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ABSTRACT

Motivation: With the vast increase in the number of gene expression
datasets deposited in public databases, novel techniques are
required to analyze and mine this wealth of data. Similar to the way
BLAST enables cross-species comparison of sequence data, tools
that enable cross-species expression comparison will allow us to
better utilize these datasets: cross-species expression comparison
enables us to address questions in evolution and development,
and further allows the identification of disease-related genes and
pathways that play similar roles in humans and model organisms.
Unlike sequence, which is static, expression data changes over time
and under different conditions. Thus, a prerequisite for performing
cross-species analysis is the ability to match experiments across
species.

Results: To enable better cross-species comparisons, we developed
methods for automatically identifying pairs of similar expression
datasets across species. Our method uses a co-training algorithm
to combine a model of expression similarity with a model of
the text which accompanies the expression experiments. The co-
training method outperforms previous methods based on expression
similarity alone. Using expert analysis, we show that the new matches
identified by our method indeed capture biological similarities across
species. We then use the matched expression pairs between human
and mouse to recover known and novel cycling genes as well as to
identify genes with possible involvement in diabetes. By providing
the ability to identify novel candidate genes in model organisms, our
method opens the door to new models for studying diseases.
Availability: Source code and supplementary information is available
at: www.andrew.cmu.edu/user/aaronwis/cotrain12.

Contact: zivbj@cs.cmu.edu

Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION

Cross-species analysis has been at the center of genomics research
for decades. Some of the most influential computational biology
work, including BLAST (Altschul er all, [1997) and various
alignment methods W, M) were aimed at
comparing genomics data across species. In addition to answering
several basic research questions [including issues related to
evolution (Stark er gl 2007) and development (Im,
M)], cross-species analysis is extensively used by pharmaceutical
companies. Indeed, almost all drugs are initially developed and
tested using model organisms, and knowledge about the relationship
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between target genes in these organisms and corresponding human
genes is crucial for successful drug development (Kaletta and
Hengartner, ).

While most work to date has focused on the analysis of sequence
data across species, other types of genomics data are rapidly
accumulating. One of the most abundant types of genomics data are
gene expression data. Unlike sequence data, expression data changes
between conditions, time points and developmental stages and is
thus extremely useful for studies that involve responses to various
treatments. Gene expression databases from microarray studies have
grown exponentially over the last decade m M). Other
technologies, including RNA sequencing, are also generating large
expression datasets in multiple species. This leads to a key challenge:
How can we effectively mine these databases to identify similarities
and differences in gene expression across species that complement
sequence data?

A prerequisite for cross species analysis is the ability to match
data in one species to data in another. This can be easily done
for sequence data since DNA is context independent and the
nucleotides and amino acids are universal. However, things become
more challenging when using expression data. First, genes need
to be matched across species, and not all orthologs are currently
known. More importantly, expression data are condition specific,
continuous, sometimes dynamic and often much noisier than
sequence data. This makes it hard to identify experiments that can
be matched to find genes that are expressed in a similar way across
species.

To address this issue, several researchers performed controlled
experiments in which the same biological system was studied under
the same condition, in the same lab, and in multiple species.
Examples include the cell cycle (Rustici er gfl, 2004), immune
response @Zinman er all, RO11)), various tissues m, M),
drug response (Kuo et all, ) and development ,

). See M) for a recent review. While these
studies successfully identified similarities and differences leading
to new insights regarding conservation and response mechanisms,
this success only serves to strengthen the question mentioned above:
Can we develop methods to mine the vast number of expression
experiments currently deposited in public databases so that they can
also be used in such a cross-species analysis framework?

