
RESEARCH ARTICLE

Data Mining Techniques Applied to Hydrogen

Lactose Breath Test

Cristina Rubio-Escudero1☯*, Justo Valverde-Fernández2☯, Isabel Nepomuceno-

Chamorro1, Beatriz Pontes-Balanza1, Yoedusvany Hernández-Mendoza3,

Alfonso Rodrı́guez-Herrera2

1 Department of Computer Languages and Systems, University of Sevilla, Sevilla, Spain, 2 Hispalense

Pediatrics Institute, Sevilla, Spain, 3 Department of Networks, University Ciego de Ávila, Ciego de Ávila,
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Abstract

In this work, we present the results of applying data mining techniques to hydrogen breath

test data. Disposal of H2 gas is of utmost relevance to maintain efficient microbial fermenta-

tion processes.

Objectives

Analyze a set of data of hydrogen breath tests by use of data mining tools. Identify new pat-

terns of H2 production.

Methods

Hydrogen breath tests data sets as well as k-means clustering as the data mining technique

to a dataset of 2571 patients.

Results

Six different patterns have been extracted upon analysis of the hydrogen breath test data.

We have also shown the relevance of each of the samples taken throughout the test.

Conclusions

Analysis of the hydrogen breath test data sets using data mining techniques has identified

new patterns of hydrogen generation upon lactose absorption. We can see the potential of

application of data mining techniques to clinical data sets. These results offer promising

data for future research on the relations between gut microbiota produced hydrogen and its

link to clinical symptoms.
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Introduction

Hydrogen breath test is a valid tool for the assessment of gut microbiome functional activity.

The interest in evaluating this activity is currently increasing. The focus of our research is to

extract new conclusions from these well-known data sources looking at them from a different

perspective. This perspective is based on the use of tools well experienced in other research

areas such as data mining.

Non-invasive assessment techniques of the gastrointestinal function are on the rise, although

they have extensively been used in medical practice. Sampling of freely diffusible gases allows

for a better understanding of physiology and pathology [1]. One of these sampling methods,

hydrogen breath tests, measure the amount of H2 generated by gut resident bacteria after an

orally given substrate, as part of this gas passes to blood and it is removed by breathing, where it

can be easily measured. Hydrogen is generated during anaerobic metabolism, and the human

body at rest does not have an anaerobic metabolism. Anaerobic bacteria preferentially metabo-

lize sugar molecules. These molecules are broken down into short-chain fatty acids (SCFA), car-

bon dioxide (CO2) and hydrogen (H2) as result of fermentation. There is strong evidence that

an increase in the exhaled hydrogen is in direct relation to anaerobic metabolic activity. The

amount of gas produced is also connected with location of gut fermentation activity [2].

Lactose malabsorption is a common disorder associated to gastrointestinal disorders, with

prevalence in the adult population reaching 80–90%. Lactose is a disaccharide present in milk,

composed by glucose and galactose. Its absorption depends on the action of enzymes located

in the small intestinal epithelium. In the case of malabsorption, sugars are fermented by

colonic bacteria [3]. Malabsorption of lactose is, undoubtedly, the entity in which the use of

hydrogen breath test has been more widely applied. These tests are considered to be safe and

reliable, compared to other more invasive techniques, as jejunal biopsy. This is an indirect test

with a good level of sensitivity (77.5%) and a an excellent level of specificity (97.6%) [4]. False

negatives might appear, especially by the presence of intestinal flora not producing hydrogen

due to the use of antibiotics. False positives are rare and occur in cases of bacterial overgrowth.

A deeper knowledge of H2 dynamics in gut is highly desirable. Disposal of H2 gas is funda-

mental for maintaining efficient microbial fermentation processes, but the microbial groups

responsible for this function are present in low abundance. These hydrogenotrophic microbes

include acetogens, methanogenic archaea (MA) and sulfate-reducing bacteria (SRB). Hydro-

gen sulfide (H2S) is a potent genotoxin and it is involved in the pathogenesis of chronic inflam-

matory disorders of the colon [5]. Therefore, identification of H2 generation patterns may

contribute to the understanding of gut’s inflammation.

