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Abstract

Although individual pseudogenes have been implicated in tumor biology, the biomedical 

significance and clinical relevance of pseudogene expression have not been assessed in a 

systematic way. Here we generate pseudogene expression profiles in 2,808 patient samples of 

seven cancer types from The Cancer Genome Atlas RNA-seq data using a newly developed 

computational pipeline. Supervised analysis reveals a significant number of pseudogenes 

differentially expressed among established tumor subtypes; and pseudogene expression alone can 

accurately classify the major histological subtypes of endometrial cancer. Across cancer types, the 

tumor subtypes revealed by pseudogene expression show extensive and strong concordance with 

the subtypes defined by other molecular data. Strikingly, in kidney cancer, the pseudogene-

expression subtypes not only significantly correlate with patient survival, but also help stratify 

patients in combination with clinical variables. Our study highlights the potential of pseudogene 

expression analysis as a new paradigm for investigating cancer mechanisms and discovering 

prognostic biomarkers.
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Introduction

Pseudogenes are dysfunctional copies of protein-coding genes that have lost their ability to 

encode amino acids through the accumulation of deleterious mutations such as in-frame stop 

codons and frame-shift insertion/deletions1. In the human genome, there are pseudogene 

copies for many protein-coding genes: for example, the ENCODE project recently annotated 

~15,000 human pseudogenes2. Importantly, a large fraction of pseudogenes are 

transcriptionally active2. Despite their huge number and prevalent occurrence in the genome, 

pseudogenes have long been considered as nonfunctional and assumed to evolve neutrally3. 

In recent years, a growing body of evidence has strongly suggested that individual 

pseudogenes play critical roles in human diseases such as cancer4,5. For example, NANOG 

and OCT4 are essential transcription factors for the maintenance of pluripotency in 

embryonic stem cells6,7, while their pseudogenes, NANOGP1 and POU5F1P1, are 

aberrantly expressed in human cancers8. Poliseno et al. (2010) showed that the pseudogenes 

of key cancer genes (e.g., PTENP1 and KRASP1) can regulate the expression of their wild-

type (WT) cognate genes by sequestering miRNAs9. More recently, Kalyana-Sundaram and 

colleagues (2012) performed the first genome-wide characterization of pseudogene 

expression in human cancers using the RNA-seq approach and revealed a considerable 

number of pseudogenes with a lineage- or cancer-specific expression pattern10. These 

studies provide key insights into the potential role of transcribed pseudogenes in tumor 

biology. However, due to the limited number of patient samples surveyed in previous 

studies, the biomedical significance of pseudogene expression in cancer cannot be fully 

assessed. In particular, it remains unclear whether pseudogene expression can effectively 

characterize the tumor heterogeneity within a specific cancer type and represent a 

meaningful dimension for patient stratification. Therefore, it is essential to perform a 

systematic analysis across large patient sample cohorts to evaluate the potential clinical 

utility of pseudogene expression.

Taking advantage of large-scale RNA-seq transcriptomic data recently made available from 

The Cancer Genome Atlas (TCGA) project, we developed a computational pipeline and 

characterized the pseudogene expression profiles of a large number of patient samples in a 

wide range of cancer types. With this unprecedented dataset, we first identified differentially 

expressed pseudogenes among established tumor subtypes and demonstrated the predictive 

power in classifying clinical tumor subtypes of endometrial cancer. Then we examined the 

biomedical relevance of the tumor subtypes revealed by pseudogene expression and assessed 

the potential clinical utility of pseudogene-expression subtypes in terms of predicting patient 

survival. Taken together, our results indicate that expressed pseudogenes represent an 

exciting paradigm for investigating cancer-related molecular mechanisms and discovering 

effective prognostic biomarkers.

