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A B S T R A C T   

This study focuses on the solution combustion approach to examine the nanostructures of 
undoped and doped ZnO with different concentrations of Al (0.1 % and 0.2 %). Various physical 
techniques were utilized to characterize the synthesized nanoparticles. X-ray diffraction (XRD) 
revealed the crystalline materials, while scanning electron microscopy (SEM) with energy- 
dispersive X-ray (EDX) findings confirmed the products with particle size and the insertion of 
Al into the ZnO lattice. Fourier-transform infrared spectra (FTIR) confirmed the presence of 
different functional groups in the obtained material. The results indicate that Al-doped ZnO 
(Al–ZnO) nanoparticles show promising properties for optoelectronics and photoluminescence. 
Photoluminescence analysis indicated that an increase in Al3+ (0.2 %) concentration resulted in a 
decrease in peak intensity and an increase in the full width at half maximum. The band gap was 
calculated using the Taucs plot. The study also highlights the effectiveness of Zn1-xAlxO nano-
structures in degrading organic pollutants, particularly in adsorbing Malachite Green (MG) dye. 
Among the samples, the 0.2 % Al-doped ZnO exhibited superior dye degradation efficiency due to 
its enhanced adsorption capacity and smaller particle size, as evidenced by multilayer adsorption 
capacity and chemisorption during the degradation process. This study provides valuable insights 
into the potential applications of Al-doped ZnO nanoparticles in various environmental and 
technological fields, emphasizing their significance in the degradation of organic pollutants.   
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1. Introduction 

Due to its high potential utility in optoelectronics and widespread scientific interest, ZnO has become one of the most heavily 
investigated metal oxides in recent years. Applications in optoelectronics, nonlinear optics, and electro-optics [1] greatly benefit from 
the material’s high exciton binding energy of 60 meV at room temperature and wide direct band gap of 3.3 eV [2]. Al, a member of 
group III, easily converts n-type ZnO to p-type ZnO. As an added advantage, ZnO may be used in a number of different. Furthermore, 
ZnO can be used in various applications, such as gas sensors [3], solar cells [4], and flat panel displays [5]. An obvious advantage of 
ZnO is that its characteristics can be easily adjusted by manipulating the number of oxygen vacancies within the material. It has been 
discovered that growth temperature and environment significantly affect ZnO’s photoluminescence (PL) characteristics [6]. Stoi-
chiometric ZnO thin films tend to exhibit intense UV fluorescence. Defects such as oxygen interstitials, oxygen vacancies, zinc in-
terstitials, zinc vacancies, and oxide have been proposed as potential causes of green PL [7–10]. Interestingly, when a zinc atom is 
replaced by an aluminum atom as an extrinsic dopant, the defect environment changes. Therefore, it is important to investigate how 
doping affects the luminous characteristics of ZnO. Fourier transform infrared (FTIR) spectroscopy utilizes infrared wavelength light to 
measure a molecule’s vibrational energy, albeit in distinct ways. Alterations in the intensity of the spectral band at 437 cm− 1 (E2 (high) 
mode of hexagonal ZnO) can serve as an indicator for changes in oxygen content [11]. Al–ZnO can be used to increase the thermo-
electric properties under high pressure and temperature [12]. Varudkar et al. (2020) focus on the fabrication of Al–ZnO nanoparticles 
and their application as a semiconductor-based gas sensor for ammonia detection [13]. Dai et al. (2023) discuss the importance of 
surface charge recombination in catalysts, which is relevant to the adsorption and degradation capabilities of (Al–ZnO) nanoparticles 
[14]. 

