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African swine fever (ASF) is a hemorrhagic and often fatal disease occurring

in domestic pigs and wild boars. ASF can potentially greatly impact the global

trade of pigs and pork products and threaten global food security. Outbreaks

of ASF must be notified to the World Organization for Animal Health. In this

study, we analyzed the feasibility of applying propidium monoazide (PMA)

pretreatment-based infectious virus detection technology to ASF prevention

and control and investigated the prospects of applying this technology for

epidemic monitoring, disinfection effect evaluation, and drug development.

PMA as a nucleic acid dye can enter damaged cells and undergo irreversible

covalent crosslinking with nucleic acid under halogen light to prevent its

amplification. Although this technology has been widely used for the rapid

detection of viable bacteria, its application in viruses is rare. Therefore,

we analyzed the theoretical feasibility of applying this technology to the

African swine fever virus (ASFV) in terms of gene and cell composition. Rapid

infectious ASFV detection technology based on PMA pretreatment would

greatly enhance all aspects of ASF prevention and control, such as epidemic

monitoring, disinfection treatment, and drug development. The introduction

of this technology will also greatly improve the ability to prevent and control

ASF.
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African swine fever (ASF) is a highly contagious infectious
disease in animals caused by the African swine fever virus
(ASFV). ASF is characterized by a wide range of clinical
symptoms, from subclinical symptoms to sudden death, that
often occur within 10 days, but symptoms can occur as early as 4
days after infection (Wang et al., 2020e). As the only member of
the Asfarviridae family, the ASFV is a large, enveloped, double-
stranded DNA virus that is directly and indirectly transmitted by
soft ticks (Ma et al., 2020). The virus encodes 150–165 proteins
with essential functions in virus replication (Sánchez-Cordón
et al., 2018). Based on the conserved gene B646L encoding
the viral protein P72, ASFV can currently be classified into 24
genotypes (Wang et al., 2020d). The 2018 outbreak of ASF in
China resulted in the severe economic losses in the pig industry
(Tao et al., 2020).

At present, owing to the lack of effective vaccines and
specific therapeutic drugs, ASF prevention and control depends
mainly on biosafety, timely detection, culling, and disinfection.
In countries without ASF, biosafety and detection are the
primary methods of prevention and control, whereas countries
where epidemics occur rely mainly on detection, culling, and
disinfection. Early virus detection requires highly sensitive
and specific diagnostic methods as this enables the rapid
implementation of the necessary disease control and eradication
measures (Wang et al., 2020d). Because of its sensitivity and
specificity, molecular biology has been widely used to detect
the ASFV; however, it has certain disadvantages. Conventional
molecular biological methods cannot distinguish live virus from
dead virus, which can lead to nucleic acid contamination
that may cause unnecessary panic and economic losses during
biosafety control and routine monitoring. Moreover, uninfected
animals in the epidemic area may be contaminated by nucleic
acid in the environment during the sampling process, resulting
in false-positive results. In addition, molecular biological
detection methods cannot be used to evaluate disinfection
effects. Therefore, to address these limitations, we introduce a
molecular biological method for live cell detection and consider
its application prospects in the prevention and control of
ASF.

African swine fever epidemic

ASF was first reported in Kenya in 1921 and has
subsequently spread throughout most of sub-Saharan
Africa. In 1957 and 1960, it spread across the continent to
Spain and Portugal, respectively, and from there to other
countries in Europe, South America, and the Caribbean.
The 2018 outbreak of ASF is the second transcontinental
spread since 2007, with the virus spreading initially to
Georgia in the Caucasus and subsequently to neighboring
countries and Eastern Europe, possibly from the southeastern
region of Africa. To date, ASFV has spread rapidly through

China, Mongolia, Vietnam, Cambodia, Laos, the Philippines,
Myanmar, South Korea, Indonesia, and other Asia-Pacific
countries (Ma et al., 2020; Wang et al., 2020d; Wu et al.,
2020; Yoo et al., 2020). Figure 1 presents the epidemic
situation in detail. The epidemiology of the current ASF
epidemic was considered to comprise three independent hints:
the wild boar, the habitat, and the principal responsibility
of humans in introducing the virus into domestic pig
farms, which currently has high genetic and antigenic
diversity. To date, 24 genotypes and 8 serogroups have
been identified globally (Wang et al., 2018). For the
different strain and different immunological status of the
host, ASFV infection leads to a wide range of clinical
presentations, varying from peracute to chronic disease, as
well as an apparently asymptomatic course (Chenais et al.,
2019).