Results

Overview of pseudogene expression in multiple cancer types

To comprehensively detect expressed pseudogenes and quantify their expression levels in 

human cancer, we developed a computational pipeline, as shown in Fig. 1. First, we 

combined the latest pseudogene annotations from the Yale Pseudogene database11 and the 

Han et al. Page 2

Nat Commun. Author manuscript; available in PMC 2015 February 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



GENCODE Pseudogene Resource2 and filtered those pseudogenes overlapped with any 

known protein-coding genes. Second, to address the issue of potential cross-mapping 

between pseudogenes and their WT coding genes, we evaluated the sequence uniqueness of 

each exon of a pseudogene12, and only retained those pseudogenes containing exon(s) with 

sufficient alignability for further characterization (Methods). Third, we filtered those reads 

mapped to multiple genomic locations from TCGA BAM files. Through analyzing more 

than 378 billion RNA-seq reads, we measured the expression levels of 9,925 pseudogenes 

(based on the regions of high sequence uniqueness) in 2,808 samples of seven cancer types 

(Table 1). These cancer types included breast invasive carcinoma (BRCA)13, glioblastoma 

multiforme (GBM)14, kidney renal clear cell carcinoma (KIRC)15, lung squamous cell 

carcinoma (LUSC)16, ovarian serous cystadenocarcinoma (OV)17, colorectal carcinoma 

(CRC)18, and uterine corpus endometrioid carcinoma (UCEC)19.

Among the seven cancer types we surveyed, five datasets (BRCA, GBM, LUSC, KIRC, and 

OV) had been obtained through a paired-end sequencing strategy, while the other two (CRC 

and UCEC) had resulted from a single-end sequencing strategy. Moreover, samples in the 

paired-end group had many more mappable reads than those in the single-end group (Table 

1, Supplementary Fig. 1). We detected more expressed pseudogenes (with an average Reads 

Per Kilobase per Million [RPKM]20 cutoff≥0.3, as in the literature21,22) in the paired-end 

group (OV: 670, KIRC 712, LUSC 813, BRCA: 747, and GBM, 875) than in the single-end 

group (UCEC, 649 and CRC, 741) (Table 1). Both the larger numbers of sequenced reads 

and the higher read mapping accuracy in the paired-end group contributed to this difference. 

Indeed, the two groups showed distinct global patterns of pseudogene expression 

(Supplementary Fig. 2). For each cancer type, we observed generally weak correlations 

between the expression level of pseudogenes and their WT genes, which is consistent with 

the previous study10 (Supplementary Fig. 3). In general, the expression correlation between 

a pseudogene and its WT coding gene could be affected by three factors: (i) the sequence 

similarity between the pseudogene/gene pair; (ii) the molecular mechanisms through which 

the pseudogene functions; and (iii) the detection sensitivity given the setting of RNA-seq 

experiments. Considering the potential confounding factors (e.g., sequencing strategy and 

read coverage) for quantifying the pseudogene expression, we performed the cross-tumor 

analyses for these two groups separately. As observed in Kalyana-Sundaram et al. (2012)10, 

we detected some tumor-lineage-specific pseudogenes (296 from the paired-end group and 

41 from the single-end group, Supplementary Fig. 4). In addition, for three cancer types with 

available RNA-seq data from nontumor tissue samples, we identified differentially 

expressed pseudogenes between tumor and nontumor samples (54 in BRCA, 110 in KIRC 

and 138 in LUSC, Supplementary Fig. 5).

Supervised analysis of pseudogene expression on tumor subtypes

However, the tumor-lineage-specific or cancer-specific pseudogenes identified above may 

only reflect biological characteristics unique to distinct tissue types rather than key 

biological factors involved in tumorigenesis. Therefore, it is more critical and informative to 

examine the expression patterns of pseudogenes among tumor subtypes within a disease. For 

several cancer types with established tumor subtypes, we performed the supervised analysis 

and revealed substantial numbers of pseudogenes with significant differential expression: 48 
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in UCEC (endometrioid vs. serous)23, 138 in LUSC (basal, classical, primitive and 

secretory)16, 71 in GBM (classical, mesenchymal, neural and proneural)24 and 547 in BRCA 

(PAM50 subtypes: luminal A, luminal B, basal-like, Her2-enriched and normal-like)25 

(Methods, Fig. 2a, Supplementary Data 1). This analysis not only reveals a large number of 

pseudogenes with potential biomedical significance, but also provides new insights into 

known oncogenic pseudogenes. For example, ATP8A2P1 has been reported to play a 

growth regulatory role and to be expressed in a BRCA-specific manner10. Through the 

analysis of the large BRCA sample cohort, we further demonstrated that this pseudogene 

shows significant expression variation across subtypes, with the highest level in luminal A 

and the lowest level in the basal-like subtype (ANOVA P < 2.2×10−16, Fig. 2b).