Combustion synthesis (CS), also known as self-propagating high-temperature synthesis (SHS), is a cost-effective and useful tech-
nique for producing a variety of oxide materials. In recent years, CS has become increasingly popular for the creation of different 
nanomaterials. The purpose of this study was to synthesize phase-pure Wurtzite structured ZnO phosphor by sintering zinc acetate, 
zinc nitrate, and ZnO at temperatures of 800 ◦C, 900 ◦C, and 1000 ◦C in a reducing environment for 1 h. It was studied how the 
photoluminescence (PL) characteristics of ZnO samples are affected by the sintering temperature and how this affects to increase in 
emission. The ZnO samples sintered in a reducing environment exhibited deep level green fluorescence around 505 nm without the 
addition of any impurities [15]. Furthermore, this study documents the bulk synthesis of high-quality wurtzite-structured zinc oxide 
(ZnO) nanoparticles (NPs) using a straightforward wet chemical colloidal technique. The influence of air annealing (up to 800 ◦C) on 
the structure, composition, optical properties, and photoluminescence (PL) characteristics of the ZnO nanoparticles was extensively 
investigated at temperatures up to 800 ◦C [16]. Another study focused on the impact of Cu doping on the improved UV emission of ZnO 
nanorods. Through a hydrothermal process, ZnO nanorods with varying levels of Cu doping were successfully synthesized. The results 
showed that as the concentration of Cu doping increased, the UV emission peak in the PL spectra also increased, while the emission 
peak in the visible region nearly disappeared [17]. Bentonite-ZnO Nanocomposite Synthesized by Solution Combustion method used 
for Ciprofloxacin Degradation by photocatalytic activity [18]. The photoluminescence of Li+co-doped polycrystalline sintered ZnO 
with trivalent rare-earth (RE3+) ions (Dy3+, Er3+, Eu3+, Ho3+, Nd3+, Sm3+, and Tm3+) has been studied [19,20]. The REs doped ZnO 
have been induced by various methods such as ion implantation [21,22], pulsed laser deposition (PLD) [23], and ultrasonic spray 
pyrolisis (USP) [24]. 

The present work describes the synthesis of Al–ZnO nanoparticles using the combustion method. The nanoparticles were doped 
with Al at concentrations of 0.1 % and 0.2 %. Additionally, this study investigates the photoluminescence of the samples and assesses 
the degree of dye degradation. The main objective of this research is to determine the structural, optical, and dye degradation 
properties of Al-doped ZnO nanoparticles. 

2. Experimental 

2.1. Materials and methods 

The precursor chemicals for the preparation of undoped and Al–ZnO nanopowder were zinc acetate dihydrate, aluminum hy-
droxide and Urea. All the chemicals are of AR grade (purity 99.8 %) and used as received (Merck, US). Using a powder X-ray 
diffractometer with CuK (1.5406 Å) radiation, the crystallinity of the as-prepared Zn1-x AlxO was evaluated. The FTIR experiments 
were run in the 4000 to 400 cm− 1 range on a Bruker Tensor-27 spectrometer. The Hitachi 3700 NSEM was used to capture the SEM 
micrographs. Jobin Yvon Fluorolog - FL311 spectrofluorometer was used to record the PL excitation and emission spectra. 

2.2. Synthesis of Al–ZnO nanoparticles 

Two sets of Al–ZnO nanoparticles were synthesized with varying concentrations of Al dopant: Sample 0.1 % Al–ZnO (Sample 0.1 

Table 1 
Composition of synthesized Zn1-x AlxO samples.  

Sample (%) M2+
Zn (in grams) M3+

Al (in grams) VH2O (in ml) 

0.1 8.762 0.00624 12.96 
0.2 8.714 0.0186 12.92  
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%), Sample 0.2 % Al–ZnO (Sample 0.2 %): For doping combinations, the molar ratios of urea (1.5 g) were used to determine the 
composition of the metal oxide. A typical illustration shows the stoichiometric concentration of zinc acetate dihydrate and aluminum 
hydroxide dissolved in deionized water in a beaker. Then, fuel (urea-1.5 g) was gradually added to the solution while being vigorously 
stirred for about 10 min. The beaker was placed into a muffle furnace (450 ◦C) to finish the combustion reaction. The solution un-
dergoes vaporization followed by vigorous ignition with an incandescent flame around 450 ◦C yielding a voluminous white product 
that is identified as Zn1-x Alx O and characterized [25]. The materials used for synthesized samples are listed in Table 1. 