Dark fermentation is the fermentative conversion of organic substrate to biohydrogen. It is

a complex process exhibited by diverse groups of bacteria, involving a series of biochemical

reactions using three steps, which are similar to anaerobic conversion in a process independent

of the presence of light.

The same interest is emerging in human health as H2 metabolism has been linked to pro-

cesses as obesity, colon cancer or inflammatory bowel disease. This study is only the first step

of a more complex research pipeline.

A better understanding of by-products of colonic fermentation is needed to get a deeper

knowledge of interactions between human metabolome and resident microbiota metabolome.

The greater part of this knowledge comes from in vitro assays. The real world of in vivo pro-

cesses is far from being well known. In humans, parameters such as region of the colon, supply

of endogenous substrates (proteins, urea and mucin) and bicarbonate secretion, can greatly

interact with bacterial metabolic processes.
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Patterns of H2 production may be linked to particular sets of species interacting together.

Identification of H2 production patterns is an initial step towards a better understanding of

gut as a dynamic system where equilibrium between gas generation and consumption contrib-

utes to health and disease.

In this work, we present the results of applying clinical data mining to the results of lactose

hydrogen breath tests. Data mining is the automated analysis of data repositories in order to

extract models representing knowledge [6]. In particular, clinical data mining is the applica-

tion of data mining techniques to clinical data [7], with the goal of interpreting available clini-

cal data. It allows for the creation of knowledge models and provides assistance to clinical

decision making. In the last 10 years, there has been a growing interest in application of data

mining techniques to clinical data. MEDLINE has seen a sharp increase by a 10-fold on num-

ber of papers having the term “data mining” in their title [7]. Although there are many publica-

tions related to application of hydrogen breath tests, no approaches have been found where

data obtained from the tests are further analyzed using data mining techniques. Some previous

successful applications of clinical data mining to volatile organic compounds from human

exhaled air can be found in works published by Van Berkel et al [8], thus leading to the appli-

cation of clinical data mining to hydrogen breath tests.

Application of data mining techniques to the results of lactose hydrogen breath tests has

not been previously published in medical literature. We have been able to extract some conclu-

sions which have been already presented in some conferences, and new hypothesis have been

generated about the tests.

Hydrogen breath tests are good candidates to be analyzed with data mining techniques,

since they provide a great amount of data, as they are a common practice and each test gener-

ates a vast amount of data. One of the main advantages of application of data mining tech-

niques is the appearance of new hypothesis not previously considered [9]. Therefore, new

knowledge may be extracted from the data. New H2 generation patterns become unveiled and

this could be connected, in theory, with inflammation mechanism and clinical symptoms.

The rest of the article is structured as follows. In Section Material and Methods we describe

both hydrogen breath tests and data mining techniques, as well as the dataset analyzed. In Sec-

tion Results we show our findings after application of data mining techniques. In Section Dis-

cussion, we extract conclusions about the results, and we talk about future lines of work.

Material and Methods

Data sets from 2751 lactose hydrogen breath tests were included (see data in S1 Data Hydrogen

breath test data). Collection time ranges over 4 years, from June 2009 to June 2013. Both gen-

ders subjects are between 1 and 14 years old. The information acquired for each patient was:

gender, date of the test, age of the patient at the time of the test, weight, height, private assur-

ance company name and zip code.

The research was conducted conforming to the principles outlined in the Declaration of

Helsinki. Written informed consent was obtained from parents/guardian of each children

enrolled. Clearance for this human subject research project has been given by Fundación IHP
Institutional Review with level of review “Exempt, Non-Significant Risk(NSR)”.

Breath Test Methods

Patients were fasting overnight, at least during 6 hours (depending on their age). Children

who received antibiotics during the 2 weeks prior to testing were excluded, as well as patients

with intra-abdominal surgical proceedings conducted 4 weeks before the test. Patients who
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had used laxatives in the 3 days prior to the test were also excluded. Patients were advised to

avoid slowly absorbed carbohydrates (like bread or potato) and fiber the night before the test.