Among the tumor subtypes we surveyed, endometrioid and serous endometrial tumors are 

two major histological subtypes for UCEC, which are defined independently from the 

molecular data. Importantly, these two subtypes have distinct pathological characteristics 

and clinical behaviors. Early-stage endometrioid cancers are often treated with adjuvant 

radiotherapy, whereas serous tumors are usually treated with chemotherapy26. Therefore, 

subtype classification is crucial for selecting appropriate therapy. To assess the clinical 

utility of pseudogene expression in UCEC, we applied a rigorous machine-learning 

approach to assess the power of expressed pseudogenes in classifying these two subtypes. 

First, we divided the TCGA UCEC samples into training and test sets according to their 

tissue source sites (Fig. 3a). Second, within the training set, we applied three well-

established machine learning algorithms (random forest [RF]27; support vector machine 

[SVM]28; and logistic regression [LR]) and evaluated their performance based on the area 

under the receiver operating characteristics curve (AUC score) through 5-fold cross 

validation (Methods, Fig. 3b). Strikingly, we found that the pseudogene-expression profile 

can accurately classify these two histological subtypes (RF, AUC score = 0.944, SVM, AUC 

score = 0.962, LR, AUC score = 0.892, Fig. 3c). Moreover, the best-performing algorithm, 

LR, achieved a high AUC of 0.922 on the independent test set (Fig. 3d), with accuracy = 

0.90, positive predictive value = 0.80, and negative predictive value = 0.93. The predictive 

power of pseudogene expression is comparable to those achieved by the mRNA expression 

profiles, suggesting that both pseudogene and mRNA expression can classify the UCEC 

subtypes independently (Supplementary Fig. 6). These results indicate that pseudogene 

expression can effectively capture clinically relevant information and may provide an 

independent approach to validate the classification of tumor subtypes.

Assessment of pseudogene expression tumor subtypes

Cancer is a complex disease involving multiple layers of aberrations that cannot be 

sufficiently captured by any single type of molecular data. In recent years, various “omic” 

data, such as mRNA expression, microRNA expression, DNA methylation, somatic copy 

number alteration, and protein expression, have been widely used to classify tumor samples 

into different molecular subtypes13-19. The integrative analysis across these molecular 

subtypes, especially through the efforts in TCGA, often provide crucial insights into 

pathobiology and help stratify patients for predicting prognosis and selecting effective 

treatment. To complement the supervised analysis in the above section, we next performed 

unsupervised analyses and explored the biomedical relevance of tumor subtypes based on 
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pseudogene-expression profiles. For each cancer type, we selected the pseudogenes with the 

most variable expression (500 for each cancer in the paired-end group and 100 for each 

cancer in the single-end group, respectively) and used non-negative matrix factorization 

(NMF)29 to classify tumor samples into subtypes (clusters). Strikingly, in multiple cancer 

types, we observed that subtypes based on pseudogene expression had high concordance 

with other molecular subtypes (Fig. 4a, chi-squared tests).

Here, we present breast cancer as an example (Fig. 4b). Based on the NMF consensus 

clustering, 837 BRCA samples can be classified into three distinct subtypes: subtype 1 (n = 

144), subtype 2 (n = 390), and subtype 3 (n = 303) (Fig. 4b, Supplementary Data 2). These 

pseudogene subtypes show high concordance with the well-established PAM50 molecular 

subtypes25 and the status of ER/PR/HER2 markers (chi-squared test, Fig. 4b). Subtype 1 is 

significantly enriched for basal-like samples, containing 70 of 139 basal-like samples; 

subtype 2 is enriched for luminal A and luminal B samples that 382 of 390 samples are these 

two subtypes; subtype 3 is enriched for Her2 samples, containing 50 of 67 HER2 samples. 