Relatively little work has been carried out to date to address
this general question (especially when compared with work that
focuses on the cross-species analysis of sequence data). One
previous approach by [Tamayo er all (2007) used non-negative
matrix factorization (NMF) to perform the unsupervised discovery
of a small set of metagenes that are a linear combination of gene
expression levels in one of the species being compared. By similarly
combining the orthologs of these genes into metagenes in another
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species, expression experiments were compared across species to
identify matched pairs. Another method that, similar to the NMF
method, only uses expression data, was proposed bym M).
Using a subset of the orthologs between two species and a small
training set, their method learns a new distance function between
microarray experiments in the two species. That distance function is
then used to select a new set of matched arrays which serve as a basis
for querying gene similarities across species. Le et al. have shown
that their method improved upon prior methods (including the NMF
method). However, similar to the NMF method and other methods,
the Le et al. method did not utilize all available information,
which reduced its performance. Specifically, the method only used
expression values while expression databases also provide textual
information both regarding the dataset (an abstract) and regarding
the individual arrays (time point, exact condition, etc.).

In this article, we extend the Le et al. method so that we
can integrate expression values and text when searching for
matched array pairs. Our new method utilizes latent semantic
analysis (LSA) (IIEQDESELEL&U, ll_‘l‘ld) to match abstracts across
species. Using training data, we initially learn a model for LSA
[parametrized by how many dimensions to keep during singular
value decomposition (SVD)] and use this model to rank a set of
pairs of arrays across species. We then combine our LSA model
with the expression analysis method from m, M) using a
co-training framework.

In co-training [which belongs to a larger class of semi-supervised
learning methods thap_dMaU,hQM)], two models are iteratively
improved by continuously increasing the training (labeled) set at
each iteration based on the agreement of the models on the unlabeled
examples. As we show, the resulting combined model improves upon
the expression-only method. This is apparent both when using a
standard train-test approach and when analyzing biological data for
functional assignments. We then use our new model to identify a
set of matched arrays which serves as the basis for the cross species
queries. We manually analyzed the accuracy of the top set of pairs
identified by the combined model concluding that our method can
successfully identify the relevant matches. We then used the new
matches to identify genes potentially involved in diabetes based
on correlation to genes with known involvement in our matched
pairs.

2 METHODS

We use a co-training approach to iteratively learn the parameters for two
models of microarray similarity, each of which uses a different set of features
as input. The first model is used to determine the similarity of two microarrays
based on their expression values. From a set of training data, it learns a
distance metric for comparing expression values of orthologs across the two
species. The second model is used to determine the similarity of text (in
this case, the descriptions attached to microarrays). For this model, LSA is
used, which maps the text into a low-dimensional space where dimensions
correspond (roughly) to semantic concepts. Texts are then determined to
be similar or not in this low-dimensional space. The co-training algorithm
begins by training each of the two models separately using hand-curated
training data (i.e. labeled data). Then, each model is used to score the
unlabeled data, finding the most similar pairs of microarrays using each
of the two methods. It then finds microarray pairs which rank highly using
both models. These pairs are added to the labeled list and (together with the
original set of labeled data) are used as training data for the next iteration.

2.1 Gene expression comparison

The first of the two models we used in the co-training method is a distance
metric that allows us to score the similarity of two microarrays from different
species based on the ranks of known orthologs. We learn this distance metric
in a similar manner to the one described in m, M)‘ The training
requires a set of positive and negative examples. (Positive examples include
pairs of arrays that are representing a similar condition and tissue whereas
negative examples are pairs that represent different conditions/tissues.)
In addition, we use a set of known gene orthologs between the two
species.

To avoid issues related to different platforms and normalizations, we rely
on the rank order of the genes rather than on their actual values. For each
array from the two species we record the permutation induced by the rank
order of the orthologs expression levels. This ranking of the log expression
ratios (relative to control) is encoded using a matrix M in the following way:

1 the rank of ortholog i is j
0 otherwise

M= { )]

With this definition of M, we define a distance function between two
microarrays based on a weighted difference of the permutation induced by
the order of the orthologs. Specifically, we set:

A (M M) = W (Mg = M) (M — Mo 0 @

where M, is a microarray from one species, M, is a microarray from the
other and w is a weight vector.

