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Impaired spontaneous regional activity and altered topology of the brain network have 
been observed in obstructive sleep apnea (OSA). However, the mechanisms of dis-
rupted functional connectivity (FC) and topological reorganization of the default mode 
network (DMN) in patients with OSA remain largely unknown. We explored whether the 
FC is altered within the DMN and examined topological changes occur in the DMN in 
patients with OSA using a graph theory analysis of resting-state functional magnetic 
resonance imaging data and evaluated the relationship between neuroimaging mea-
sures and clinical variables. Resting-state data were obtained from 46 male patients with 
untreated severe OSA and 46 male good sleepers (GSs). We specifically selected 20 
DMN subregions to construct the DMN architecture. The disrupted FC and topological 
properties of the DMN in patients with OSA were characterized using graph theory. The 
OSA group showed significantly decreased FC of the anterior–posterior DMN and within 
the posterior DMN, and also showed increased FC within the DMN. The DMN exhibited 
small-world topology in both OSA and GS groups. Compared to GSs, patients with 
OSA showed a decreased clustering coefficient (Cp) and local efficiency, and decreased 
nodal centralities in the left posterior cingulate cortex and dorsal medial prefrontal cor-
tex, and increased nodal centralities in the ventral medial prefrontal cortex and the right 
parahippocampal cortex. Finally, the abnormal DMN FC was significantly related to Cp, 
path length, global efficiency, and Montreal cognitive assessment score. OSA showed 
disrupted FC within the DMN, which may have contributed to the observed topological 
reorganization. These findings may provide further evidence of cognitive deficits in 
patients with OSA.

Keywords: obstructive sleep apnea, default mode network, cognitive function, resting-state functional magnetic 
resonance imaging, graph theory

inTrODUcTiOn

Obstructive sleep apnea (OSA) is a common sleep-disordered breathing condition characterized by 
repetitive cessations of breathing and/or reduced airflow due to frequent episodes of complete (apnea)  
or partial (hypopneas) obstruction of the upper airway during sleep. These respiratory events lead to 
sleep fragmentation (1), chronic intermittent hypoxemia (2), repetitive arousals, oxygen desatura-
tion, and hypercapnic hypoxia. Moderate to severe OSA is estimated to occur in 12% of women and  
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up to 30% of men aged between 30 and 70 years, and these esti-
mated prevalence rates are increasing as the population ages and 
due to the ongoing obesity epidemic (3). OSA is associated with 
an increased risk of both traffic and occupational accidents (4), 
decreased quality of life, and long-term health problems resulting 
from a number of concomitant diseases, including hypertension, 
cardiovascular impairment, stroke, chronic kidney disease (5), 
depression (6), anxiety, metabolic syndrome, insomnia, cogni-
tive dysfunction, and even Alzheimer’s disease (7). OSA is also 
associated with cognitive dysfunction, which is an important 
independent predictor of mortality, even in the absence of 
dementia manifestations. Cognitive deficits, including deficits in 
attention, memory, psychomotor function, executive functions, 
visuospatial function, and language ability, have been observed 
in patients with OSA (8, 9). Unfortunately, the neurological basis 
of neurocognitive dysfunction in patients with OSA has not been 
examined in detail.

Neuroimaging studies have been widely applied to explain 
these cognitive deficits and have revealed that patients with OSA 
show alterations in multiple brain regions, which are responsible 
for cognitive, affective, autonomic, and sensorimotor control 
(10–13). According to recent resting-state functional magnetic 
resonance imaging (rs-fMRI) studies, patients with OSA exhibited 
significant global and regional connectivity deficits, particularly 
in the default mode network (DMN) (14), salience network (SN), 
central executive network (CEN) (15).

The DMN is critical for maintaining brain function in the 
resting-state and experiences progressive deactivation as the 
brain engages in goal-directed activity. The DMN is a large-
scale network that includes a set of highly interconnected brain 
regions, such as the posterior cingulate cortex (PCC), precuneus, 
medial prefrontal cortex, and the medial, lateral and inferior 
parietal regions, which contribute to internal mentation, atten-
tion, and adaptive functions (16). In previous studies, patients 
with OSA showed significant regional deficits in spontaneous 
activity in DMN subregions (17–19). In addition, Zhang found 
patients with OSA exhibited structural and functional deficits 
in the anterior DMN and functional compensation in the 
posterior DMN (20) using independent component analysis 
(ICA). Moreover, Li et  al. observed altered functional con-
nectivity (FC) between eight pairs of DMN subregions, which 
was associated with cognitive impairment (21). Patients with 
OSA show abnormal deactivation in the DMN during working 
memory tasks. The deactivation of DMN regions is significantly 
associated with behavioral performance and episodic memory 
impairments, plays a role in cognitive impairment in patients 
with OSA (14). However, these previous studies were limited 
to the spontaneous abnormalities in local brain regions and did 
not directly assess important topological changes in the DMN 
of patients with OSA.