Economic impact

Among all animal diseases, ASF is one of the most
important viral diseases affecting the pig industry. It has
serious social and economic impacts because its detection can
often lead to international trade restrictions on pork products,
resulting in potentially substantial losses for the pig industry
(Yoo et al., 2020; Stončiūtë et al., 2021). The difficulty in
accurately estimating the overall economic costs of ASF leads
to substantially varying estimates.

The disease entered Cuba in the 1980s, resulting in
economic losses of $9.4 million (Negrin and Frías Lepoureau,
2002). In the last 5 years of the implementation of the
eradication program alone, Spain spent an estimated $92 million
(Arias et al., 2002). Based on the impact of ASF on pork
production and trade and its eradication costs.

Rendleman and Spinelli (Rendleman and Spinelli, 1994)
estimated the net proceeds of preventing ASF entry into the
US at nearly $450 million, equivalent to 5% of total sales of
US pork products. In Russia, the ASF-induced loss in 2011
was estimated at $267 million. Owing to the outbreak of ASF
in Poland, Lithuania, Latvia, and Estonia in 2014 and 2015,
the value of exports of pork and its products was reduced by
$961 million, up to 50% of exports (Sánchez-Cordón et al.,
2018). According to statistics from the national bureau of
statistics of China, in 2019, the numbers of both live pigs
and pork products in China decreased year-on-year. In 2019,
China’s pork export volume was 210,000 tons, and a year-on-
year decrease of 36.17% had with massive consequences for
international trade (Wu et al., 2020). In endemic countries,
the economic implications of ASF for both individual breeders,
especially small-scale farmers, and national animal husbandry
are considerably huge (Fasina et al., 2012); this is also true in
Africa, especially for countless poor families who raise pigs for a
living.
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FIGURE 1

African swine fever virus epidemic timeline.

Prevention and control of African
swine fever and the associated
difficulties

Although ASF was first described almost a century ago, its
control has proven challenging. After the virus entered ASFV-
free countries, strict quarantine with increased biosecurity,
animal movement restriction, and slaughter of the affected
animals remain as the only available effective control measures.
No vaccines or specific medicines are available (Zakaryan and
Revilla, 2016; O’Neill et al., 2020). The many epidemiologic
cycles of ASF also make it a difficult disease to eradicate.
Until recently, ASF epidemiology was considered to involve
three independent epidemiologic cycles: sylvatic, tick–pig, and
domestic, all involving soft Ornithodoros spp. ticks, wild African

pigs (mainly warthogs), domestic pigs, and pig-derived products
such as pork (Costard et al., 2013; Chenais et al., 2019). ASFV
has a strong tolerance and exhibits a remarkable ability to
survive for long periods in a protein-rich environment and to
maintain stability at pH 4–10 (Geering et al., 2001; Bellini et al.,
2016). In hams cured by salting and drying, ASFV is viable for
up to 300 days. Furthermore, the virus is stable in feces at room
temperature for 11 days, pig blood at 4◦C for 18 months, and
putrefied blood for at least 16 days (McKercher et al., 1978;
Mebus, 1988; Kleiboeker, 2002). Therefore, various countries
have formulated corresponding measures for the prevention and
control of ASF; however, these are often difficult to implement.
Small and medium-scale farms with low biosecurity levels have
posed a great challenge to ASF epidemic control by creating
conditions for its breeding and rapid spread and by greatly
increasing the obstacles to and burdens on epidemic prevention
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in tracing the course of the epidemic (Wu et al., 2020). The
clinical diagnosis of ASF is further complicated by the disease’s
wide range of clinical forms and complex epidemiology and the
similarity of its symptoms with those of other viral infections;
these also increases the difficulty of ASF prevention and control
(Gallardo et al., 2015; Wu et al., 2020). The lack of in-depth
understanding of the prevalence, transmission mechanism, and
pathogenicity of ASF has further hindered the prevention and
treatment of ASF. However, it is certain that human-mediated
spread of ASFV continues to play a critical role in the ASF
epidemiology, despite all well-established measures currently
being taken. Epidemiological studies of 68 outbreaks from
August to November 2018 identified that 19% of ASF outbreaks
are caused by transregional transportation of live pigs and pork
products, 46% are caused by vehicles and movement of people,
and 34% are caused by swill feeding (Wu et al., 2020).

