables (response index and slope of the joint
regression) were intended to provide a measurement of G·E for each
accession of RP and PP, which could be used as the entry phenotype for
genomic prediction. The index, which evaluates tolerance to AWD
water management, was very closely correlated with the stress sensitiv-
ity and tolerance index proposed by Fischer and Maurer (1978) and
(Rosielle and Hamblin 1981), respectively (data not shown). The slope
provides a measurement of stability of breeding material along envi-
ronmental gradients in multi-environment trials (Eberhart and Russell
1966; Lin et al. 1986). However, the fact that the environmental index is
not independent of the performances of the studied genotypes can
introduce a bias in the estimate of the regression parameters (Crossa
1990). Moreover, the percentage of G·E variance explained is often
very low, below 25% (for a review, see Brancourt-Hulmel et al. 1997). In
our case, the number of environments considered, two, was probably
too few for a precise estimate of the regression slope for each genotype.
The slopes of the joint regression estimated in the present study in-
tegrate a small proportion of the G·E and are therefore more related to
the average performance between the two water management condi-
tions than to stability across environments. On the other hand, the large
number of genotypes involved in the estimate of the environmental
index (284 for RP and 97 for PP) limited the above-mentioned risk of
bias. Given the very high correlations between the computed slopes and
the measured phenotypes for the three traits under AWD and CF in
both RP and PP populations (r. 0.9, except for PWunder AWD in PP
(r = 0.73), it represents a reasonably good single entry phenotype to
consider for breeding both for adaptation to AWD and performance
under CF.

n Table 2 Analysis of factors that influence the predictive ability of response variables in the reference population. The effects of the type
of response (index, slope, continuous flooding – CF and alternate wetting and drying – AWD), the trait (FL, NI and PW), the statistical
model (GBLUP and RKHS) and their interactions were evaluated

R2 CV RMSE Mean Source DF SS MS FValue ProbF

Model 1: Only main effects
0.648 23.617 0.152 0.642 Model 6 101.489 16.915 734.86 ,0.0001

Error 2393 55.082 0.023
Corrected Total 2399 156.570

Response 3 77.532 25.844 1122.78 ,0.0001
Trait 2 23.571 11.785 512.01 ,0.0001

S model 1 0.386 0.386 16.76 ,0.0001
Model 2: Main effects and interactions
0.732 20.681 0.133 0.642 Model 23 114.633 4.984 282.38 ,0.0001

Error 2376 41.937 0.018
Corrected Total 2399 156.570

Response 3 77.532 25.844 1464.21 ,0.0001
Trait 2 23.571 11.785 667.71 ,0.0001

S model 1 0.386 0.386 21.86 ,0.0001
Response�Trait 6 12.456 2.076 117.61 ,0.0001
Trait�S model 2 0.433 0.217 12.27 ,0.0001

Response�S model 3 0.073 0.024 1.38 0.2459
Response�Trait�S model 6 0.182 0.030 1.72 0.1126

R2: Coefficient of determination; CV: Coefficient of variation; RMSE: Root mean square error; Mean: Intercept value of the transformed predictive ability (Z); DF:
Degree of freedom; SS: Sum of squares; MS: Mean square.
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The predictive ability of genomic prediction for the response
index was significantly lower than for the slope and for the corre-
sponding measured traits under AWD and CF, suggesting limited
genetic control of variation for the response index. Similar results
were reported by (Huang et al. 2016) for trait stability in wheat.

Nevertheless, given the loose correlations between the response in-
dex and the measured traits, genomic prediction for the index and
the measured trait in CF could be used to select for good perfor-
mance in both systems.

Genomic prediction using multi-environment data
The potential of GS to accelerate the pace of genetic gains inmajor field
crops has been documented by a large number of studies using a

Figure 3 Predictive ability of genomic prediction in cross validation
experiments within the reference population obtained with two
statistical models (GBLUP, RKHS) for the response variables (index
and slope) and the performance within each condition (continuous
flooding – CF and alternate wetting and drying – AWD). The three
traits are presented: days to flowering (FL), nitrogen balance index (NI)
and panicle weight (PW). The letters in each panel represent the re-
sults of Tukey’s HSD comparison of means and apply to each panel
independently. The means differ significantly (p-value , 0�05) if two
boxplots have no letter in common.