Accumulating evidence implicates aberrant activity in the 
DMN in cognitive impairments and symptoms associated with 
neuropsychiatric disorders, such as mild cognitive impairment 
(22), social anxiety disorder (23), primary insomnia (24), and 
depression (25). Functional alterations in the DMN have been 
proposed as a quantitative MRI assessment that may facilitate 
the clinical prognosis and diagnosis (26). Previous study that 

utilized graph theory approaches revealed alterations in the 
topological properties of the gray matter volume (GMV) 
structural network (27) and the brain functional network (28) 
in individuals with OSA. However, whether the FC is altered 
within the subregions of the DMN and the topological changes 
that occur in the DMN in patients with OSA remain unclear.

Here, we hypothesized that the cognitive impairment 
observed in patients with OSA might be attributed to disrupted 
FC and the topological configuration of the DMN, and the 
topological reorganization may probably related to abnormal 
DMN FC. To test our hypothesis, we applied graph theory 
approaches to analyze FC and the topological organization 
of the DMN in male patients with untreated severe OSA and 
examined the relationships between neuroimaging measures 
and clinical index.

MaTerials anD MeThODs

Participants
Fifty male patients with newly diagnosed untreated severe OSA 
and 46 male education- and age-matched good sleepers (GSs) 
were recruited from the Sleep Monitoring Room of the Respiratory 
Department at the First Affiliated Hospital of Nanchang University, 
China, from June 2015 to February 2017. Sex differences, depres-
sion, obesity, and anxiety may affect spontaneous brain activity, 
and female OSA patients exhibited a lower apnea–hypopnea 
index (AHI), which was frequently accompanied by depression 
and anxiety (29–32). To improve the credibility of our study, we 
only recruited untreated male patients with severe OSA to rule out 
potential confounders of sex differences, severity of OSA, depres-
sion, and anxiety. The inclusion criteria for patients with OSA and 
GSs were (1) OSA: an AHI greater than or equal to 30; GSs: an 
AHI less than 5; (2) male sex; (3) right-handedness; and (4) aged 
older than 20 years but less than 60 years. The exclusion criteria 
for all participants were (1) a history of other sleep disorders, such 
as insomnia or sleep-related eating disorder; (2) identifiable focal 
or diffuse abnormalities in structural MR images; (3) a history 
of neurological or mental illnesses (e.g., head injury, depression, 
psychosis, neurodegenerative diseases, hypothyroidism, and  
epilepsy); (4) a history of addiction; (5) a history of cerebrovascu-
lar disease; and (6) MRI contraindications, such as claustropho-
bia, metallic implants, or devices in the body. The study protocol 
was approved by the Medical Research Ethics Committee and 
the Institutional Review Board of the First Affiliated Hospital of 
Nanchang University. The current study was conducted according 
to the principles of the Declaration of Helsinki and the approved 
guidelines. Written informed consent was obtained from all 
participants.

Overnight Polysomnography (Psg)
Prior to collecting MRI brain scans, overnight PSG was performed 
on all participants using the Respironics LE-Series Physiological 
Monitoring System (Alice5 LE, FL, USA) to confirm the OSA/
GS diagnosis and to exclude other sleep disorders. On the day 
prior to overnight PSG, all participants were required to refrain 
from using hypnotics and consuming alcoholic beverages or 
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coffee. Overnight PSG was recorded from 10:00 p.m. to 6 a.m. A 
standard electroencephalogram (EEG, F4/M1, C4/M1, O2/M1, 
F3/M2, C3/M2, and O1/M2), chin electromyogram, electrocar-
diogram, electrooculogram, thoracic and abdominal respiratory 
movements, oral and nasal airflow, oxygen saturation (SaO2), 
body posture, and snoring were recorded. Studies were scored 
by a PSG technician and reviewed by a qualified sleep medicine 
physician according to the American Academy of Sleep Medicine 
(AASM) guidelines (33). Obstructive apnea was defined as any 
10 s or longer decrease in airflow ≥90% with evidence of persis-
tent respiratory effort. Hypopnea was defined as a reduction in 
airflow ≥30% lasting for more than 10 s, accompanied by 4% or 
greater oxygen desaturation and/or EEG arousal (33). The AHI 
was computed as the mean number of apnea and hypopnea events 
per hour during sleep. The arousal index (AI) was calculated as 
the average number of EEG arousals per hour of sleep.

neuropsychological assessments
Each participant was evaluated with the Epworth sleepiness scale 
(ESS) (Chinese version) for excessive daytime sleepiness, which 
requires the participant to rate his/her probability of falling asleep 
in eight different situations on a scale of increasing probability 
from 0 to 3. The aggregate score of the ESS is 24, with a score 
greater than 6 indicating sleepiness, a score greater than 11 indi-
cating excessive sleepiness, and a score greater than 16 suggesting 
risky sleepiness. In addition, we used the Montreal Cognitive 
Assessment (MoCA, Chinese version) (34) as a rapid screening 
tool to assess cognitive function in all participants, including 
executive function, calculation, memory, attention, abstraction, 
language, and orientation. The total MoCA score is 30, with a 
score less than or equal to 26 indicating the presence of a mild 
cognitive impairment.