Detection methods and gaps

To date, despite the considerable efforts invested in scientific
research on ASF, no safe and effective vaccine or drug has been
identified (Wang et al., 2020b; Zhang et al., 2020). Prevention
of ASFV spread and ASF outbreak relies critically on early
and rapid detection of ASFV infection in commercial swine
populations (Zhang et al., 2020, 2021). Various methods have
been applied for the diagnosis of ASF, and the detection
targets include pathogens, antibodies, as well as nucleic acids
(Table 1). Pathogen detection methods include immunoblotting
assay (Pastor et al., 1989); gold test strip assay (Sastre et al.,
2016; Zhang et al., 2021); and virus isolation (VI) and
detection of viral antigen by immunofluorescence assay (IFA) as
recommended by OIE. Antibodies are detected mainly through
enzyme-linked immunosorbent assay (ELISA) (Hutchings and
Ferris, 2006). Methods for detecting the ASFV nucleic acid
include polymerase chain reaction (PCR) (Agüero et al., 2003;
Stear, 2005; Gallardo et al., 2015), loop-mediated isothermal
amplification assay (LAMP) (James et al., 2010; Wang et al.,
2020b), polymerase crosslinking spiral reaction (Fra̧czyk et al.,
2016; Woźniakowski et al., 2017), cross priming amplification
(CPA) (Yang et al., 2014; Fra̧czyk et al., 2016; Gao et al.,
2018), recombinase polymerase amplification (RPA) (Wang
et al., 2017; Miao et al., 2019; Zhang et al., 2020), real-time
PCR (King et al., 2003; Zsak et al., 2005; Fernández-Pinero
et al., 2013; Liu et al., 2017; Wang et al., 2020a), isothermal
RPA (Miao et al., 2019), chimeric DNA/LNA-based biosensor
(Biagetti et al., 2018), droplet digital PCR (ddPCR) (Wu
et al., 2018), and CRISPR/Cas12a-mediated detection assay (Lu
et al., 2020; Wang et al., 2020d). Although VI is the gold
standard for diagnosing ASFV, it is a time-consuming and
complicated procedure and is unsuitable for real-time disease
monitoring (Oura et al., 2013). Detection of the ASFV antigen
is suitable for large scale monitoring but is not adequately

sensitive to detect early stage infection (Gallardo et al., 2019;
Lu et al., 2020). In the case of low antibody titers, for antibody
detection, it is important to note that current ELISA tests
have a limited sensitivity, usually detecting antibodies only
12–14 d after infection (Gallardo et al., 2015). Among these
assays, nucleic acid-based assay is the first choice for ASF
owing to its high sensitivity and low cross-contamination
rate. However, these assays cannot distinguish between living
and dead viruses, which is a disadvantage in the prevention
and control of ASF. For example, it is impossible to rule
out false-positive interference caused by inactivated viruses,
rapid evaluation of disinfection effects cannot be detected, and
environmental monitoring cannot be effectively implemented.
Therefore, the application of PMA pretreatment is necessary
and economically effective in the prevention and control of
ASFV.