The pseudogene expression subtypes also correlate with the mutation status of key cancer 

genes13: subtype 1 shows a depletion of GATA3 mutations; and subtype 2 has many 

samples of TP53 mutations. These results strongly indicate that pseudogene expression 

represents a novel and relevant dimension for investigating cancer-related molecular 

mechanisms; and integrating it with other molecular data related analysis may help 

characterize the molecular basis of tumorigenesis in a more comprehensive way.

Prognostic power of pseudogene expression in kidney cancer

To study the potential clinical value of pseudogene-expression, we examined whether the 

pseudogene subtypes correlate with clinical outcomes in KIRC. Currently, neither 

prognostic nor predictive markers are recommended for clinical use by the College of 

American Pathologists. Based on the 500 pseudogenes with the most variable expression, 

we were able to classify 446 KIRC samples into two distinct subtypes (Fig. 5a, 

Supplementary Data 3). Tumor samples in subtype 1 convey a much better patient prognosis 

(n = 234, survival time of 75.8 ± 3.7 months) than those in subtype 2 (n = 212, survival time 

of 63.1 ± 3.7 months) (Fig. 5b, log-rank test P = 0.019). To assess whether individual 

pseudogenes can confer prognostic power given clinical variables, for each pseudogene, we 

built the full multivariate Cox model, consisting of both clinical variables and the 

pseudogene expression. We observed an enrichment of pseudogenes (115 out of 500) with a 

statistically significant P-value (FDR < 0.05) (Fig. 5c, Supplementary Data 4). Noteworthy, 

among the 115 pseudogenes, only 19 (16.5%) showed relatively high expression correlations 

(Spearman correlation ≥ 0.5) with their WT genes, suggesting that the predictive power of 

pseudogene expression is largely independent of the corresponding WT genes.

To further assess the clinical utility of the observed pseudogene-expression subtypes, we 

classified the KIRC samples into four risk quartiles based on the risk scores (in terms of 

overall survival) calculated from the multivariate Cox model, employing only clinical 

variables: low risk group (Q1, n = 110), low-medium risk group (Q2, n = 111), medium-

high risk group (Q3, n = 112), and high risk group (Q4, n = 112) (Methods, Supplementary 

Data 3). Although the survival curves of these four risk groups are significantly separated 
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(Fig. 5d, log-rank test P = 0), the clinical variables actually fail to separate the two medium 

risk groups (Fig. 5d, Q2 vs. Q3, log-rank test P = 0.48). In contrast, the samples in these two 

groups can be well separated based on the pseudogene-expression subtypes (Fig. 5e, log-

rank test P = 9.6×10−3). For comparison, we performed the same analysis on the two 

medium-risk groups (Q2 and Q3) using the subtypes defined by mRNA and microRNA 

expression (obtained from TCGA KIRC Analysis Working Group15) or other molecular data 

(obtained from TCGA Pan-Cancer Analysis Working Group) and observed no significant 

correlations with overall survival (log-rank test, mRNA expression, P = 0.84; microRNA 

expression, P = 0.13; DNA methylation, P = 0.44; somatic copy number alteration, P = 

0.77; and protein expression, P = 0.14). The robust results in the above survival data 

analyses underscore the potential prognostic value of pseudogene expression in KIRC.

Although they do not generate functional protein products, pseudogenes may act as 

regulatory RNAs and affect the expression of coding genes through multiple mechanisms5. 

To gain some mechanistic insight into how expressed pseudogenes contribute to the 

observed KIRC pseudogene-expression subtypes, we performed a systematic analysis 

(Supplementary Fig. 9a and Supplementary Data 5). Among 102 expressed pseudogenes 

without a clear WT cognate gene, 44 pseudogenes showed a significant differential 

expression between the two subtypes (t-test, corrected P < 0.05, fold change > 1.5), with 

potential function as lncRNAs5. For those pseudogenes with a WT cognate gene, 93 pairs of 

pseudogenes and their WT genes showed a significant differential expression between the 

two subtypes (t-test, corrected P < 0.05). Among them, 64 showed strong positive 

correlations (Rs ≥ 0.3), suggesting that they may regulate their WT counterparts through 