Mri Data acquisition
All MRI data were collected on a 3.0-T MRI system (Siemens, 
Erlangen, Germany) by implementing an 8-channel phased-array 
head coil at the First Affiliated Hospital of Nanchang University, 
China. Comfortable fixed foam pads were used to reduce head 
movements and ear plugs were used to minimize scanner 
noise. First, each participant underwent conventional T1 and 
T2-weighted imaging to exclude the presence of massive brain 
lesions. Then, both an 8-min rs-fMRI scan with an echo planar 
imaging sequence [repetition time (TR) = 2,000 ms, echo time 
(TE) = 30 ms, field of view (FOV) = 230 mm × 230 mm, thick-
ness = 4.0 mm, gap = 1.2 mm, flip angle = 90°, matrix = 64 × 64, 
slices = 30] and high-resolution three-dimensional T1-weighted 
structural MR images using a magnetization-prepared rapidly 
acquired gradient echo sequence with generalized autocalibrat-
ing partially parallel acquisition (GRAPPA) for K space fill 
(TR  =  1,900  ms, TE  =  2.26  ms, FOV  =  250  mm   ×  250  mm, 
thickness = 1.0 mm, gap = 0.5 mm, flip angle = 9°, resolution 
matrix  =  256  ×  256, slices  =  176) were collected. During the 
rs-fMRI scan, all subjects were asked to remain motionless, 
relax, keep their eyes closed, and avoid thinking systematically 
or falling asleep. After the MRI scan, the participants were asked 
whether they fell asleep and/or avoided thinking systematically 
during the entire scan.

Functional Magnetic resonance imaging 
Data Preprocessing
Image preprocessing was performed using the Data Processing 
& Analysis Assistant for Resting-State Brain Imaging (DPABI, 
Chinese Academy of Sciences, Beijing, China1) (35) and Statistical 
Parametric Mapping (SPM8),2 which is run on the MATLAB 
R2012a (MathWorks, Natick, MA, USA) platform. Preprocessing 
included the following steps: (1) the first 10 volumes of each func-
tional time series were discarded; (2) slice timing correction was 
performed for the remaining 230 volumes; (3) three-dimensional 
head motion correction was conducted for small head move-
ments; (4) high-resolution T1-weighted structural images were 
co-registered to the mean realigned functional images for each 
individual, and the transformed T1 structural images were 
segmented into gray matter, white matter, and cerebrospinal 
fluid using a new segment algorithm with the diffeomorphic 
anatomical registration through exponentiated lie algebra (DARTEL) 
tool (36), the realigned functional volumes were spatially normal-
ized to the Montreal Neurological Institute (MNI) space using 
the normalization parameters estimated in DARTEL, and then 
each voxel was re-sampled to 3 mm ×  3 mm ×  3 mm; (5) the 
images were spatially smoothed with a 6-mm full-width at half- 
maximum Gaussian kernel; (6) the time series were further linearly 
detrended, and temporal bandpass filtering (0.01–0.08 Hz) was 
performed to reduce the effect of physiological high-frequency 
noise and low-frequency drifts; and (7) to further reduce possible 
sources of artifacts, the nuisance signal (white matter, cerebro-
spinal fluid, and global signal) and the Friston 24-parameter 
model (37) were regressed from the time series of all voxels using 
multiple regression analyses. The participants were excluded if 
the maximum head motion of maximum rotation was more than 
2.0°, the maximum orthogonal direction displacement was more 
than 2.0 mm, or the mean relative root mean square was greater 
than 0.2  mm, according to the criteria (38, 39). Four patients 
with OSA were excluded. Finally, 46 male patients with untreated 
severe OSA and 46 male age- and education-matched GSs were 
included in the current study.

DMn construction and graph analyses
Definition of DMN Subregions
According to a previous study, we focused on the DMN and 
chose a specific set of 20 regions of interest (ROI) with substantial 
agreement with the functional and anatomic partitions of the 
DMN (Table 1) (16).

DMN Functional Connectivity and Graph Analyses
A network is composed of a set of nodes and edges between dif-
ferent nodes. The mean time series for each voxel within the ROI 
of the DMN was extracted using spherical seeds (6 mm in radius) 
based on the MNI coordinate system. Next, the Pearson cor-
relation coefficients were computed between each pair of DMN 
subregions in each participant to generate a 20 × 20 correlation 
matrix of the DMN. Then, we used the graph theoretical network 

1 http://www.restfmri.net (Accessed: 2008).
2 http://www.fil.ion.ucl.ac.uk (Accessed: 1994).
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FigUre 1 | The largest component sizes of individual networks both of the 
patients with obstructive sleep apnea (OSA) and good sleepers (GSs) over 
the sparsity range of 0.05–0.50.