Figure 4 Predictive ability of genomic prediction in across population
validation for the response variables (index and slope) and the
performance within each condition (continuous flooding – CF and
alternate wetting and drying – AWD) obtained. Two statistical models
(GBLUP, RKHS) and three traits (days to flowering (FL), nitrogen bal-
ance index (NI) and 100 panicle weight (PW)) were studied. The sce-
narios used to define the training set are in color: orange (S1: only the
parents), green (S2: 100 individuals of the RP selected with CDmean)
and blue (S3: the whole RP).

Volume 8 July 2018 | Genomic Selection in Rice | 2327



simulation approach or experimental data (Crossa et al. 2017; Hickey
et al. 2017). In the case of rice, several empirical studies, summarized in
Ben Hassen et al. (2017), confirmed this potential. However, the focus
of most previous crop genomic prediction studies was on within-
environment prediction, based on single environment models. It was
recently demonstrated that the accuracy of genomic prediction mod-
els that account for G·E is significantly greater than that attained by
single environment models (Cuevas et al. 2016; Cuevas et al. 2017;
Burgueño et al. 2012; Jarquín et al. 2014; Lopez-Cruz et al. 2015;
Heslot et al. 2014). The empirical component of almost all of these
studies was based on data from unmanaged multi-environment trials
of genotypes across several locations (and often several years), mainly
conducted to study G·E and the general stability of the genotype
across environments. The multi-environment genomic prediction
results we present here stand out among the aforementioned ones
because we used data from managed bi-environment trials under-
taken to study G·E and genotype adaptation to a specific abiotic
constraint, i.e., AWD water management.

The level of prediction predictive ability obtained in our cross
validation experiments in the reference population under the M1 pre-
diction strategy with the multi-environment GBLUP, RKHS-1 and
RKHS-2 models, calibrated with data from both AWD and CF water
management,was similar to that obtainedwith their single environment
counterparts, calibrated with data from either AWD or CF. The explicit
modeling of G·E interaction within multi-environment genomic mod-
els enable us to predict the performances of untested genotypes using
data from multiple trials with the same level of accuracy than single
environment models. Under the M2 prediction strategy, the three
multi-environment models provided significantly higher predictive
ability for genotypes that had not been tested in one of the two water
management systems than their single-environment counterparts. The
predictive ability of M2 strategy was compared to phenotypic correla-
tion between the two water management conditions using the same
random sampling method to reflect the case where the performance of
a line in one condition is predicted by its performance in the other
condition (Table S6). A gain ranging from 0 to 13.8% of genomic

Figure 5 Single environment and multi-environment (M1 and M2) predictive ability in cross validation experiments in the reference population
obtained with three statistical models (GBLUP, RKHS-1, RKHS-2). Continuous flooding and alternate wetting and drying water management
conditions are in blue and orange, respectively. The three studied traits are presented: days to flowering (FL), nitrogen balance index (NI) and
panicle weight (PW). The letters in each panel represent the results of Tukey’s HSD comparison of means and apply to each panel independently.
The means differ significantly (p-value , 0�05) if two boxplots have no letter in common.
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prediction methods over direct phenotypic prediction was found. The
gains were higher for the two traits presenting a greater level of G·E (NI
and PW), confirming the benefits of multi-environment genomic pre-
diction models in this context. In order to challenge the performance of
the multi-environment models further, we ran the M1 and M2 strate-
gies with a larger number of untested entrees (40% instead of 20%) in
bothAWDandCF forM1, inAWDor CF forM2. The results in Figure
S2 show a very small reduction in predictive ability. The average pre-
dictive ability for the three traits, the two water managements and the
three prediction models was 0.59 instead of 0.61 for M1, and 0.79
instead of 0.81 for M2. These results suggest the possibility of optimiz-
ing the method of evaluation of the lines by targeting a specific set of
lines for each condition (Rincent et al. 2017).