Breath samples were taken by facial mask for children with blowing difficulties or by dis-

posable card tubes. Breath samples were analyzed using a portable device (Gastrolyzer1, Bed-

font Scientific Ltd). Samples were taken at baseline (0 minutes) and minutes 30, 60, 90, 120,

and 180 after ingestion of a 50g/250 mL ready-to-use lactose solution (Lactonaranja1, Bioa-

nalitica SL, Spain). Gastrointestinal discomfort symptoms were checked along with each of the

samples taken. Patients were kept under direct supervision for the whole process to avoid

excessive exercise that could interfere with the readings.

The Rome Consensus Conference evaluated the methodology and indications of lactose

breath tests in gastrointestinal disorders and suggested a cut-off increase of hydrogen of 20

parts per million (ppm) above the baseline level to be considered as positive [2]. We refer to

malabsorption when such increase occurs.

Data Visualization

This section provides some graphical information about the dataset analyzed. In particular,

two different analysis has been carried out.

First, a simple visualization of data heat map can be found in Fig 1. We can see for some of

the patients a high variability in values, ranging from 0 to almost 500 ppm. Additionally, it can

be seen that higher variations typically occur at the sample at 180 minutes.

Additionally, a principal component analysis (PCA) [10] has been carried out. This study

aims at a priori determination of the number of possible existing partitions. Fig 2 illustrates

data distribution into the first two components, which contain 87.2% of data variability (74.2%

and 13%, respectively). A third component containing 5.8% of variability was also discovered.

This figure suggests that there are five partitions clearly differentiated and the existence of a

sixth partition which is spread in the space. This sixth partition will present higher intra-cluster

distance. Furthermore, such shapes also suggest that the extracted clusters exhibit spherical distri-

bution. Therefore, k-means is proposed as the clustering algorithm using the Euclidean distance.

Fig 1. Data visualization by means of a heat map.

doi:10.1371/journal.pone.0170385.g001

Fig 2. Data visualization of the first two principal components.

doi:10.1371/journal.pone.0170385.g002
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Data Mining Methods

Clustering analysis or clustering is an exploratory data mining task used in many fields such as

machine learning, pattern recognition or information retrieval [11]. Clustering is the process

of grouping a set of data objects (or examples) into subsets. Each subset is named cluster and

the objects in a cluster are similar to one another, yet dissimilar to objects in other clusters.

The set of clusters resulting from a cluster analysis is named also as clustering. The process of

grouping or partitioning is performed by clustering algorithms in an automatic way. Cluster-

ing is one of the main tasks in data mining and it can lead to the discovery of previously

unknown groups within the data [12].

There are many clustering algorithms in the literature [13]. In this work, we use the k-

means algorithm [14], which is a partitioning method. The justification for this selection can

be found in Section Data Visualization. Partitioning methods divide the objects into k parti-

tions or groups with the restriction of k< = n, where k is the number of clusters to discover,

and n the number of objects in the dataset D.

Most partitioning methods are distance-based methods. Given k, the method creates an ini-

tial partitioning and it uses an iterative process that tries to improve the partitioning by mov-

ing objects from one group to another based on a distance measure. The criterion for a good

partitioning is that objects in the same group are similar or close given a distance measure,

whereas objects in different clusters are very different or far apart.

K-means is the most well-known and commonly used partitioning method [15]. Given a

dataset D with n objects and a k value, the partitioning method distributes the objects from D

in k clusters: C1, C2. . ., Ck, where Ci and Cj are included in D and Ci and Cj have an empty

intersection. K-means can be used with different distance measures, being the Euclidean dis-

tance [16] the most commonly used, and therefore the one used in this work.

K-means is a centroid-based technique and this technique uses the centroid of a cluster, Ci,

to represent the cluster. Basically, the centroid of a cluster is its center point and can be defined

in several ways, for instance using the means or medoid of the objects assigned to the cluster.