Table 1 | Regions of interest within the default mode network (DMN).

regions abbreviation brodmann 
areas

Montreal 
neurological 

institute (Mni)

x y z

Anterior medial prefrontal 
cortex

aMPFC.L 10, 32 −6 52 −2
aMPFC.R 6 52 −2

Posterior cingulate cortex PCC.L 23, 31 −8 −56 26
PCC.R 8 −56 26

Dorsal medial prefrontal 
cortex

dMPFC 9, 32 0 52 26

Temporal parietal junction TPJ.L 40, 39 −54 −54 28
TPJ.R 54 −54 28

Lateral temporal cortex LTC.L 21, 22 −60 −24 −18
LTC.R 60 −24 −18

Temporal pole TempP.L 21 −50 14 −40
TempP.R 50 14 −40

Ventral medial prefrontal 
cortex

Vmpfc 11, 24, 25, 32 0 26 −18

Posterior inferior parietal 
lobule

pIPL.L 39 −44 −74 32
pIPL.R 44 −74 32

Retrosplenial cortex Rsp.L 29, 30, 19 −14 −52 8
Rsp.R 14 −52 8

Parahippocampal cortex PHC.L 20, 36, 19 −28 −40 −12
PHC.R 28 −40 −12

Hippocampal formation HF.L 20, 36 −22 −20 −26
HF.R 22 −20 −26

Coordinates are based on the MNI coordinate system, and each region of the DMN 
was acquired by spherical seeds with a radius of 6 mm.
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analysis (GRETNA)3 toolbox (40) to evaluate the topological 
organization of the DMN.

Threshold selection
In this study, the DMN was modeled based on an undirected, 
binarized method. The establishment of a sparsity threshold (Sp), 
which is defined as the fraction of the number of existing edges 
divided by the maximum possible number of edges in a network, 
ensured that the resulting networks had the same number of 
edges and minimized the influence of potential confounders 
on the overall correlation strength between groups (41). In the 
present study, we computed the network properties of the DMN 
over a wide range of sparsity levels (from 0.05 to 0.50 using an 
interval of 0.01), in which the number of spurious edges was 
minimized and the small-world parameters could be properly 
estimated (42).

network Metrics
In this study, we used the graph theory approach to calculate 
the global and nodal network properties of the DMN in patients 
with OSA and GSs. The area under the curve (AUC) of each 
network metric was calculated for statistical comparison, which 
was extracted by thresholding across a range of sparsity values 
to depict changes in the topological characterization of brain 

3 http://www.nitrc.org/projects/gretna/ (Accessed: December 12, 2012).

networks, and which is susceptible to detecting topological altera-
tions of brain disorders (41, 43).

global network Metrics
Small-World Parameters
Small-world parameters (1) small-worldness, σ, is a fascinating 
model for the description of complex brain networks that not only 
support both specialized and integrated information processing 
but also facilitates an energy-efficient balance between network 
segregation and integration. Mathematically, a real brain network 
is considered a small-world network if it displays a much higher 
clustering coefficient (Cp) and a similar characteristic path length 
(Lp) (compared with 1,000 matched random networks in our 
study) and meets the following criteria: normalized clustering 
coefficients γ = >C Cp preal rand

/ 1 and normalized characteristic 
path length λ = ≈L Lp preal rand

/ 1. The small-worldness, σ = γ/λ, is 
typically >1 for small-world networks (44, 45); (2) The clustering 
coefficient of node i (Ci) is defined as the percentage of the num-
ber of existing connections among the node’s nearest neighbors 
and the maximum possible number of connections. The clustering 
coefficient of network Cp is the average of Ci across nodes, which is 
a measure of network segregation (44); (3) The characteristic path 
length, Lp, is quantified as the average of the shortest path length 
that links all pairs of nodes in the network, which is the most com-
monly used measure of network information integration (45). The 
characteristic path length was calculated as the “harmonic mean” 
distance between all possible pairs of regions to deal with the pos-
sible disconnected graphs dilemma in the present study (46). The 
largest component sizes of individual networks over the sparsity 
range of 0.05–0.50 with an interval of 0.01, see in Figure 1.