Our goal is to learn a vector w that minimizes the distances on our
positive training set, and maximizes distances on the negative training set.
Furthermore, we look for a distance function that penalizes ‘large’ deviations
in ranking (for example, moving from a highly expressed status to a repressed
status) while at the same time allowing genes to move a few spots up or
down the ranking without penalty (due to noise, a gene ranked 1000 in one
experiment can be ranked 1100 in another even if its activity does not change
much). Of course, manually quantifying what constitutes a ‘large’ deviation is
very hard to do. We thus use the training data in an optimization procedure
to find the correct values for w. This optimization problem is equivalent
to finding eigenvalues of the Rayleigh quotient. See [Leer all M) for
complete details.

Once we learn such a w, we can measure the distance between any pair of
microarrays (one microarray from each species). We use this metric to rank
order all array pairs between the two species being analyzed.

2.2 Textual comparison

The second model we use in the co-training procedure compares two
microarrays based on the similarity of the abstract text that accompanies the
gene expression dataset. In GEO (the Gene Expression Omnibus), as well
as in other expression databases, an abstract is required when depositing
datasets (a ‘GDS’ in GEO). Note, however, that datasets include multiple
arrays (in many cases far more than 10). Thus, while the textual score will
allow us to find similar experiments across species it may not be enough for
matching individual microarrays. Thus, we need the co-training procedure
which can also utilize expression values.

We use LSA to score textual similarity W, m). To
prepare abstracts for scoring, we use a stemmer to remove word suffixes.
Then, a blacklist of common non-content words is used to restrict abstracts
to words with probable biological meaning. We build a term-document
co-occurrence matrix, where an entry N(t;,d;) is equal to the number of
occurrences of term i in document j.

We then use the term frequency—inverse document frequency (TF-IDF)
transformation on our co-occurrence matrix. TF-IDF weighting increases the
weighting of words that are proportionally rarer in the document corpus; this
is desirable because words that occur in fewer experiment descriptions are
likely to be more valuable in distinguishing a given experiment from others.
For example, the name of a specific gene under study is rare, and two abstracts
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containing the same gene are likely to be related; however the description
of an experiment as a time series is more common, and proportionally less
useful. More specifically, to perform the TF-IDF transform we determine

TFG;.d)= #word #; in dj 3)
P #words in dj i
IDF(#;,dj)=log ) 4
o 1(t €dy)

k=1
where D is the number of documents in our corpus. Using these values we
set N(t;,d;) to TF(t;,d;) *IDF(t;, d;).

Finally, we perform SVD on the TF-IDF matrix to produce a low-
dimensional projection of the TF-IDF matrix. Abstracts for pairs of
microarrays can then be compared by taking the cosine of their projections
in the lower dimensional space.

The only parameter we need to set in this procedure is the number of
dimensions X to preserve when performing SVD. This number plays an
important role. If X is too large (keeping many dimensions) then we may
overfit leading to an inability to match correct pairs. On the other hand if X
is too low (few dimensions) the resulting model may not be specific enough
leading to many erroneous matches. To find the right value for X we again
rely on the training data. We first compute the distance of all microarray
pairs for each choice of the number of dimensions to preserve from SVD.
For each dimension, we normalize the scoring of pairs so that the mean score
is 0, and the SD is 1. Then, we sum the similarity scores for each pair in
the positive training set. The dimensional cutoff that has the highest sum of
similarity scores for the training set is chosen.

2.3 Iterative co-training

We iteratively refine our models using a co-training technique (Blum and
Mitchell, ). Co-training, a form of semi-supervised learning, is an
iterative machine learning technique that allows us to combine two models
which use different, ideally independent, views (features) of the data. The
core idea of co-training involves four steps:

(1) Train two models using a set of labeled training examples;

(2) Assign labels to all unlabeled examples using both models;

(3) Choose examples that were labeled the same by each model and add
these to the training examples; and

(4) Repeat Steps 1-3 until convergence or a set number of iterations.

The main advantage of co-training is the fact that we can use the vast amount
of unlabeled data (pairs of microarrays for which we do not know if they
are similar or not) to improve our classifiers. While it is a hard manual task
to actually label pairs of arrays from two species (it took one of us several
hours to manually label 100 pairs), the number of unlabeled pairs is very
large (roughly 10 million). Using two different views of the data allows us
to use initially unlabeled microarrays as an additional source of training data
for our models.