3. Results and discussion 

3.1. XRD analysis 

The X-ray diffraction peaks of Zn1− xAlxO nanoparticles at different doping levels are depicted in Fig. 1, the powder XRD pattern 
[25]. Crystalline ZnO solid structure appears to be significantly impacted by the incorporation of Al (secondary phase @ ~38◦) [26]. 
The diffraction peaks match the ZnO nanoparticles reported hexagonal Wurtzite structure as well as the planes (1 0 0), (0 0 2), (1 0 1), 
(1 0 2), (1 1 0), (1 0 3), (2 0 0), (1 1 2), (2 0 1), and (2 0 2) [27]. Matching with inorganic crystal structure database (ICSD 163382, 
182360). Table 2 shows that the lattice parameters a and c dropped as the concentration of Al increased due to the resistance of grain 
boundaries moving across the secondary phase, such as Al. High levels of Al doping can result in the formation of new phases or 
secondary phases within the ZnO matrix, which can create additional peaks [28]. Additionally, they can shift the existing peaks to-
wards the higher angle on causing non-uniformity in the strain component [29]. They exerted a delayed force on the grain borders that 
countered the force driving grain expansion because they knew that this may happen at high Al mol%, which led to a drop in crystallite 
size [30]. The intensity of the XRD peaks can decrease with higher Al doping levels due to increased disorder and defects within the 
crystal structure [31]. 

These findings suggest that raising the Al concentration causes the size of Zn1− xAlxO nanoparticles to decrease. Therefore, 
annealing at 450 ◦C obviously resulted in sharper reflection peaks, showing an increase in crystallinity. After being heated to 450 ◦C 
degrees, the crystallite size of Zn1− xAlxO (x = 0.1 % and 0.2 %) is determined to be 39 nm and 34 nm, respectively. The XRD data may 
be used to determine the lattice parameters (’a’ and ’c’), as Zn1-xAlxO has a hexagonal unit cell with these above-mentioned values 
using the following equations [32]:  

1/d2 = 4(h2+k2+hk)//3a2+ (l2/c2))                                                                                                                                         (1) 

Where, 
d is the interplanar distance, 
λ = 1.54 Å is the wavelength of the X-ray radiation used [33]. 

3.2. SEM analysis 

Fig. 2 illustrates how smaller particles are produced when the dopant concentration is increased. The average size and form of the 
nanoparticles are ascertained by SEM analysis of the samples. The XRD and SEM results are in good agreement with the calculated 

Fig. 1. XRD patterns for (a) ZnO and (b) Zn1− x Alx O = 0.1 % (c) Zn1− x Alx O = 0.2 %.  
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average particle size using particle size analyzer tool on ImageJ software. Fig. 3 displays the energy dispersive spectra (EDS) of ZnO 
nanoparticles doped with Al at concentrations of 0.1 % and 0.2 %. The EDX confirms the exceptional purity of the generated Zn1− xAlxO 
nanoparticles, showing only the strong peaks of Zn, Al, and O. The Zn characteristic peaks alterations in strength with increasing Al 
concentration provide more proof that Al3+ ions have been replaced in the ZnO lattice [34]. The weight percentage of the respective 
samples are tabulated in Table 3. 

3.3. FTIR analysis 

The stretching of a hydroxyl group O–H and bending vibrational absorptions due to water molecules adsorbed on the sample’s 
surface in the environment are represented by the bands at 1620 cm− 1 and 2250-3600 cm− 1 (Fig. 4a, b, and 4c). Furthermore, the 
peaks at 1364 and 1020 cm− 1 show the lower intensity peaks of the stretching and bending of the vibrational modes for carbonates, 
which may have happened after boiling the water. The pure ZnO peak at 500 cm− 1 and 1800 to 800 cm− 1 is caused by the stretching 
mode [35,36]. Peaks corresponding to Al–O bonds are expected to appear. These typically manifest in the region around 600–800 
cm⁻1, indicating the presence of aluminum in the ZnO matrix [37]. The frequency of this peak increases with increasing doping levels. 