In the case of k-means algorithm, the means of the objects are used as a measure to define the

center point. The difference between two objects p and q in cluster Ci is measured by the

Euclidean distance between these two points with the centroid.

K-means algorithm proceeds as follows: the algorithm randomly chooses k objects in D and

these objects initially represent the centroids of the k clusters. For each of the remaining

objects, the Euclidean distance is calculated to assign each object to the most similar cluster.

Then, the cluster centroid is recalculated and the objects are reassigned only if the sum of dis-

tances is reduced. The clusters centers are recalculated after each reassignment. The algorithm

stops when moving objects from one cluster to another does not reduce the sum of distances,

i.e., each object is grouped with its most similar or closest objects.

A hot topic in clustering processes is the selection of the optimal number of clusters. Some

methods such as Expectation-Maximization provide the user with the best number of clusters.

Unfortunately, this is not the most usual situation and, in many cases, the user must discover

this value. Several methods have been proposed so far, some of them focusing on inter-cluster

distances, some others in intra-cluster distances or, in other cases, combinations of both dis-

tances and other considerations. In [17], a method combining several indices was proposed. In

particular, the authors used the well-known measures Silhouette [18], Davies-Bouldin [19] and

Dunn index [20] to create a system based on a majority of votes to determine the most suitable

number of clusters. We are following this strategy in this work.

Additionally, k-means has another important issue to be addressed: its sensitivity to the

starting partition. To prevent local minima, the k-means++ algorithm [21] for cluster center
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initialization has been used. This algorithm improves the running time of the k-means algo-

rithm, and the quality of the final solution due to the heuristic it uses to find centroid seeds.

Finally, please note that all experimentation has been carried out in Matlab 2015, in a i7

QuadCore 3.30 GHz processor, using the routines provided by Matlab and taking less than 3

minutes to perform the whole experimentation.

Results

The data set was made up of 2751 hydrogen tests fulfilling inclusion criteria. From them, 181

were excluded because of missing data. Following the Rome Consensus, we considered as Lac-

tose Malabsorption (LM) samples from patients showing an increase of hydrogen levels of 20

parts per million (ppm) above the baseline. The number of patients diagnosed of lactose mal-

absorption (LM) following these criteria was 839, 32.64% of all patients. In our study, we have

not discriminated non-hydrogen producing patients to avoid loses due to selection bias.

Patients with an initial H2 basal value greater that 20 ppm were considered, although these

patients are sometimes discarded for the test. There is controversy over the interpretation of a

baseline above 10-20ppm. Some authors consider the test as invalid due to slowed gastric emp-

tying and oral flora effect, discontinuing the test [22]. Other authors consider this finding as

suggestive of bacterial overgrowth and continue taking samples. There were 93 patients with

initial H2 basal value greater than 20 ppm diagnosed of lactose malabsorption. They repre-

sented 3.62% out of a total set of 2571 patients analyzed and 11.08% out of 839 patients diag-

nosed as intolerant.

To highlight the relevance of the different samples taken throughout each of the tests, we cal-

culated how many of the patients would have been diagnosed of malabsorption if some of the

samples had been ignored. Our finding was that excluding samples at 90 minutes, 19 patients

would have not been diagnosed of malabsorption, representing 2.26% of the 839 patients diag-

nosed of LM. If we do not take into account samples at 120 minutes, 26 patients would have not

been diagnosed of malabsorption, representing 3.09% of the 839 patients diagnosed with malab-

sorption. Finally, for sample at 180 minutes, 166 patients would have not been diagnosed of

malabsorption, representing 19.78% of the 839 patients diagnosed with malabsorption.