Propidium monoazide principle
and application

Currently, a viable cell detection technique based on the
nucleic acid dye propidium monoazide (PMA) is widely used
for pathogens (Zeng et al., 2016; Ling et al., 2020). As described
previously (Zeng et al., 2016), the mechanism of the action of
PMA involves the following: (i) the PMA solution selectively
enters only the compromised cells when added to a mixture of
intact and membrane-compromised cells. (ii) Once inside the
cell, the dye intercalates into nucleic acids, whereas the azide
group results in the cross-linking between the dye and DNA
after exposure to strong visible light. (iii) Visible light leads to
the formation of a highly reactive nitrene radical, which can
react with any organic molecule in its proximity, including the
bound DNA. (iv) PMA modification strongly inhibits sequential
DNA amplification in PCR. (v) When the crosslinking occurs,
PMA simultaneously promotes the unbound dye to react
with water molecules, rendering the resulting hydroxylamine
unreactive such that the DNA from cells with intact membranes
is not modified in the DNA extraction (Nocker and Camper,
2009). Based on this mechanism, PMA can intercalate
DNA of the dead cells, thus preventing subsequent DNA
amplification of dead cells by PCR, as illustrated by Figure 2.
In addition, such techniques have reportedly been used
for the detection of infectious viruses related to human
diseases, such as bacteriophage T4 (Fittipaldi et al., 2010),
enteric viruses (Parshionikar et al., 2010; Karim et al., 2015;
Leifels et al., 2015; Fongaro et al., 2016; Quijada et al., 2016),
hepatitis A viruses (Sánchez et al., 2012; Leifels et al., 2015),
rotaviruses (Leifels et al., 2015), adenoviruses (Leifels et al.,
2015), norovirus (Karim et al., 2015), and murine norovirus
(Lee et al., 2015). However, very few studies have focused on
viable cell detection techniques based on PMA and molecular
biology in animal disease-related viruses.
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TABLE 1 African swine fever detection methods.

Target Detection method Advantages Disadvantages Distinguish between
infectious (live) and
non-infectious (dead) virus?

Pathogen Virus isolation (VI) 1. The gold standard for diagnosing
ASFV.
2. Good specificity.

1. Timeliness is poor.
2. Not sensitive enough to detect
early infection.

Yes

Immunofluorescence assay (IFA) Good specificity. No

Immunoblotting assay

Gold test strip assay

Antibody Enzyme-linked immunosorbent assay
(ELISA)

1. Suitable for large scale monitoring.
2. Simple operation, strong specificity
and high sensitivity.

Not suitable for detection of low
antibody titers.

No

Nucleic acid Polymerase chain reaction (PCR) High sensitivity and low
cross-contamination rate.

1. Complex operation.
2. Professional personnel and
instruments.

No

Loop-mediated isothermal amplification
assay (LAMP)

Polymerase cross-linking spiral reaction

Cross priming amplification (CPA)

Recombinase polymerase amplification
(RPA)

Quantitative real-time PCR (qRT-PCR)

Chimeric DNA/LNA-based biosensor

Droplet digital PCR (ddPCR)

CRISPR/Cas12a-mediated detection assay

FIGURE 2

Principle of selective detection of viable cells using propidium monoazide dye (https://biotium.com/product/pmatm-dye-20mm-in-h2o/).

Feasibility analysis

From a genomic perspective, ASFV is a large double-
stranded DNA virus belonging to the family Asfarviridae
(Galindo and Alonso, 2017; Wang et al., 2019). Detection
based on nucleic acid amplification of this relatively
stable double-stranded structure does not require reverse
transcription, which allows for the use of PMA-based molecular
biology detection methods, similar to those used for bacteria.
Architecturally, ASFV has a multilayered structure and
overall icosahedral morphology. Intracellularly, it has a
genome-containing nucleoid (the first layer) surrounded by a
thick protein layer referred to as the core shell (the second layer),
which is wrapped by an inner lipid envelope (the third layer),
and an icosahedral protein capsid (the fourth layer), comprising
over 50 proteins (Salas and Andrés, 2013; Wang et al., 2019).
Extracellularly, the ASFV gains an external envelope (the fifth