Network Efficiency
Network efficiency, including global efficiency, Eglob, which 
represents the capacity of parallel information transmission over 
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Table 2 | Comparison of the demographic and clinical data from the patients 
with OSA and GSs.

characteristics Patients with 
Osa (N = 46)

gss  
(N = 46)

t-Value p-Value

BMI, kg/m2 27.52 ± 3.30 23.09 ± 1.96 7.827 <0.001*
AHI/h 58.26 ± 20.37 2.51 ± 1.21 18.529 <0.001*
Total sleep time, min 372.26 ± 83.88 398.30 ± 18.94 −2.054 0.043*
Stage 1, % 31.28 ± 17.38 10.22 ± 3.72 8.037 <0.001*
Stage 2, % 39.12 ± 14.78 40.74 ± 7.05 −0.672 0.504
Stages 3 + 4, % 22.49 ± 18.21 21.15 ± 4.54 0.483 0.630
REM, % 7.29 ± 7.96 21.89 ± 7.48 −9.070 <0.001*
Arousal index/h 40.36 ± 23.63 11.93 ± 2.79 8.102 <0.001*
SaO2 < 90, % 31.15 ± 21.34 0.27 ± 0.17 9.813 <0.001*
Average SaO2, % 90.69 ± 4.46 95.59 ± 2.41 −6.547 <0.001*
Oxygen desaturation 
index

54.42 ± 25.51 2.84 ± 1.4 14.897 <0.001*

Nadir SaO2, % 66.26 ± 12.46 90.33 ± 2.88 −12.765 <0.001*
MoCA score 25.17 ± 2.11 27.74 ± 1.39 −6.883 <0.001*
Visuospatial/
executive

4.07 ± 0.83 4.67 ± 0.63 −3.960 <0.001*

Delayed memory 3.20 ± 1.17 4.85 ± 0.36 −9.172 <0.001*
Attention 5.33 ± 0.99 5.83 ± 0.38 −3.194 0.002*
Language 2.04 ± 0.56 2.83 ± 0.38 −7.860 <0.001*
Abstraction 1.50 ± 0.51 1.85 ± 0.36 −3.790 <0.001*
Orientation 5.72 ± 0.66 5.93 ± 0.25 −2.102 0.038*
ESS score 12.11 ± 3.84 3.39 ± 2.18 13.405 <0.001*

Data are presented as the mean ± SD.
OSA, obstructive sleep apnea; GSs, good sleepers; BMI, body mass index; AHI, 
apnea–hypopnea index; REM, rapid eye movement; SaO2 < 90%, percentage of total 
sleep time spent at an oxygen saturation less than 90%; MoCA, Montreal cognitive 
assessment; ESS, Epworth sleepiness scale; N, number.
*p < 0.05, which was considered statistically significant.
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the network, and local efficiency, Eloc, represents the capacity of a 
network to transmit information at the local level and measures 
the fault tolerance of the network (42).

regional network Metrics
The degree for a brain region is defined as the number of edges of 
a node that connect with the remaining nodes in the network, thus 
measuring how interactive a particular node is in the network. The 
nodal betweenness is designated as the fraction of shortest paths 
between two nodes passing through the area in the network and 
measures the influence of a region on network communication. 
Nodal efficiency is defined as the inverse of the harmonic mean 
of the shortest path length in the network, quantifying the impor-
tance of the nodes for communication within the network (42).

statistical analysis
Demographic and clinical characteristics of the OSA and GS 
groups were compared using independent two-sample t-tests 
with IBM Statistical Package for the Social Sciences 20.0 software 
(IBM SPSS Inc., Chicago, IL, USA). Independent two-sample 
t-tests were performed to compare group differences in the AUC 
of global network metrics and ROI-ROI FC of the DMN. We also 
compared nodal properties between patients with OSA and GSs 
and Bonferroni correction was performed for multiple compari-
son. The effects of age, body mass index (BMI), and educational 
level were diminished by a regression analysis. Abnormal DMN 
FC was calculated as the average of the correlation coefficients of 
the DMN in patients with OSA that showed significant between-
group differences. The relationships between abnormal DMN 
FC and topological metrics of the DMN, and the relationships 
between network metrics with significant between-group differ-
ences and clinical indices in the OSA group were investigated 
using a Pearson correlation analysis. p  <  0.05 was considered 
statistically significant.

resUlTs

Demographic and clinical Data
As shown in Table  2, significant inter-group differences were 
observed in BMI, AHI, total sleep time, Stage 1, rapid eye move-
ment (REM), AI, SaO2 < 90%, average SaO2, oxygen desaturation 
index, nadir SaO2, MoCA score, visuospatial/executive, delayed 
memory, attention, abstraction, orientation and ESS score 
(p < 0.05). No inter-group differences in Stage 2 or Stages 3 + 4 
were observed (p > 0.05).

changes in Fc Within the DMn between 
Patients With Osa and gss
Compared to GSs, patients with OSA exhibited significantly 
decreased FC between the bilateral PCC and the bilateral hip-
pocampal formation (HF) and left retrosplenial cortex (Rsp), 
between the left temporal pole (TempP) and the dorsal medial 
prefrontal cortex (dMPFC) and left temporal parietal junction 
(TPJ), between the left Rsp and the bilateral anterior medial 
prefrontal cortex (aMPFC) and the left posterior inferior parietal 
lobule (pIPL), between the bilateral HF and the bilateral Rsp, 

and between the right HF and the right TPJ and the right pIPL. 
Patients with OSA displayed significantly increased FC in the 
DMN between the right TempP and the right parahippocampal 
cortex (PHC) and between the right and left HF, compared to GSs 
(Figure 2; Table 3). The abnormal DMN FC was positively cor-
related with Cp (r = 0.384, p = 0.008) and Lp (r = 0.338, p = 0.022), 
and negatively correlated with Eglob (r  =  −0.565, p  <  0.001) in 
patients with OSA (see Figure 3).