Table 2 
The crystallite size and the lattice parameters calculated from diffraction peaks.  

Sample h k l (1 0 1) Lattice parameters Scherr formula 

2θ(◦) D (nm) a (Å) c (Å) Grain size at 38o strain 

ZnO 36.52 41.6 3.25 5.21 29.18 nm 0.0005 
0.1 % 36.71 39 2.235 5.20 28.51 nm 0.0013 
0.2 % 36.89 34 2.24 5.21 23.76 nm 0.0015  

Fig. 2. SEM images of Zn1− x Alx O nanoparticles: (a) ZnO (b) 0.1 %, (c) 0.2 %.  
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This implies that internal strain and the substitution of Al3+ ions, which shorten the Zn–O link, are the reasons why ZnO nano-
crystallites are becoming smaller. These findings indicate that Zn2+ atoms in the ZnO host lattice are being replaced by Al3+ ions. 

3.4. Photoluminescence investigations 

Photoluminescence analysis is crucial for characterizing a variety of material properties. It reveals the lifetime of the excited state 
and the impurity levels through PL emission. This analysis allows for the communication of both internal and external defects 
simultaneously [38]. Fig. 5 verifies the energy transfer of electrons from the interstitial to electron transition and from the bottom of 
the conduction band to the acceptor. This is evident in the characteristic peak at 402 nm. The results demonstrate that as the con-
centration of Al3+ increases, the peak intensity decreases, and the breadth of the half maximum increases. This is attributed to pho-
togenerated electrons in the zinc (Zn2+) conduction band or holes in the valence band undergoing an inter-band radiative combination 
[39]. The decrease in emission defects in ZnO nanostructures indicates the creation of defect centers through Al doping or the 
quenching of native defects (Fig. 5). The reported characteristic peak at 402 nm falls within the UV range and represents the 
near-band-edge emission of ZnO. However, it does not explicitly mention a green emission peak. The absence of this peak in the 
reported PL spectra could be attributed to several factors: a low concentration of such defects [38], doping defects [39], synthesis 
method [40], and annealing effects [38]. 

3.5. Optical absorption spectra/UV absorption spectra 

An UV–Vis spectrophotometer operating at room temperature was used to capture the optical absorption spectra of Zn1-xAlxO (x =
0, 0.1 %, 0.2 %) samples, as shown in Fig. 6a. The absorption edges of each synthesized sample were observed between 300 and 400 
nm. The data suggests the presence of mild red shifts in the produced nanoparticles. Furthermore, a red shift in the band gap (Fig. 6b) 
indicates improved crystallinity in the synthesized samples (0.2 %). The detailed band gap calculation is provided in the 

Fig. 3. EDX of (a) Undoped ZnO, (b) Zn1− x Alx\, x = 0.1 % and (c) Zn1− x Alx, x = 0.2 %.  

Table 3 
Atomic weight percentage of respective elements.  

Samples Elements (Weight percentage %) 

Zn (%) O (%) Al (%) 

ZnO 80.34 19.66 – 
0.1 % Al doped 80.30 19.60 0.1 
0.2 % Al doped 80.20 19.60 0.2  
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Fig. 4. FT-IR spectra of the as-obtained (a) ZnO and (b) 0.1 % Al–ZnO (c) 0.2 % Al–ZnO.  

Fig. 5. PL spectra for undoped and two different concentrations of Al doping ZnO.  
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supplementary information. 

3.6. Transmission spectra 

The optical characteristics of ZnO nanostructures synthesized by solution combustion and ZnO nanostructures doped with Al were 
assessed using transmission spectroscopy [41]. The treated materials have yielded transmission spectra in the UV–visible range, as 
Fig. 7 illustrates. The results indicate that the band-to-band absorption edge shifts to a longer wavelength as the dopant concentration 
increases, with the exact band-to-band absorption edge occurring between 370 and 460 nm. 