layer) as it buds through the plasma membrane (Andrés et al.,
2001; Hawes et al., 2008). ASFV and gram-negative bacteria
have a high degree of similarity in terms of the components of
their biological barrier, which mainly comprises proteins and
lipids. As PMA-based molecular biology detection technologies
have been widely used for gram-negative bacteria (Li and Chen,
2012; Zhao et al., 2013; Ling et al., 2020; Zeng et al., 2020), we
infer that this technology is feasible for detecting viable cells
infected with ASFV. Moreover, as noted earlier, PMA-based
viable cell detection technology has been successfully applied to
a variety of viruses, including DNA viruses (bacteriophage T4
and adenoviruses) and RNA viruses (enteric viruses, hepatitis A
virus, rotaviruses, and norovirus). The concentration of PMA
used in viruses is generally 50–150 µM, differing from that
used in bacteria (8–50 µM) (Fittipaldi et al., 2010; Sánchez
et al., 2012; Zeng et al., 2016). This may be related to the size
of the target substance, but we believe that through PMA
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concentration optimization and other conditions, PMA-based
molecular biological detection technology can be successfully
applied for the detection of infectious ASFV. We followed the
reported detection process for infectious ASFV in the sample,
as shown in Figure 3.

Demand analysis

Application in rapid detection

ASF is a highly contagious and deadly disease occurring in
domestic pigs, wild boars, and other members of the Suidae
family (Simulundu et al., 2017). ASF typically leads to acute
infection, with close to 100% individual mortality at 4–9 days
after exposure (Chenais et al., 2019; O’Neill et al., 2020).
Therefore, in the absence of effective vaccines and drugs, rapid,
and accurate detection is extremely important. However, the
inability to distinguish between infectious and non-infectious
viruses has proved a major obstacle to rapid detection
methods using nucleic acid amplification, rendering biosafety
prevention, and control systems using these rapid detection
methods as monitoring tools disadvantageous. Residual nucleic
acids in the infectious and non-infectious viruses also greatly
interfere with the monitoring and prevention of infectious
viruses. Fortunately, the PMA-based pretreatment process
can solve this problem. We consider the combination of
PMA pretreatment and molecular biology detection methods
as a great enhancement of the diagnostic efficiency and
prevention and control capabilities of ASF. Currently, in
the field of virus detection, the established rapid detection

methods for infectious viruses based on PMA pretreatment are
mainly PMA–PCR (Parshionikar et al., 2010; Karim et al., 2015;
Fongaro et al., 2016) and PMA–qPCR (Fittipaldi et al., 2010;
Sánchez et al., 2012; Quijada et al., 2016). For the prevention,
control, and detection of ASFV, accuracy, convenience, low-cost,
and suitability for field detection are all of great significance
in addition to rapid detection. Therefore, the development of
other detection methods based on PMA pretreatment, such as
PMA-ddPCR, PMA-RPA, PMA-CPA, PMA-LAMP, PMA-LFD,
and that of related products have great research value and
application prospects.

Application in the evaluation of
disinfection effect

The evaluation of the disinfection effect, a vital part of
animal disease prevention and control, is directly related to
the success or failure of prevention and control. Especially
when ASF breaks out, culling and disinfection are the only
options; therefore, the accurate evaluation of the disinfection
effect becomes even more important. Cell culture is the gold
standard method for testing virus infectivity (Leifels et al., 2015),
and several tests are available, including 50% hemadsorption
(HAD50), western blotting, indirect IFA, and cell-ELISA. For
cell culture, not all enteric viruses are easy to propagate.
However, ASFV propagation cannot be conducted in any cell
line using conventional cell culturing methods. ASFV can be
generally cultured using porcine alveolar macrophages primary
cells, which are difficult to prepare and are often unstable. In
a poor culture state, the virus is not susceptible or dies soon