Differences in global network Measures 
of the DMn
In the defined wide range of thresholds (here from 0.05 to 0.50), 
both the patients with OSA and GSs exhibited σ value larger than 1,  
γ value obviously larger than 1, and λ value of approximately 
equal to 1 (see Figure 4), suggesting that both patients with OSA 
and GSs have typical small-world topology. However, compared 
to GSs, patients with OSA showed a significantly decreased Cp 
(t = −2.200, p = 0.030) and a decreased Eloc (t = −1.942, p = 0.054), 
which have a trend for difference. There was no significant differ-
ence in σ (t = 0.412, p = 0.483), Lp (t = −0.004, p = 0.997) or Eglob 
(t = −0.035, p = 0.972). Global network measures are illustrated 
in Figure 5.

group Differences in regional network 
Measures of the DMn
Patients with OSA showed abnormal nodal centrality, which 
showed significant between-group differences in at least one 
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Table 3 | Abnormal functional connectivity (FC) within the default mode network 
(DMN) between patients with obstructive sleep apnea (OSA) and good sleepers 
(GSs).

brain region 1 brain region 2 t-Value p-Value

PCC.L Rsp.L −2.490 0.015

PCC.L HF.L −2.948 0.004
PCC.L HF.R −2.479 0.015
PCC.R HF.L −2.412 0.018
PCC.R HF.R −2.940 0.004
TempP.L dMPFC −2.146 0.035
TempP.L TPJ.L −2.137 0.035
TempP.R PHC.R 2.100 0.039
Rsp.L aMPFC.L −2.555 0.012
Rsp.L aMPFC.R −3.086 0.003
Rsp.L pIPL.L −3.045 0.003
HF.L Rsp.L −2.257 0.026
HF.L Rsp.R −2.050 0.043
HF.L HF.R 2.557 0.012
HF.R TPJ.R −2.791 0.006
HF.R pIPL.R −2.417 0.018
HF.R Rsp.L −2.096 0.039
HF.R Rsp.R −2.555 0.012

Abnormal FC within the DMN between patients with OSA and GSs (p < 0.05, 
uncorrected).
L, left; R, right; PCC, posterior cingulate cortex; Rsp, retrosplenial cortex; HF, 
hippocampal formation; TempP, temporal pole; dMPFC, dorsal medial prefrontal cortex; 
TPJ, temporal parietal junction; PHC, parahippocampal cortex; aMPFC, anterior medial 
prefrontal cortex; pIPL, posterior inferior parietal lobule.

FigUre 2 | Abnormal functional connectivity (FC) within the default mode network (DMN) between patients with obstructive sleep apnea (OSA) and good sleepers 
(GSs). The blue edges represent decreased FC in patients with OSA compared to GSs and the red edges represent increased FC within the DMN. Undirected 
edges correspond to t-values, with a larger t-value corresponding to a thicker edge (p < 0.05, uncorrected).
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nodal metric, including nodal betweenness, nodal efficiency, 
and nodal degree. Compared with the GSs, patients with OSA 
showed decreased nodal centralities in the left PCC and dMPFC, 
and increased nodal centralities in the vMPFC and the right 
PHC (p  <  0.05, uncorrected). Regional network measures are 
illustrated in Table 4.

correlations between network Measures 
With group Differences and clinical 
Variables
Within the OSA group, the abnormal DMN FC was negatively 
correlated with the MoCA score (r = −0.366, p = 0.012). Cp was 
negatively correlated with the MoCA score (r = −0.332, p = 0.024) 
and delayed memory (r = −0.306, p = 0.039). The nodal degree 
of the left PCC was positively correlated with the nadir SaO2 
(r = 0.317, p = 0.032), and nodal betweenness of the right PHC was 
positively correlated with the MoCA score (r = 0.309, p = 0.037). 
The nodal betweenness (r = 0.297, p = 0.045), degree (r = 0.358, 
p = 0.015), and efficiency (r = 0.334, p = 0.023) of the right PHC 
were positively correlated with delayed memory (see Figure 6).