In our co-training procedure we combine models for both the expression
values and the text abstract that are associated with the microarray. Each
of these two factors provides a different view of microarray similarity: the
expression levels give us a measure of similarity in expression response
whereas the text gives us a measure of similarity in tissue and experimental
manipulation. We expect that pairs that are similar in both expression level
and text will be of higher quality (i.e. more similar) than pairs that score
highly on just one of the two metrics.

In each iteration, we first train each model, and then evaluate all unlabeled
microarray using both distance metrics (gene expression similarity and
textual similarity). Then we score all microarray pairs using the trained
expression and textual distance metrics.

At this point we perform the co-training step: we take all array pairs in
the intersection of the top 1% of expression similarity scores and the top

1% of textual similarity scores and add them to the initial positive training
set. Finally, we check for termination conditions: whether the positive set is
unchanged or a certain number of iterations have occurred. When we reach
the stopping criteria we use the two models that we have learned to derive
a final set of matched arrays using the intersection of the top scoring pairs
using each method.

2.4 Manually matching experiments for use as a
training set

To obtain a training set we followed the following procedure. The abstracts
of data sets (GDSes) from GEO were scored using LSA (using a default 670
dimensions), and the top 100 experiments were then manually evaluated to
determine if experiment pairs are indeed similar (same tissue and condition).
Individual microarray pairs were similarly manually evaluated using single
array descriptors (time point, specific treatment for that sample). Following
these steps we obtained a total of 138 labeled microarray pairs. These pairs
were used as the initial positive training set. See website for the complete
list of matched arrays used for training.

3 RESULTS

We performed experiments by searching for matches between human
(Homo sapiens) and mouse (Mus musculus) arrays. We downloaded
close to 7000 microarrays from the GEO. Of these, 3715 were
human arrays and 3116 were mouse arrays (representing a total
of 11 575 940 possible cross-species microarray matched pairs). We
obtained a list of 16376 human/mouse orthologs from Inparanoid
(inparanoid.sbc.su.se).

As was done previously m, M) when performing
expression similarity comparisons, we only use the 500 ortholog
pairs that vary the most within-species. This reduces the amount of
training data required to fit our weight vector. The reason for using
this reduced set of orthologs is based on the idea that orthologs which
do not vary their levels across experiments in a single organism are
less useful in differentiating experiments across species.

The initial positive training set used was our hand-curated set of
138 pairs discussed above. Since we expect the vast majority of
random array pairs to represent different experiments, as negative
training data we used all pairs not in the positive training set (initially
11575 802 pairs).

3.1 Cross validation

To determine the ability of our method to recover known similar
pairs, and to compare it to prior methods that were based on using
only expression values, we performed cross validation on our hand-
selected list of positive pairs. In all, 10% of the positive pairs were
excluded from the positive set, and then co-training was performed
using the remaining training pairs. Pairs were considered to be
recovered if they were found in the intersection of the top 5% of
the expression and text similarity rankings. Figure [ presents the
performance of our co-training technique compared with the original
method from m, . which is one of the two models
in the co-training). As mentioned above, that method only uses
expression data and was shown to outperform several other methods
that only utilized expression levels , M). Displayed
cross validation scores are an average of 10 runs, each containing
a different randomly selected set of excluded pairs. As can be seen,
co-training resulted in much higher cross validation accuracy, at
35%, compared with using expression similarity alone, which only
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Fig. 1. Cross validation accuracy comparing expression analysis alone to
co-training. The co-training method greatly improves between iterations
indicating that the new labeled examples contribute to the performance of
the combined classifier. Error bars represent standard deviation.

leads to 5% accuracy for this dataset. A peak in cross validation
performance occurs at the fifth iteration.