competing for shared regulatory RNAs5,30; while 4 showed strong negative correlations with 

their WT cognate genes (Rs ≤ -0.3), suggesting that they may function as antisense 

transcripts to inhibit the WT-gene expression. Further analyses on independent, strand-

specific RNA-seq data would provide more insights into these mechanisms. Among the WT 

cognate genes with strong positive correlations with their pseudogenes, we noticed that the 

survival correlations of individual WT genes with prognostic value match the survival 

pattern of the pseudogene-expression subtypes: WT genes with better prognosis (potentially 

tumor suppressors, hazard ratio < 1) show higher expression levels in subtype 1 (the better 

survival group) and the genes with worse prognosis (potentially oncogenes, hazard ratio > 1) 

show higher expression levels in subtype 2 (the worse survival group, Supplementary Fig. 

8b). Finally, we examined the classic miRNA decoy model as proposed in Poliseno et al. 

(2010)9 and identified 38 such candidates (Methods and Supplementary Data 5). One 

candidate of interest is the potential regulation of a putative tumor suppressor α-catenin 

(CTNNA1) by the pseudogene PGOHUM00000257111 through competition for up to 9 

shared miRNA regulators (Supplementary Data 5). Indeed, the expression levels of 

PGOHUM00000257111 were significantly higher in cluster 1 (t-test P = 1.48×10-7), which 

may lead to the elevated levels of CTNNA1 in subtype 1 (Supplementary Fig. 8b) and 

therefore better survival.

Discussion

Recently, pseudogenes have emerged as new players in tumor biology5,10. However, a 

crucial question remains unclear: does pseudogene expression, as a whole, represent a 
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biologically meaningful dimension that can characterize tumor heterogeneity and provide 

clinical applications? Here, we performed a pan-cancer analysis of pseudogene expression 

for what is, to our knowledge, the largest number of cancer patient samples (~3,000) in one 

such analysis. Utilizing TCGA patient cohorts with a sufficient sample size, we show the 

predictive power of pseudogene expression in classifying established tumor types and the 

high concordance of tumor subtypes based on pseudogene expression with other molecular 

subtypes as well as clinically established biomarkers (such as ER and PR status in breast 

cancer). It should be emphasized that a large number of tumor-lineage-specific pseudogenes 

identified through between-disease comparisons10 do not imply our findings through the 

within-disease analyses. Because many tumor-lineage or cancer-specific pseudogenes could 

arise from tissue-related rather than tumorigenesis-related effects, they may or may not have 

the power to differentiate tumor subtypes.

Strikingly, our analysis reveals an unexpected prognostic power of pseudogene expression 

in kidney cancer: pseudogene-expression subtypes not only correlate with patient survival 

but also confer additional prognostic powers for a group of patients whose survival times 

cannot be well predicted based on conventional clinical variables. This finding implies a 

novel prognostic strategy that incorporates both the risk scores defined by the clinical-

variable model and the tumor subtypes revealed by pseudogene expression (subtype 1 and 

subtype 2): among medium-risk patients, patients of subtype 2 may benefit from earlier, 

more aggressive therapies. Interestingly, although the tumor subtypes defined by other 

molecular data (e.g., mRNA and miRNA) show high concordance with the pseudogene-

expression subtypes based on the whole patient cohort, they do not confer additional 

prognostic power based on the medium-risk patient subset. These aggregate results provide a 

strong rationale for further investigation of the clinical utility of pseudogene expression, 

which has been understudied in the field. Since TCGA patient samples were collected for 

the purpose of comprehensive molecular profiling and were collected from different 

institutions, this practice might introduce some bias. In addition, the resulting clinical 

annotation of patient samples and related records may not be as rigorous and complete as 

those obtained from standard clinical trials. Therefore, further efforts should be made to 

validate the clinical utility of pseudogene expression in a more formal clinical setting (e.g., 

clinical trials).