Regarding data mining techniques, we applied k-means clustering to the data set in order

to identify patterns of behavior. Not previous hypothesis were considered. The clustering was

applied to the H2 values, removing the the one at minute 150. K-means needs as input parame-

ter the number of groups or clusters k in which dividing the dataset. The k-means algorithm

was executed with k = 2, 3, 4, 5, 6, 7 and 8. The initial value k = 2 was chosen since classically,

hydrogen lactose breath tests, provide results based on 2 types of curves [22]. The last evaluated

value k = 8 has been chosen based on expert knowledge.

According to the methodology described in [17], values for Silhouette, Davies-Bouldin and

Dunn Index are represented in Fig 3, for k = 2 to k = 8, as aforementioned (calculated with

Matlab’s package ‘CVAP: Cluster Validity Analysis Platform’). Since all indices represent results

at different scales, we have preferred to show them in their original scale.

Fig 3. Results for Silhouette (4A), Davies-Bouldin (4B) and Dunn (4C) for k = 2 to k = 8.

doi:10.1371/journal.pone.0170385.g003
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Table 1 reports the best and second best results for all the three methods. Silhouette and

Dunn aims at maximum values, whereas Davies-Bouldin aims at low values. If only the best

values were considered (k = 6, k = 5, and k = 7, respectively) no consensus would be reached.

However, when considering the second best values (k = 7, k = 6, and k = 6, respectively), k = 6

is finally elected with 3 votes.

Therefore, the most suitable partitions are obtained when k = 6, identifying a set of 6 differ-

ent typologies of data curves (see Fig 4):

• A. Flat pattern, non-ascending, linked to baseline lower than 20 ppm (1602 patients,

58.36%).

• B. Flat pattern, non-ascending, linked to baseline over 20 ppm (223 patients, 8.12%).

• C. Curved pattern, ascendant before sample at 90 minutes (121 patients, 4.41%).

• D. Curved pattern, ascendant after sample at 90 minutes (518 patients, 18.87%).

• E. Curved pattern, doubly ascendant, before and after sample at 90 minutes (121 patients,

4.41%).

• F. Curved pattern, ascendant only at sample at 180 minutes (166 patients, 6.05%).

Furthermore, a one-way ANOVA has been applied in order to confirm the statistical pres-

ence or absence of average differences among the time points within the clusters (function

‘anova1’ in Matlab). Table 2 summarizes ANOVA results, showing the between-groups varia-

tion (Columns) and within-groups variation (Error). SS is the sum of squares, and df repre-

sents the degrees of freedom. MS is the mean squared error, which is SS/df for each source of

variation. The F-statistic is the ratio of the mean squared errors. The p-value is the probability

that the test statistic can take a value greater than or equal to the value of the test statistic, and

the value to reject the null hypothesis is p-value< 0,05. The small p-value of 2.67e-159 indi-

cates that the null hypothesis of equal averages for the time points within the clusters can be

rejected.

In order to provide a more comprehensive analysis of the reported results, metadata has

been studied as well. These studies are of particular interest and provide very useful informa-

tion [23]. Please note, that all patients were characterized by gender, age, weight and height.

Table 1. Selection of the most suitable number of clusters.

Selection of k Silhouette Davies-Bouldin Dunn

Best k = 6 k = 5 k = 7

Second best k = 7 k = 6 k = 6

doi:10.1371/journal.pone.0170385.t001

Fig 4. Graphical representation of the boxplots and median values of the groups obtained.

doi:10.1371/journal.pone.0170385.g004
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However, too many missing values were encountered in both weight and height to be consid-

ered in this study and they were not included in this analysis. Table 3 summarizes age and gen-

der distribution into clusters.

Regarding the age in cluster distribution, we see that the average is higher for cluster C.

One-way ANOVA has been again applied (see Table 4) to confirm the different age distribu-

tion within clusters, obtaining a p-value of 0. This value indicates that the null hypothesis of

equal averages for the age within the clusters can be rejected. However, the ANOVA does not

tell you where the difference lies. We then applied Student’s t-Test to test each pair of averages,

finding the different age average distribution for cluster C. The resulting tables are not

included for legibility reasons.