Lopez-Cruz et al. (2015) reported gains in prediction accuracy of up
to 30% with the GBLUP-type multi-environment model compared to
an across-environment analysis that ignores G·E, when applied to the
wheat grain yield of three sets of advanced lines recorded in three
different years under three irrigation regimes. In our case, significant
gains in predictive ability were observed only with the M2 strategy, and
ranged from 17% for NI to 29% for FL. Using wheat and maize data,
Cuevas et al. (2016) reported up to 68% higher accuracy for RKHS-1
models compared to single environment models and up to 17% com-
pared to GBLUP-G·E. These authors hypothesized that the superiority
of the Gaussian kernel models over the linear kernel was due to more
flexible kernels that account for small, more complex marker main
effects and marker specific interaction effects. In our experiments,
RKHS-1 was up to 35% more accurate than single environment
GBLUP and up to 10% more accurate than GBLUP-G·E model. On
the other hand, we did not observe any notable differences in the pre-
dictive ability of the RKHS-2 model compared to GBLUP-G·E and
RKHS-1, as already reported by Cuevas et al. (2017). This is probably
due to the positive correlation between performances under AWD and
CF water management systems in our experiments, while the most

favorable context for the application the approach developed by
Cuevas et al. (2017) is said to be when different types of correlation
(positive, zero, or negative) between the environments considered,
coexist.

The results of our progeny validation experiments did not question
the higher predictive ability of multi-environment models compared to
single environment onesobserved inour cross validation experiments in
the reference population. However, in progeny validation experiments,
the multi-environment models affected predictive ability mainly in
interaction with other factors, such as the composition of the training
set and the trait considered. These results also confirmed the important
role of relatedness between the training and the validation set in pre-
dictive ability. It also confirmed the fact that relatively high predictive
ability could be achieved using only a rather small share of the RP, the
most closely related to the PP as the training set, as reported by Ben
Hassen et al. (2017).

Finally yet importantly, in both cross validation and progeny val-
idation experiments, the multi-environment approach achieved higher
predictiveability than thegenomicprediction for the response indexand
the slopeof the joint regression.For instance, compared toprediction for
slope, themean advantage ofmulti-environment predictionwas 8%and
10% with GBLUP-G·E and RKHS-1 models, respectively. The advan-
tage reached 25% under the M2 strategy of predicting unobserved
phenotypes. In the progeny-validation experiments, the mean advan-
tage was 20% and reached 30% under the S2 scenario of composition of
the training set. To our knowledge, this finding has not yet been re-
ported in the literature. It opens new perspectives in breeding for
adaptation to AWD and to other abiotic stresses.

Practical implications for breeding rice for adaptation
to AWD
“More rice with less water” is vital for food security and for the sus-
tainability of irrigated rice cropping systems (Tuong et al. 2005). AWD

n Table 3 Analysis of factors that influence the variation in predictive ability in the reference population using multi-environment models.
The effects of the statistical model (GBLUP, RKHS-1 and RKHS-2), the trait (FL, NI and PW), the cross-validation strategy (M1 and M2) and
the target condition (continuous flooding – CF and alternate wetting and drying – AWD) and their interactions were evaluated

R2 CV RMSE Mean Source DF SS MS FValue ProbF

Analysis with only main effects
0.723 24.163 0.221 0.914 Model 7 687.496 98.214 2014.66 ,0.0001

Error 5392 262.858 0.049
Corrected Total 5399 950.354
CV strategy 2 362.879 181.439 3721.86 ,0.0001

Trait 2 320.946 160.473 3291.78 ,0.0001
S model 2 3.352 1.676 34.38 ,0.0001

Target condition 1 0.319 0.319 6.55 0.0105
Analysis with main effects and all first-order interactions
0.899 14.640 0.134 0.914 Model 25 854.176 34.167 1909.11 ,0.0001