While our study primarily focused on the biomedical significance and clinical relevance of 

pseudogene expression as a whole (i.e., the subtypes that collectively represent the 

information of many pseudogenes), an intriguing question is how individual pseudogenes 

are functionally involved in tumorigenesis. This is a challenging but exciting topic since 

pseudogenes may affect their WT coding genes or unrelated genes through multiple 

mechanisms such as microRNA decoys and antisense transcripts. From a systems biology 

point of view, the informative behavior of pseudogenes may originate from a role such as 

“regulator.” Our preliminary analysis here revealed some candidates of potential interest. 

Further efforts are required to elucidate how these pseudogenes functionally contribute to 

tumor initiation and development and how they are regulated through the complex gene 

regulatory network.
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Methods

Pseudogene expression quantification

We downloaded RNA-seq BAM files of 2,808 samples (only primary tumor samples) in 

seven TCGA cancer types and their related normal tissue samples (if available) from UCSC 

Cancer Genomics Hub on January, 2013 (CGHub, https://cghub.ucsc.edu/). TCGA BAM 

files were generated based on Mapsplice2 algorithm32 for alignment against the hg19 

reference genome using default parameters. We further filtered the reads mapped with 

multiple locations in BAM files. To perform a comprehensive survey of pseudogenes, we 

obtained the genomic information of 16,892 human pseudogenes through combining the 

latest pseudogene annotations from the Yale Pseudogene Database (build 73)11 and the 

GENCODE Pseudogene Resource (version 18)2. We further filtered those pseudogenes that 

overlapped with any known coding genes. To address the potential cross-mapping issue, we 

calculated the alignability score12 for each pseudogene exon. Alignability provides a 

measure of how often the sequence at a given location will align within the whole genome 

(up to 2 mismatches). For each 75-mer window, an alignability score S was defined as 1/

(number of matches found in the genome): S = 1 means one match in the genome, S = 0.5 

for two matches in the genome, and so on12. To count mapped reads for a pseudogene, we 

only retained those exons with an average alignability score S ≥ 0.95 to ensure mapping 

accuracy; and quantified pseudogene expression as RPKM20. The pseudogenes with 

detectable expression were defined as those with an average RPKM ≥ 1 across all samples in 

each cancer type, as used in the literature21,22. We then log-transformed the RPKM values 

for further analysis. We used Spearman rank correlations to assess the coexpression patterns 

between pseudogenes and their WT cognate genes. The pseudogene expression data have 

been deposited into Synapse (https://www.synapse.org/) with ID syn1732077.

Supervised analysis of expressed pseudogenes

To identify tumor-lineage-specific/cancer-specific pseudogenes, or those differentially 

expressed among established molecular or histological subtypes, we used analysis of 

variance (ANOVA) or student t-test to detect the statistical difference between two or more 

groups. To correct for multiple comparisons, we used the Bonferroni method, with a 

corrected P-value cutoff of 0.05.

To assess the predictive power of pseudogene expression for two UCEC histological 

subtypes (endometrioid vs. serous), we divided the samples into training and test sets 

according to the institutions where the samples were collected. Adapted from Yuan et al. 33, 

we applied three well-established machine learning algorithms (random forest [RF]27, 

support vector machine [SVM]28 and logistic regression [LR]) to predict the subtype (as a 

binary variable) using the log-transformed expression levels of pseudogenes (or mRNA) as 

candidate features. We evaluated the performance of classifiers through 5-fold cross 

validation within the training set. In detail, we randomly divided the training set into five 

equal portions; then, during each of the five iterations, we first applied the least absolute 

shrinkage and selector operator (LASSO34) as the feature selection method on 4/5 of the 

training data and trained the classifiers (1000 trees for RF, radial kernel for SVM, other 

parameters set by default) with the selected features. Next, we applied the trained classifiers 
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to the remaining 1/5 of the training data for prediction. The predictions from all five 

iterations were then combined and compared with the truth, based on which a ROC curve 

was drawn35 and the AUC score, were calculated accordingly. Finally, we performed feature 

selection (Supplementary Data 6) and built the classifier from the whole training set using 

the best-performing algorithm (with the highest AUC) identified through the cross-

validation, and applied it to the test set in order to independently validate the predictive 

power.