Since the initial positive pairs were chosen such that they had
high-textual similarity, it is not surprising that co-training (which
includes a textual similarity score) outperforms expression similarity
alone (which does not) on this dataset. However, it is still noteworthy
that co-training increases pair recovery from a baseline of 17%
(when using the text data before co-training) to >35%. This indicates
that by integrating text and expression our method can improve on
the performance of using either one of these datasets on their own.
Below we further study the high-scoring co-training matches (both
at the dataset and at the array levels) and show how they can be used
to derive biological insights about processes and diseases.

Though our cross validation suggests that five iterations is an
appropriate training length for our data, this result may be dependent
on the number of unlabeled and labeled microarrays and the
organisms being compared and so will not generalize for other
comparison studies. We have thus also tested an automated method
for determining the number of iterations which splits the training
data into training, validation and test sets. The first two (together with
the unlabeled data), are used to determine the appropriate number
of iterations whereas the third is used to evaluate performance. See
the Supplementary Website for details.

3.2 Statistical analysis

We performed several analyses of the overlap between textual
similarity matches and expression similarity matches. In Figure P]
we show the size of the overlap between the two methods as a
function of the iteration of co-training. The overlap consists of all
pairs which are determined to be in the top 5% of similarity on both
expression and textual metrics. We compare this to the amount of
overlap expected if 5% of pairs were randomly drawn from each of
the two methods.

It can be seen that there is a substantial enrichment of pairs in the
overlap set. By random chance, ~25 000 pairs should be found in the
overlap set. Before any co-training has occurred (iteration 1, where
just the initial training data are used) the overlap is 65% larger than
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Fig. 2. Overlap between textual matches and expression matches by
iteration. Overlap matches (blue) were defined as microarray pairs that were
in the top 5% of both most textually similar and most expression similar pairs.
Random (green) pairs are pairs chosen from a random 5% of all expression
pairs that were also in a random 5% sample of all textual pairs.
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Fig. 3. Overlap between textual matches and expression matches by size of
overlap set in iteration 5. Overlap matches (blue) were defined as microarray
pairs that were in the top x% of both most textually similar and most
expression similar pairs. Random (green) pairs are pairs chosen from a
random x% of all expression pairs that were also in a random x% sample of
all textual pairs.

random, at 41 000 pairs. At its peak during co-training, the overlap
is 51 000 pairs, which is 104% larger than random.

Even though the overlap statistic is largely independent of the
cross validation analysis discussed above, similar to the cross
validation results, there is a peak in performance at iteration 6. This
again suggests that optimal learning occurs after 5-7 iterations.

In Figure[3l we show the size of the overlap set as a function of the
percentage of overlap at iteration 5 of the co-training algorithm. That
is, at any given point on the x-axis, we use that value to determine
what top percentage of matches we define as positive.

As can be seen, we consistently obtain a large enrichment in the
overlap when compared with random sets of the same size. At the 5%
level we have 48 520 pairs from co-training, compared with 25 682
pairs from random.
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3.3 Expert evaluation

To further analyze the set of matches determined by our method
we selected 100 matched microarray pairs for evaluation. These
pairs were randomly selected from the intersection of the top 1%
of expression and textual similarities. (All pairs selected were not
included in our initial training set.)

Each pair was evaluated on two levels: the correspondence of
the experiments (datasets) based on the text abstracts associated
with the experiments, and the correspondence of the two individual
microarrays that were matched as most similar by our method.

When comparing experiments, we looked at the sort of
manipulation performed (i.e. what the experiment was actually
testing) as well as what tissue the experiment was performed on.
This resulted in the following ranking (higher is better):

(1) Divergent tissue with divergent manipulation;
(2) Divergent tissue with same manipulation;
(3) Homologous tissue with different manipulation;

(4) Homologous tissue with same manipulation or same tissue
with different manipulation; and

(5) Same tissue or cell type with (nearly) same manipulation.

On this five point scale, 28% of the pairs were rated 5, 44% 4,
10% 3, 16% 2 and 2% 1. Thus, >70% of the selected matches
were scored 4 or 5, indicating that our co-training method was able
to successfully match experiments, and conditions, across the two
species. We note that random matching leads to 84% of the pairs
being scored a 1. Also for the random set, 1% were rated 4, and
1% were rated 5, showing that virtually no high-scoring pairs are
expected by chance. See the website for scores for matched and
random pairs.