DiscUssiOn

The present study applied graph theory approaches to provide 
evidence that the cognitive impairments observed in patients 
with OSA might be attributed to the topological configuration of 
the DMN, which probably resulted from the abnormal DMN FC. 
Although the DMN of patients with OSA exhibited small-world 
properties, patients with OSA showed decreased Cp and Eloc, 
abnormal nodal centralities in the DMN, and abnormal FC within 
the DMN, implying a disturbance in the functional differentiation 
of the DMN. In addition, the abnormal DMN FC was related to Cp, 
Lp, Eglob, and the MoCA score. The disrupted topological properties 
of the DMN significantly influenced cognitive function, including 
delayed memory and memory extraction in patients with OSA.

abnormal Fc Within the DMn in Patients 
With Osa
The current study revealed significantly decreased FC in the 
anterior–posterior DMN involving the prefrontal, parietal and 
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FigUre 4 | Small-world parameters of default mode network in patients with obstructive sleep apnea (OSA) and good sleepers (GSs). Graphs show that in 
the defined wide range of thresholds, both the patients with OSA and GSs exhibited normalized clustering coefficient (γ) obviously larger than 1, normalized 
path lengths (λ) approximately equal to 1, and small-worldness (σ) larger than 1, suggesting that both OSA patients and GSs show typical small-world 
topology.

FigUre 3 | The relationship between abnormal functional connectivity (FC) and topological metrics of the default mode network (DMN) in patients with obstructive 
sleep apnea (OSA). The abnormal DMN FC value was significantly correlated with Cp, Lp, and Eglob in patients with OSA. p < 0.05, which was considered statistically 
significant.

FigUre 5 | Graphs showing the small-world parameters and network 
efficiency of the default mode network in patients with obstructive sleep 
apnea (OSA) and good sleepers (GSs). Although OSA and GSs have typical 
small-world topology, compared to GSs, patients with OSA showed a 
significantly decreased Cp (t = −2.200, p = 0.030) (p < 0.05, uncorrected), 
and a decreased Eloc (t = −1.943, p = 0.054), which have a trend for 
difference.

Table 4 | Between-group differences in regional network measures of the 
default mode network (DMN) in patients with obstructive sleep apnea (OSA) and 
good sleepers.

DMn region nodal 
betweenness

nodal  
degree

nodal  
efficiency

t-Value p-Value t-Value p-Value t-Value p-Value

PCC.L −4.427 <0.001* −2.883 0.005# −3.552 0.001*

dMPFC −1.989 0.049# −1.375 0.172 −1.324 0.189

vMPFC 2.475 0.015# 1.172 0.244 0.403 0.688

PHC.R 2.017 0.047# 2.833 0.006# 2.074 0.041#

Patients with OSA showed abnormal nodal centrality in PCC.L, dMPFC, vMPFC, and 
PHC.R, which showed significant between-group differences in at least one of the 
three nodal metrics.
#p < 0.05, uncorrected.
*Bonferroni correction p = 0.05.
PCC.L, left posterior cingulate cortex; dMPFC, dorsal medial prefrontal cortex; vMPFC, 
ventral medial prefrontal cortex; PHC.R, right parahippocampal cortex.
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temporal regions in patients with OSA. Zhang et al. (20) found 
that patients with OSA exhibited decreased FC in the anterior 
DMN and a compensatory increased FC in the posterior DMN. 
Decreased FC in the anterior–posterior DMN indicated that the 
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FigUre 6 | Correlations between network measures with group differences and clinical variables in patients with obstructive sleep apnea (OSA). Scatter plot 
showed the relationship between the aberrant network attribute parameters and clinical index in patients with OSA. The red ball represents the increased nodal 
centrality and the blue ball represents the decreased nodal centrality. Eloc, local efficiency; Cp, clustering coefficient; PCC.L, left posterior cingulate cortex; PHC.R, 
right parahippocampal cortex.
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transmission of information and integration of long-distance con-
nectivity between different regions may be damaged in patients 
with OSA.

We also observed significantly decreased FC in the posterior 
DMN, which includes the PCC, HF, temporal, and parietal lobes 
and the limbic system. Eloc predominantly reflects short-distance 
connections between neighboring regions (45). Decreased short-
distance connections that are primarily located in the posterior 
DMN may lead to decreased Cp and decreased Eloc of the DMN in 
patients with OSA. The PCC and HF are connected anatomically 
and functionally, and these functional interactions are presumed 
to underlie normal episodic memory capacity (47). Patients with 
OSA showed decreased FC between the right HF and the PCC, 
which is related to delayed memory (21). Based on the results, the 
OSA group showed decreased FC between the bilateral PCC and 
the bilateral HF, consistent with previous studies (21). Decreased 
FC in the anterior–posterior DMN and posterior DMN may 
further indicate cognitive impairments in patients with OSA (48).