The calculated band gap energies were 3.15 and 3.19 eV for the concentrations of 0.1 % and 0.2 %, respectively. These band gap 
energies of ZnO align well with the values previously reported [42]. When plotting the band gap (αhv)2 against photon energy (hν), the 
band gap is depicted in Fig. 8. According to structural studies, the introduction of Al into ZnO results in structural flaws or lattice 
damages, causing the energy level to decrease significantly below the conduction band and leading to a decrease in the band gap 
energy. The presence of lattice faults in ZnO is directly correlated with the concentration of Al, as indicated in Ref. [43]. 

3.7. CIE chromaticity 

Fig. 9 displays the (x, y) parameters from the Commission Internationale de l’eclairage (CIE) that were measured using color gamut 
space coordinates. The CIE diagram was constructed using the emission spectra of ZnO and Zn1-xAlxO nanoparticles, which have a 
central wavelength of 402 nm. Each color within the visible spectrum is assigned coordinates (x, y) and is represented by a horseshoe- 
shaped region on the CIE diagram. The blue emission is distinct in both samples, with the blue region corresponding to their color-
imetric (x, y) coordinates [44]. 

Fig. 6. (a) UV absorption spectra of ZnO nanoparticles doped with 0.1 % and 0.2 % of Al concentration. (b) Band gap evaluation of the respec-
tive spectra. 

Fig. 7. Transmission spectra of pure ZnO and Al doped ZnO with varying Al concentration.  
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3.8. Zeta potential 

Fig. 10 presents the results of measuring the zeta potential and isoelectric point of Al–ZnO heated in water. The Figure provided is 
slightly higher than the pHpzc value discovered in this inquiry [45]. Greater adsorptive degradation would result from higher dye 
absorption due to the positively charged Al–ZnO surface and the negatively charged MG dye molecules. Considering the particle size 
and pHpzc values, it is expected that the Al–ZnO sample will have a higher adsorption capability. 

3.9. Effect of different catalyst dosage on MG dye degradation efficiency 

Using a wastewater sample containing MG dye, the degradation efficiency of pure ZnO and Al–ZnO nanoparticles (0.1 % and 0.2 %) 
was investigated. In this experiment, the effects of different dosages and concentrations of ZnO catalysts doped with aluminum were 
investigated for 10 min. Fig. 11 shows the degradation of wastewater at various catalyst weights (ranging from 1 to 10 mg). 0.2 % 
Al–ZnO degrades more quickly than 100 % MG at a catalyst concentration of 10 mg. The impact of deterioration rises with catalyst 
weight and duration, as Fig. 11 demonstrates quite clearly. The results show that because ZnO doped with aluminum (0.2 %) is smaller 
than both undoped ZnO and ZnO doped with aluminum (0.1 %), it performs better. 

Fig. 8. Plot of (αhν)2 vs hν of Al:ZnO samples for the calculation of band gap energy.  

Fig. 9. CIE diagram of pure ZnO and Al–ZnO.  
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3.10. Effect of dye concentration 

The effect of the dye concentration varies from 1 to 10 mg/L. Fig. 12 shows that increasing the dye concentration from 1 mg/L to 8 
mg/L results in a significant increase in MG adsorption. The abundance of adsorbent sites, which encourage greater surface acces-
sibility and adsorption, may be the cause of this. Nonetheless, there is little difference in elimination efficiency over a dye concen-
tration of 8 mg/L. Reduced adsorption at the conclusion of the experiments suggests the absence of active sites once equilibrium has 
been reached [46]. Consequently, it has been determined that the optimal dye concentration dose is 8 mg/L, at which point 
approximately 95 % MG adsorption is achieved. The result shows that Al–ZnO (0.2 %) is more efficient than both 0.1 % and undoped 
ZnO crystals due to its smaller particle size. 

3.11. Effect of contact time on dye degradation efficiency 

With varying contact times (ranging from 1 to 9 min), Fig. 13 shows how well the adsorbent performs in relation to MG dye. The 
adsorption of dyes rapidly increased and then gradually decreased prior to achieving equilibrium. Maybe there are originally as many 
active sites as possible, and ultimately, they achieve saturation. That would explain this. Occupying the residual empty surface sites is 
challenging because to the repulsive force generated by the adsorbate (MG) on the solid surface of the adsorbent and the adsorbate 
(MG) in the bulk phase (solutions). This topic has been the subject of numerous literature reports [47–49]. MG required 4 min of 

Fig. 10. Effect of zeta potential on Malachite Green (MG) dye degradation. (For interpretation of the references to color in this figure legend, the 
reader is referred to the Web version of this article.) 