Analysis of tumor subtypes revealed by pseudogene expression

To classify tumor subtypes based on pseudogene expression, for each cancer type, we 

selected the 500 pseudogenes with the most variable expression pattern, used NMF to 

classify the tumor samples into clusters29, and then used the cophenetic correlation to select 

the optimized clusters. To perform an objective assessment, we obtained independently 

defined molecular subtypes by other genomic data from TCGA marker papers13-19 

whenever possible; and if not, then from TCGA Pan-Cancer Analysis Working Group 

(through a similar NMF-based unsupervised analysis) (syn1688309 for microRNA 

expression, syn1701558 for DNA methylation, and syn1682511 for mRNA expression, copy 

number variation, and protein expression [Reverse phase protein array]36). All related 

subtype classifications and method details are publically available at Synapse37. To assess 

correlations among the subtypes, we used the chi-squared test or Fisher's exact test, as 

applicable, and considered P < 0.05 to be statistically significant.

KIRC patient survival analysis

We obtained the clinical information associated with the KIRC samples, including the 

patient's overall survival time, age, and the tumor grade, and stage from TCGA data portal 

(https://tcga-data.nci.nih.gov/tcga/). We compiled progression-free survival (PFS) data 

based on TCGA clinical follow-up records. In this study, we defined PFS as the interval 

from the date of treatment to the date of an event (disease progression or recurrence, or new 

tumor diagnosis), or the date of last follow-up or decease if none of the events listed above 

occurred before that date. We used a log-rank test to examine whether the subtypes 

significantly correlated with patient survival, and a multivariate Cox proportional hazards 

model to assess whether the subtype provided additional prognostic power, given the clinical 

variables; to correct for multiple comparisons, we used the Benjamini-Hochberg method38, 

with an adjusted FDR cutoff of 0.05. To calculate the risk score for patients, we first built a 

Cox proportional hazard model by fitting the clinical variables (i.e., patient age, cancer stage 

and grade) with the censored survival data, and then plugged the original clinical variables 

back into the obtained model (i.e., the regression function) to calculate the linear predictor or 

the risk score for each patient. Patients were classified into quartiles grouped by the risk 

scores (which are essentially continuous values). To display the difference between groups, 

we used Kaplan-Meier plots, presenting the average survival time as the means ± s.e.m., for 

which we estimated the mean survival time as the area under the survival curve39.
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Mechanistic analysis of pseudogene driven regulation

We downloaded KIRC mRNA expression and miRNA expression from Synapse 

(syn300013), and used ANOVA (Bonferroni corrected P < 0.05) to identify differentially 

expressed pseudogenes or mRNAs among the subtypes. We used Spearman rank 

correlations to assess the expression patterns between a pseudogene and its WT cognate 

genes: Rs ≥ 0.3 (or ≤ -0.3) were considered as strong positive (or negative) correlation. To 

identify candidates for the miRNA-decoy model, we obtained the predicted conserved target 

sites from MicroRNA.org40 and used the following criteria: (i) the expression levels of a 

pseudogene and its WT cognate genes were strongly positively correlated (Rs ≥ 0.3); (ii) its 

WT cognate gene showed a significant negative correlation with the miRNA of interest 

(FDR < 0.05) and contained predicted target sites in its 3’ UTR; and (iii) the pseudogene 

showed a significant negative correlation with the expression of the same miRNA (FDR < 

0.05).
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Figure 1. A computational pipeline to quantify the expression of pseudogenes from TCGA RNA-
seq data
First, we combined the latest pseudogene annotations from the Yale Pseudogene database 

and the GENCODE Pseudogene Resource and filtered those pseudogenes that overlapped 

with any known protein-coding genes. Second, we evaluated the sequence uniqueness of 

each exon of a pseudogene, and only retained those pseudogenes containing exon(s) with 

sufficient alignability for further characterization. Third, we filtered those reads mapped to 

multiple genomic locations from TCGA BAM files.
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Figure 2. Identification of differentially expressed pseudogenes among established tumor 
subtypes
(a) Numbers of significantly differentially expressed pseudogenes in multiple cancer types. 