Park observed abnormal FC in various brain regions, and 
altered FC subsequently resulted in disrupted topological proper-
ties in patients with OSA, particularly in the integrative aspects 
of brain network organization (49). Given the significant asso-
ciation between abnormal DMN FC and Cp, Lp, and Eglob of the 
DMN in the current study, we believe that disrupted FC within 
the DMN may contribute to the topological reconfiguration of 
the DMN in patients with OSA. Furthermore, abnormal DMN 
FC was associated with the MoCA score. Therefore, the abnormal 
DMN FC may partially explain the impaired cognitive function 
and topological reconfiguration in patients with OSA.

global network Measures of the DMn
Patients with OSA have recently been shown to display an 
abnormal small-world organization in both functional (28, 49)  
and structural (27) brain networks. In the present study, both 
patients with OSA and GSs showed efficient economic small-
world organization in the DMN. Although the DMN has 
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small-world properties, our results identified decreased Cp and 
Eloc of the DMN in patients with OSA. Thus, individuals with 
OSA likely have sparse connectivity and disconnections between 
adjacent brain regions in the DMN, resulting in decreased Cp 
and Eloc. Cp is a metric that quantifies the strength of network 
segregation (50). The present results indicate a decline in func-
tional differentiation in the DMN, suggesting that highly local 
specialization and the integrity of the DMN may be impaired 
in patients with OSA. Eloc essentially reflects the fault tolerance 
of the network and the capacity for transmitting information 
over local networks (45). Our finding of a decreased Eloc sug-
gests disrupted DMN architecture in patients with OSA that is 
characterized by higher vulnerability and a decreased capacity 
for regional information processing. Moreover, Cp was negatively 
correlated with the MoCA score and delayed memory, further 
illustrating that disrupted global topology of the DMN influence 
cognitive impairments in patients with OSA, including delayed 
memory and memory extraction.

regional network Measures
Nodal betweenness centrality, nodal efficiency, and nodal degree 
were combined to compare the regional topological organization 
between patients with OSA and GSs in our study. Deceased nodal 
centrality was identified in the PCC and dMPFC. The PCC has 
strong reciprocal connections with other structures involved in 
cognitive function (51), the collection and evaluation of infor-
mation, attention processing, personal significance, and evoked 
emotion (16). Previous structural neuroimaging studies have 
observed decreased GMV (52) and white matter integrity (53) in 
the PCC in patients with OSA. Furthermore, patients with OSA 
show decreased brain activation, decreased degree centrality, and 
FC alterations in the PCC (17, 18, 20, 21, 54). DMN dysfunction 
is associated with impairments in cognitive performance (55, 56). 
Intermittent hypoxia is a major factor in DMN dysfunction in 
patients with OSA (14, 21). We also observed a positive correla-
tion between the nodal degree of the left PCC and nadir SaO2, 
suggesting that the functional damage of the PCC was related to 
intermittent hypoxia, which may be a major factor involved in 
DMN dysfunction and may further explain cognitive dysfunction 
in patients with OSA.

The dMPFC subsystem includes the dMPFC, temporal 
parietal junction, lateral temporal cortex, and TempP, which are 
involved in social cognition, metacognition, and mental state 
inference (16). Patients with OSA displayed decreased FC and 
reduced GMV in the MPFC of the anterior DMN, indicating 
structural and functional deficits (20). The OSA group showed 
decreased nodal centrality of the dMPFC, but a compensatory 
increase in nodal centrality of the ventral medial prefrontal cortex 
in the present study, which may also confirm the deficiency in the 
dMPFC subsystem of the DMN in patients with OSA.

The PHC plays an important role in episodic memory, autobio-
graphical memory and episodic simulation, spatial memory, scene 
perception, and spatial navigation (47). Previous voxel-based 
morphometry studies revealed that atrophy (57) and regional cer-
ebral blood flow were significantly reduced in the bilateral PHC 
(58), which may be related to cognitive impairments in patients 
with OSA. Nevertheless, we found a compensatory increase in 

nodal centrality in the right PHC, which was positively cor-
related with delayed memory, may partially explain the deficits 
in memory, spatial learning, memory extraction and attention in 
patients with OSA.

limitations
Several limitations in this study should be addressed. First, 
we only revealed the small-world properties of the DMN, but 
patients with OSA exhibited disruptions in the DMN, as well as 
the SN and CEN (15). Therefore, further investigations of other 
specific brain networks are necessary. Second, we only specifically 
selected 20 nodes of the DMN (16) and characterized the DMN 
using an unbiased seed-based FC approach. More nodes of the 
DMN should be used to construct the DMN and the present 
findings should be validated by ICA. Third, the global network 
measures, nodal centrality, and ROI-ROI FC results were not 
corrected by multiple comparisons, meaning that this study 
should be considered an exploratory analysis. In addition, a more 
detailed neuropsychological assessment questionnaire must be 
used to obtain more interesting data.

cOnclUsiOn

In the current GRAPPA study, patients with OSA showed dis-
rupted FC and topological reorganization of the DMN. Abnormal 
DMN FC may contribute to the topological configuration of the 
DMN and cognitive impairment in patients with OSA. These 
results provide important insights into the neurobiological 
mechanisms of both disrupted FC and disrupted network proper-
ties of the DMN, which may partially account for the impaired 
cognitive function in patients with OSA.
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