FIGURE 3

Scheme of infectious African swine fever virus detection.
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after infection, and it is impossible to perform subsequent tests.
Additionally, virus propagation in cells is time consuming, labor
intensive, and expensive, rendering it an unsuitable method for
evaluating the disinfection effect of ASFV. As a new infectious
virus detection method, molecular biology detection technology
based on PMA pretreatment has many advantages, including
that is has high specificity and sensitivity, is rapid, not labor
intensive, inexpensive, and is convenient to perform. It is
more suitable than the cell culture method for disinfection
effect evaluation test. Leifels et al. (2015) used this method to
determine viral infectivity after inactivation via heat and UV and
chlorine exposure, and determined that the results as accurate
as those obtained via conventional cell culturing methods.
Using this method to evaluate the effect of different disinfection
methods on ASFV will significantly improve the evaluation
efficiency, which is not only conducive to the promotion of
research and development of disinfection products but also
can greatly save prevention and control costs and improve
prevention and control capabilities.

Application in drug research and
development

For ASF, the absence of a vaccine or a viable drug treatment
makes the disease extremely harmful and difficult to eradicate.
Since the outbreak of the disease, all attempts by researchers
to develop effective commercial vaccines, including weakened
or attenuated vaccines, subunit vaccines, and DNA vaccines
(Monteagudo et al., 2017; Jancovich et al., 2018) have been
unsuccessful. This is mainly because ASFV is one of the largest
known DNA viruses, and most of the virus’s genetic properties
and functions remain unknown; there are no cell lines are
available for the cultivation of ASFV for vaccine production;
and ASFV has several genotypes with different phenotypic
characteristics, and the vaccines tested so far have little or no
cross-protection (Wang et al., 2020c). In comparison, there are
far fewer barriers to drug development. According to reports
of active compounds against the ASFV (Quetglas et al., 2012;
Hakobyan et al., 2016, 2019; Barrado-Gil et al., 2017), it is
easier to overcome the lack of ASF drugs. However, the main
method that is currently in use for drug efficacy analysis is cell
culturing (Hakobyan et al., 2019), which indirectly judges the
efficacy of drugs by observing cell pathological changes. This
method is not only time consuming and laborious but also
precludes the option of obtaining real-time data, especially in
animal experiments, making it impossible to understand the
survival state or change trend of the virus in real-time after
medicine has been administered, which greatly restricts the
development of anti-ASFV drugs. The use of infectious virus
detection technology based on PMA pretreatment for drug
efficacy analysis makes it possible to understand the change
trend of the cell culture fluid or the virus in the animal in real-
time, i.e., the proportion of infectious virus and non-infectious

virus, to directly reflect the effect of drugs. Notably, this method
can indicate whether a certain drug is effective and also enhance
the efficacy of the drug. The proficient application of infectious
virus detection technology based on PMA pretreatment to the
analysis of drug efficacy is expected to result in breakthroughs
in the development of anti-ASFV and other antiviral drugs.

Discussion and conclusion

ASF is a notifiable infectious disease that has a high
impact on swine health and pork industry (Halasa et al., 2016).
Considering that China is the world’s largest pork producer and
consumer, the world’s swine industry has been greatly impacted
since ASF entered China in 2018 (Wu et al., 2020). In the absence
of effective vaccines and drugs, surveillance and culling are the
main measures to prevent and control of ASF. Early surveillance
seems to be more effective than culling. As monitoring costs
are lower than culling, and monitoring does not reduce animal
production and farmer’s income, farmers willingly participate
in the monitoring work. However, pig farmers have no motive
to participate in the monitoring without compensation to cull
infectious pigs and are likely to sell or slaughter pigs, leading to
further spread of the disease.

Otherwise, commonly used detection methods, such as PCR
and qPCR, which are based on the amplification of nucleic
acid, cannot distinguish between infectious and non-infectious
viruses because dead viruses also retain intact nucleic acids.
These methods cannot accurately reflect the status of infectious
ASFV in the bio-samples or environment, and would not give
reliable and accurate results. Other monitoring methods that
target to antigen and antibody, such as ELISA and IFA, cannot
yet provide accurate monitoring reports, because the dead virus
may also have some intact protein components. The traditional
virus infection assay can undoubtedly give the most convincing
conclusion, but its detection cycle takes a long time and heavy
workload. Moreover, the detection results are greatly affected by
the status of somatic cells with a poor stability of the method.