Comparing individual microarrays is more difficult because the
information attached to these microarrays in the public databases
tends to be limited (often consisting of a couple attributes, such as
‘time: 12 h’ and ‘condition: control’). Thus, we evaluated array pairs
on a three-point scale:

(1) Mismatch, divergent condition/time;

(2) Match, similar condition, and homologous tissue (e.g. both of
ectodermal origin) or unknown (no tissue info for at least one
of the entries); and

(3) Match, same condition and tissue.

Of the 100 pairs, 20% were labeled as 3, 69% as 2 and 11% as 1.
The overwhelming number of 2’s is due to the lack of sufficient
annotation on the microarrays. However, for pairs that were known,
the majority of matches were true positives.

3.4 Cross species analysis of cell cycle genes

To test the usefulness of our new method for determining the
function of genes, we used our set of matched array pairs between
human and mouse to identify mouse cell cycle genes. As discussed
above, when looking at the overlap of the top 5% from each
model (expression level and text) we see a significant enrichment in
matched pairs; thus we used all pairs in this intersection at iteration 7
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Fig.4. GO term enrichment of mouse genes with high-expression correlation
to cycling genes in putative microarray similar pairs. We show a comparison
between the co-training approach and expression similarity alone. All cell
cycle related GO terms that are enriched in either of the two sets of genes
are included in the figure.

(atotal of 44 171 microarray pairs). For comparison with prior work,
we also selected the top 44 171 pairs using expression level similarity
alone.

We used a set of 50 human cycling genes identified by (Whitfield
et al., ). For each, we used the set of matched array pairs to
select the 10 mouse genes with the greatest Spearman’s correlation
resulting in 435 total genes. We used FuncAssociate 2.0 (Berriz et al.,
2009) to determine GO categories that were strongly enriched in the
set of discovered mouse genes. We report all enriched GO terms
related to cell cycle activity in Figure @ These specific GO terms
reported were chosen as they were strongly enriched on the initial
human set of genes as well. We compare GO enrichment between
the co-training method and expression similarity alone. As can be
seen in the figure, the co-training method has higher enrichment for
most of the cell cycle-related GO terms. For example, for the GO
term ‘Cell Cycle Phase’, the co-training method has P-value 4.6E-
11 whereas the expression method alone has P-value 7.5E-11; for
‘Cell Cycle Process’ the co-training method has P-value 2.3E-13
whereas the expression method has P-value 1.5E-10. See website
for the complete set of enriched GO categories.

3.5 Identifying targets for studying diabetes in mice

After establishing the ability of our method to identify cell cycle
mouse genes based on a curated human list, we explored the usage
of cross species analysis for studying human diseases. Specifically,
we looked at diabetes, a disease affecting 25.8 million people in the
USA alone. As a starting point for our cross-species comparison, we
selected a set of 19 human genes from KEGG that have mutations
known to be associated with type 2 diabetes.

As before, for each of the human genes we selected the top 10
mouse genes with the greatest Spearman’s correlation in the matched
array pairs. This resulted in 137 distinct mouse genes (several mouse
genes were correlated with multiple human genes, which is expected
if the human genes are co-expressed). See the Supplementary
Website for a complete list of genes identified by our method. In
Table [ we note some of the most enriched ‘biological process’
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Table 1. Top biological process GO terms by P-value for mouse genes
correlated with human genes that are known to have type 2 diabetes-related
mutations