These findings may indicate that it is more common to present curve type C at an older

age. This kind of curve suggests bacterial overgrowth or accelerated intestinal transit, which

could be justified related to a more mature system.

The gender distribution is also different for cluster B. There is a considerably higher per-

centage of males than females in this group. This could be related to males being more likely to

perform an incorrectly test preparation or to present a slow transit or a bacterial overgrowth.

The last result might also refer to a difference in dynamics in pulmonary ventilation rather

than a real difference in intestinal fermentation, as some studies suggest that pulmonary

parameters differ according to gender in children [24].

Discussion

Data mining techniques are increasing their presence in practical clinic, complementing classi-

cal statistics analysis. Data mining is particularly useful when data volume increases [25].

Among all test available involving exhaled hydrogen, the lactose ones are the most widely used

and with more scientific evidence, and there is no doubt about its clinical utility [26]. Lactose

hydrogen breath is a well stablished test that, due to the results yielded (numerical values

throughout time), is a good candidate for data mining analysis. As far as we know, this work is

the first one to apply data mining to lactose hydrogen breath test results.

After analyzing the 2571 tests contained in the data set using data mining techniques, we have

identified six different patterns (see Fig 4). Among them, two are the types of curves classically

identified [27]: a flat pattern without rise (See Fig 4A), yielding a negative test and a curved pattern

with a rise of at least 20 ppm from the baseline value beyond sample at minute 60 (see Fig 4D).

What is new is the identification of other four patterns of behavior. Although these curves

are referenced in literature [2], they are not considered classically as independent patterns of

Table 2. Summary of ANOVA results among the time points within the clusters.

Source SS Df MS F Prob > F

Columns 1.05e+06 5 210850.9 152.92 2.67e-159

Error 2.27e+07 16464 1378.8 -- --

Total 2.38e+08 16469 -- -- --

doi:10.1371/journal.pone.0170385.t002

Table 3. Patient distribution into average age and gender, according to discovered clusters.

Feature Cluster A Cluster B Cluster C Cluster D Cluster E Cluster F

Age average (years) 4.99 5.05 7.53 5.24 5.95 5.09

Males (%) 50.23 70.59 54.53 49.79 52.63 52.08

Females (%) 49.77 29.41 45.47 50.21 47.37 47.92

doi:10.1371/journal.pone.0170385.t003
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presentation for hydrogen breath tests results. Interpretation of curves with a high level of H2

at the baseline sample and no further rise in the other samples (see Fig 4B) is controversial.

Upon verification that no rule violations in pre-procedure conditions are responsible for this

baseline high level, some authors consider the test invalid and decide to repeat it after some

weeks. Others consider this finding suggestive of bacterial overgrowth and slow transit and

complete the test in the standard way [28]. In our case, the high H2 baseline level has not inter-

fered in diagnosis of LM. So we consider that the test should not be discontinued by this find-

ing, as it maintains its diagnostic value regardless of the baseline value.

The pattern rising before the sample at 90 minutes (see Fig 4C) is not considered as diag-

nostic of malabsorption. It has been associated to rapid intestinal transit or the existence of

bacterial overgrowth (SIBO). As in the previous case, the bacterial overgrowth can be con-

firmed by alternative tests [29]. These findings are not enough to get a well establish diagnos-

tics of SIBO, because lactose test is not appropriate for this case.

The meaning of the double-hump shape is uncertain (see Fig 4E). It seems to be a combina-

tion between the lactose intolerance curve (Fig 4D) and the curve described above (Fig 4C).

These patients are usually diagnosed of intolerance and it is necessary to confirm the presence

or not of overgrowth with a specific test.

Finally, we would like to focus on the curve with a rise only at sample at 180 minutes (see

Fig 4F). Finding this curve confirms the relevance of extending the test to 180 minutes [2]

against other publications that limit the test to 120 minutes [27]. Some sampling centers follow

this shortened pattern for cost-saving reasons. We consider that this practice greatly increases

the rate of false negatives, as in our study more than 10% of the patients with LM exhibited this

pattern.