Error 5374 96.178 0.018
Corrected Total 5399 950.354
CV strategy 2 362.879 181.440 10138.0 ,0.0001

Trait 2 320.946 160.473 8966.54 ,0.0001
S model 2 3.352 1.676 93.65 ,0.0001

Target condition 1 0.319 0.319 17.83 ,0.0001
CV strategy�Trait 4 157.483 39.371 2199.87 ,0.0001

Target condition�Trait 2 7.811 3.906 218.23 ,0.0001
Trait�S model 4 0.783 0.196 10.94 ,0.0001

Target condition�CV strategy 2 0.300 0.150 8.37 0.0002
CV strategy�S model 4 0.300 0.075 4.20 0.0022

Target condition�S model 2 0.003 0.002 0.09 0.9169

R2: Coefficient of determination; CV: Coefficient of variation; RMSE: Root mean square error; Mean: Intercept value of the transformed predictive ability (Z); DF:
Degree of freedom; SS: Sum of squares; MS: Mean square.
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water management is one of the most widely used water-saving tech-
niques practiced today (Carrijo et al. 2017). The development of rice
varieties adapted to AWD, i.e., with as high yields as the best high
yielding variety under CF, would greatly contribute to wider adoption
of AWDwater management by farmers (Price et al. 2013; Volante et al.
2017). Given the genetic diversity we observed for response to AWD
within the working collection of the CREA, which represents only a
share of the genetic diversity of the rice japonica sub-species, one can
expect large genetic diversity at the whole species level.

The almost identical and high level of broad-sense heritability
observedunderAWDandCFwatermanagement systemsdemonstrates
the feasibility of direct selection for AWD. Such high heritability under
managed abiotic stress has already been reported in rice for grain yield
under drought stress (Venuprasad et al. 2007; Kumar et al. 2008).
However, the adoption of the direct selection option may not be prac-
ticable for breeding programs with limited resources, if they also need
to continue to breed for CF water management. Moreover, this option
would not take full advantage of historical data produced by the breed-
ing program for CF. The high predictive ability of multi-environment

genomic prediction we observed in the present study, especially in
across-environment prediction, paves the way for a new breeding op-
tion: conducting simultaneously direct and indirect selection for both
AWD and CF. Indeed, as we saw in our M2 strategy, the multi-
environment genomic models can boost the predictive power of
across-environment predictions, i.e., from CF to AWD and vice versa.
In this context, the practical question would be the number of selec-
tion candidates that need to be phenotyped under the two water
management systems relative to the number of candidates that need
to be phenotyped under one water management system only. Our
results suggest that, for the germplasm and environmental conditions
we used and the traits we considered, the percentage of untested
candidates under AWD can go up to 40% with no significant negative
effect on predictive ability as long as they are tested under CF, or
vice versa. Considering the additional cost reductions that could be
obtained by optimizing the size of the training set, as shown by the S1
scenario in our across-generations prediction experiments, it seems
possible to add the objective of adaptation to AWD to an existing GS
based rice breeding program for CF, with rather limited additional

Figure 6 Single environment and multi-environment predictive ability in across population validation experiments obtained with three statistical
models (GBLUP, RKHS-1, RKHS-2). Continuous flooding and alternate wetting and drying water management conditions are in blue and orange,
respectively. The scenarios used to define the training set are represented by the different shades of orange or blue: light (S1: only the parents),
intermediate (S2: 100 individuals of the RP selected with CDmean) and dark (S3: the whole RP).The three studied traits are presented: days to
flowering (FL), nitrogen balance index (NI) and panicle weight (PW).
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costs. Ben Hassen et al. (2017) showed that rice breeding programs
based on pedigree schemes can use a genomicmodel trained with data
from their working collection to predict performances of progenies
produced by the conventional pedigree breeding program. Breeding
for adaptation to AWD can be integrated in this general scheme. The
feasibility of application of this breeding approach to other abiotic
stresses deserves further exploration.
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