For each cancer type, the whole bar represents the number of expressed pseudogenes (mean 

RPKM≥0.3) in the analysis; the black part represents the number of expressed pseudogenes 

with a detected significance for differential expression among tumor subtypes (t-test or 

single-factor ANOVA, corrected P < 0.05); and the pie chart shows the sample numbers and 

percentages in each cancer type. (b) The box plot for the expression pattern of ATP8A2P1 in 

837 BRCA samples based on PAM50 subtypes: luminal A (n = 417), luminal B (n = 191), 
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basal-like (n = 139), Her2-enriched (n = 67), and normal-like (n = 23). The boxes show the 

median ± 1 quartile, with whiskers extending to the most extreme data point within 1.5 

interquartile range from the box boundaries.
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Figure 3. The predictive power of pseudogene expression in classification of UCEC subtypes
(a) The UCEC dataset (n = 306) was split into training (n = 223) and test (n = 83) sets. (b) 

Schematic representation of feature selection and classifiers building through five-fold 

cross-validation within the training set. (c) The ROC curves of the three classifiers based on 

the cross-validation within the training set. (d) The ROC curve from applying the best-

performing classifier (LR) built from the whole training set to the test set. (RF: random 

forest, SVM: support vector machine, LR: logistic regression.)
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Figure 4. Correlations of pseudogene expression subtypes with other tumor subtypes
(a) Concordance between pseudogene expression subtypes and molecular subtypes defined 

by other genomic data in seven TCGA cancer types. Pseudogene-expression subtypes were 

defined based on the expression of 500 or 100 pseudogenes with the most variable patterns 

through unsupervised analysis using non-negative matrix factorization (NMF)29. The colors 

indicate the statistical significance of the chi-squared tests for assessing the concordance 

between the pseudogene-expression subtypes and other molecular subtypes. (b) 

Concordance between pseudogene expression subtypes and other subtypes in BRCA. 
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Pseudogene expression: subtype 1, red (n = 144); subtype 2, green (n = 390); and subtype 3, 

purple (n = 303). PAM50 subtypes: basal-like (brown), HER2-enriched (dark green), 

luminal A (blue), luminal B (aquamarine), and normal-like (yellow). The status of ER, PR, 

HER2 or N is marked in black (positive) and white (negative); T status is marked in black 

(T2-T4) and white (T1). Mutations of TP53, PIK3CA, GATA3, MAP3K1, and MAP2K4 are 

marked in red. Correlations were assessed by chi-squared tests.
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Figure 5. Prognostic value of pseudogene expression in KIRC
(a) KIRC subtypes are classified based on the expression of 500 pseudogenes with the most 

variable patterns through unsupervised analysis using non-negative matrix factorization 

(NMF, n = 446). (b) Kaplan-Meier plot showing correlations of the two pseudogene 

expression subtypes with overall survival (log-rank test P = 0.019). Red denotes pseudogene 

expression subtype 1 (n = 241); blue denotes pseudogene-expression subtype 2 (n = 205). 

(c) P-value distribution of individual pseudogene expressions in multivariate Cox 

proportional hazards model containing clinical variables. (d) Kaplan-Meier plot of the four 

risk groups defined by clinical variables in terms of overall survival, and the two middle risk 

groups cannot be separated (Q2 [n = 111] vs. Q3 [n =112], log-rank test P = 0.48). (e) 

Kaplan-Meier plot showing that the two pseudogene expression subtypes can effectively 

separate the samples in the two medium risk groups in terms of overall survival (Q2 [n = 

113] vs. Q3 [n = 110], log-rank test P = 9.6×10−3).
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Table 1

Summary of TCGA RNA-seq datasets used in this study

Cancer type # of Nontumor 
samples

# of Tumor samples Sequencing strategy # of mappable reads # of detectable 
pseudogenes

BRCA 105 837 Paired-end 161 M 747

KIRC 67 448 Paired-end 166 M 712

LUSC 17 220 Paired-end 171 M 813

OV 0 412 Paired-end 170 M 670

GBM 0 154 Paired-end 106 M 875

CRC 0 228 Single-end 22 M 168

UCEC 4 316 Single-end 26 M 181
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