It would have been of great interest to correlate the test results with the clinical symptoms

showed by patients during the test, or after a trial on lactose-free diet. Due to design and fund-

ing limitations, it was unfeasible. Prospective studies in this field, taking into account the find-

ings observed, would be of great interest. Now, with clearly established patterns, it will be

possible to design a research project to correlate signs and symptoms.

We would like to emphasize the fact that, as far as we know, this work is the first one to

apply data mining techniques to hydrogen breath test results. It has provided six previously

unidentified patterns of gas production. As future research, we propose linking these six pat-

terns to different sets of symptoms or metabolic activity of gut flora. This may be considered as

a step into basic research that needs to move further to applied research.

The colonic microbiota has been characterized from stool samples studies. Analysis of

metabolite production patterns as H2 may be an easy to use tool to get deeper knowledge of

functional status of flora. H2 tests are widely available and un-expensive.

Hydrogen metabolites, as H2S, have been proposed as gasotransmitter. These are gaseous

signaling molecules that are either synthesized endogenously in the organism, tissue or cell or

are received by the organism, tissue or cell from outside. Intestinal microbiota is one of its poten-

tial sources. They work transmitting chemical signals which induce certain physiological or bio-

chemical changes in tissues or cells. H2S has been found to have dichotomous effects, acting as

and stimulatory as well as an inhibitory molecule. It is involved on several gastrointestinal

Table 4. Summary of ANOVA results among the age distribution within the clusters.

Source SS Df MS F Prob > F

Columns 26453.8 5 5290.75 412.18 0

Error 89171.2 9138 9.76 -- --

Total 1156725 9143 -- -- --

doi:10.1371/journal.pone.0170385.t004
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processes such as inflammation, contractile responses, nociception, cancer and apoptosis. Bacte-

rial fermentation of complex carbohydrates in the colon releases large amounts of hydrogen,

which is consumed by hydrogenotrophs that include methanogens acetogens and sulfate reduc-

ing bacteria (SRB). Analysis if flatus composition of human subjects revealed H2S concentrations

in the range 0.2 to 30 ppm. A high level of H2S induces DNA damage, inhibits cytochrome C

oxidase, and inhibits butyrate oxidation [30].

The equilibrium between H2 generation and its use by hydrogenotrophic microbes may be

assessed through analysis of breath test curves shape. Diversity and ecology of mucosa-associ-

ated microbes may be deducted from this pattern and potentially maybe related to mechanism

of health and disease. This new approach is closer to the practical clinical field, as H2 measur-

ing equipment is much widely available.

Molecular hydrogen might affect a number of enteric bacterial infections. This is indicated

by genetic evidence for hydrogen-consuming hydrogenases, in vitro data demonstrating roles

of hydrogenases in energy conservation, metabolite uptake, and acid resistance by various

enteropathogens, including E. coli, Shigella spp., Yersinia spp., and Campylobacter spp.

The intestinal microbiota features include metabolic interactions involving the breakdown

and reuse of host and diet-derived nutrients. The competition for these resources can limit

pathogen growth. Thus, H2 has been proposed to act as an Achilles’ heel of microbiota metabo-

lism that can be modulated by pathogens and might offer opportunities to prevent infection

[31]. So the need to know its cycle of generation and consumption arises, and this study is a

contribution to it.

Breath hydrogen testing has been incorporated into hundreds of published research studies.

But surprisingly, the approach has been quite conservative, with a limited interpretation of

data and a lack of correlation between H2 generation and dynamics of gut microbiota metabo-

lome actions. New research lines can be designed after description of H2 production patterns,

focusing now on the biochemical reactions that generate H2 by different bacterial species and

how it may be modulated.

These results open the field for future research on the relationship of these patterns with

clinical symptoms, intestinal microbiota, motility and other aspects of interest. Data mining

yields new insights from easily accessible clinical data and unveil conclusions not evident

before.

Supporting Information

S1 Data. Hydrogen breath test data. This is the data used for the research presented in this

manuscript.
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