Rank  Category name Assigned P P adj

1 Developmental process 55 2.19E-17  <0.001

2 Positive regulation of 49 2.4E-14 <0.001
biological process

3 Positive regulation of 46 5.63E-14  <0.001
cellular process

4 Anatomical structure 37 1.0E-13 <0.001
development

5 Anatomical structure 28 6.6E-13 <0.001
morphogenesis

12 Positive regulation of 29 1.1E-9 <0.001
metabolic process

13 Regulation of metabolic 51 1.6E-9 <0.001
process

14 Regulation of primary 46 2.3E-9 <0.001
metabolic process

33 Regulation of biosynthetic 36 3.3E-7 <0.001
process

96 Positive regulation of 11 4.0E-6 0.003
immune system process

96 Regulation of immune 13 1.7E-5 0.012
system process

101 Immune system process 14 2.2E-5 0.02

GO terms associated with these mouse genes. As expected, several
metabolism and biosynthesis terms were significantly enriched. For
example, ‘Positive Regulation of Metabolic Process’ was enriched
with P-value 1.1E-9 and ‘Regulation of Metabolic Process’ was
enriched with P-value 1.6E-9.

Also notable are several immune-related GO terms including
‘Positive Regulation of Immune System Process’. The immune
system has been shown to be related to type 2 diabetes. For example,

(IE]_dmlLandLmH hﬂ%) it is suggested that diabetes symptoms
(such as the metabolic syndrome that accompanies the disease) is due
to a cytokine-mediated reaction and in (Davio and Angeli, 001) it is
suggested that activity in immune response gene IL-6 is associated
with diabetes. Specific immune-related genes, such as TLR4, sCD14

and BPI have known associations to type 2 diabetes (Fernandez-Real
and Pickup, EZ Ei a).

Several of the mouse genes identified by our method either have
known association with diabetes or suggest new roles for potential
targets of study. For example, IL-18 is known to be produced at
elevated levels in patients with type 2 diabetes m,
M) and IL-18 deficiency is also known to lead to insulin resistance
in mouse ). Our method identified the mouse gene
IL-18r1, which encodes a receptor for IL-18, suggesting a possible
direction for overcoming this deficiency by acting directly on the
receptor. Another identified gene, CD36, has been associated with
diabetic nephropathy, a frequent complication of diabetes (Susztak
etal., ). Additionally, our subset contained nuclear factor kappa
B inhibitor alpha (NFKBIA or IkB), which is known to have

olymorphisms associated with type 2 diabetes (Im,
).

Some of the mouse genes were found to be correlated to multiple

human genes. For example, intercellular adhesion molecule 1

(ICAM-1) was associated with 7 of the 19 human genes on our list.
ICAM-1 has been found to be elevated in diabetic rats (Sugimoto
et al. m).

4 CONCLUSIONS AND FUTURE WORK

While the availability of genomic sequence data led to several
successful computational methods for comparing these datasets
across species, relatively little work has been performed to date
on mining expression data across species. Given the advantages of
expression data (e.g. tissue and condition specificity, and dynamics)
developing computational methods for cross species analysis of
this data remains an important challenge. Indeed, most drugs are
developed and tested using model organisms; our ability to match
not just sequence but also the activity of key genes in a specific
disease would likely improve the process of drug discovery.

To facilitate such cross species comparisons we developed a novel
co-training algorithm that can identify pairs of similar microarrays
across species. The value of this approach is two-fold: first, we
incorporate textual data into the process of microarray comparison,
using a new source of data to better judge array similarity;
additionally, we improve the performance of existing expression
level similarity models by providing additional, algorithmically
selected labeled data.

Testing our method on known similar pairs through cross
validation demonstrated that it improves performance when
identifying known positive matches. We showed that there is
statistically significant overlap between textual similarity and
expression level similarity, and that co-training enriches that overlap.

Expert analysis of a subset of our top matches confirmed its
accuracy. We next used our matched arrays to identify mouse cell
cycle genes as well as mouse genes associated with genes implicated
in human diabetes. The list of diabetes-related mouse genes includes
several known immune and metabolism genes that play an important
role in diabetes as well as novel predictions that can be further tested.

Future work could involve the use of a text analysis technique with
a richer parameter space. LSA is only weakly parametrized (by the
number of dimensions we retain during dimensionality reduction),
and it is likely that we could achieve better performance with an
algorithm that can take further advantage of the training examples
that are iteratively selected. Additionally, we would like to extend
this method to more species pairs, which requires the development
of a set of training data and a list of orthologs between the new
species pairs.
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