In conclusion, the live ASFV detection method based on
PMA pretreatment (PMA–PCR/PMA–qPCR) may give reliable
results with high sensitivity, and is rapid and convenient. As
a nucleic acid dye, PMA can enter the dead virus and bind
nucleic acid under halogen lamp irradiation, to inhibit the
amplification of nucleic acid from dead virus, which has a
good application prospect. However, the pretreatment scheme
of PMA will change when the virus structure varies. Based
on different viruses, even the length or structure of the target
fragments, researchers can optimize the PMA concentration,
exposure intensity, illumination time, and dark treatment time
to obtain the optimal pretreatment conditions.

More significantly, PMA–PCR/qPCR cannot only accurately
detect ASFV, but also has high application potential in other
fields of ASFV control, such as disinfection effect evaluation,
drug research and development. Using effective disinfectants to
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clean infected sites, trucks, and pollutants is an important step
in preventing further spread of ASF. Accurately evaluating both
the efficacy of disinfectants and the effectiveness of disinfection
is a key step in epidemic prevention and control and will directly
affect the success of prevention and control. The efficacy of
disinfectant is generally judged by the survival of the virus after
disinfectant treatment. Currently, the cell culture method is
commonly used. However, this method has some limitations
as mentioned above, which seriously affects the efficiency
of evaluating the disinfection effect. Both the complicated
operation and the requirements for experimental conditions
affect its practicability. In ASF epidemic areas, disinfection of
pig farms is a necessary part of prevention and control. The
long disinfection effect evaluation cycle often puts disinfection
workers in a dilemma. Ignorance of the effect of disinfection
may lead the staff to take repeated disinfection measures, which
will not only result in the wastage of resources but also increase
environmental pollution; moreover, incomplete disinfection,
wherein the effect of disinfection is not immediately available,
will increase the risk of the spread of the disease. Therefore, a
method that can quickly identify infectious and non-infectious
viruses is urgently needed to interpret the effect of disinfection
and provide accurate information for the implementation and
adjustment of ASF prevention and control programs. This rapid
evaluation method should also help with the development of
new disinfection products and schemes.

Drug development is also one of the ways to prevent and
control ASF. Although no drugs are currently available for ASF
treatment, some compounds with anti-ASFV activity have been
reported. Similar to the development of disinfectants, efficacy
evaluation is also critical in the development of anti-ASFV
drugs. Currently, the absence of cell lines and a long evaluation
cycle has hindered the development of drugs. Especially in
animal experiments, a direct understanding of the change in
viral trend in infected animals after drug administration will
undoubtedly enhance progress in the evaluation of drug efficacy
and accelerate drug screening and functional analysis. The rapid
detection of infectious virus based on PMA pretreatment can
be used to monitor the proportion of infectious and non-
infectious viruses in animals via real-time PCR while reflecting
the effect of drugs. Thus, the development of an infectious ASFV
detection method based on PMA pretreatment will also benefit
the development of anti-ASFV drugs.

In summary, rapid infectious virus detection methods are of
great significance for the detection, prevention, and treatment
of ASF. ASF prevention and control systems urgently need
a rapid detection method based on PMA pretreatment. This
technology is currently widely used for the detection of viable
bacteria but rarely applied to viruses. This may be because the
pretreatment of viruses by PMA is more complex, and different
viruses need different treatment reminders (Leifels et al., 2015).
The optimal treatment scheme of PMA for ASFV is currently
unreported, presenting opportunities for research in a highly
relevant field. The development and construction of molecular

biological detection methods based on PMA pretreatment is
urgently warranted. Rapid detection methods for infectious
viruses can play a key role in all aspects of ASF prevention
and control, and application prospects for effective detection
methods and products hold promise.
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