Fig. 11. Effect of adsorbent dosage on Malachite Green (MG) dye degradation. (For interpretation of the references to color in this figure legend, the 
reader is referred to the Web version of this article.) 
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Fig. 12. Effect of dye concentration on the surface of ZnO and Al–ZnO nanoparticles (0.1 and 0.2 %).  

Fig. 13. Effect of contact time on MG dye.  

Fig. 14. Experimental data analysis and adsorption equilibrium description showing (a) Langmuir isotherm and (b) Freundlich isotherm.  
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contact time to attain equilibrium with 95 % removal efficiency, as shown in Fig. 13. As demonstrated by the result, the material’s 
equilibrium time suggests that the adsorbent has an adequate number of active sites for a supplied concentration. From the perspective 
of the water treatment process, a shorter equilibrium period could be rather advantageous. The findings show that 0.2 % Al–ZnO is 
more efficient than 0.1 % Al-doped or undoped ZnO. Since 0.2 % Al–ZnO nanoparticles have a tiny particle size, maximum degradation 
was obtained with them. 

3.12. Adsorption isothermal studies 

In order to optimize adsorption systems, it is essential to understand the relationship between pollutants and adsorbent materials, 
which is defined by adsorption parameters and equilibrium data (sometimes referred to as adsorption isotherms). The equilibrium 
connection between sorbent and sorbate is explained by solubility isotherms, which are often defined as the ratio of the amount 
adsorbed to the amount left in solution at a fixed temperature [50]. Analysis of experimental data and description of adsorption 
equilibrium have led to the development of many isotherm models. The dye MG’s equilibrium isotherm for adsorption onto an 
adsorbent was discovered (Fig. 14a). Langmuir, Freundlich and Temkin models are midst explaining solid-liquid sorption systems. The 
adsorption capacity and dye concentration in the solution were calculated as per the literature. 

The Langmuir model adopts that the highest adsorption takes in the monolayer of dye primarily on the adsorbent surface and that 
all the sites have least interaction between adsorbed molecules and the nanomaterial with similar energy. The Freundlich adsorption 
isotherm is a practical model which can be used in heterogeneous surface system. Table 4 displays the correlation coefficient, or R2, 
values for MG adsorption data that are unmistakably fit by the Freundlich isotherm (Fig. 14b). According to this observation, 
multilayer adsorption occurs at the surface of the adsorbent’s homogeneous binding sites [51]. 

3.13. Kinetics study 

To determine which of the two well-known kinetic models better fits the gathered experimental data, an evaluation is conducted 
[52]. The following pseudo-first-order rate equation was applied for handling kinetic data.  

Log(qe-qt) = log qe-k1t/2.303                                                                                                                                                   (2) 

where qt and qe as the quantity adsorbed at time t and at the equilibrium time (mg/g), and the pseudo-first-order rate constant (k1) for 
the adsorption process (min− 1), respectively. Here is method to express the pseudo second-order model:  

t/qt = 1/k2q2 e +(1/qe)t                                                                                                                                                          (3) 

in which case k2 (g/mg min) is the pseudo second-order rate constant. From the graph, it can be clear seen that ln (qe-qt) against 
time, and t/qt against time, respectively. 

Fig. 15 depict the pseudo 1st and 2nd order of MG dye, respectively. Comparing pseudo-first order adsorption with second order 
adsorption yields R2 (Table 5). The results indicate that the process of adsorption is chemisorption. 

4. Conclusion 

To sum up, we have emphasized the applicability of the solution combustion method for the synthesis of undoped ZnO nano-
structures as well as those doped with Al at 0.1 % and 0.2 % concentrations. The investigation demonstrates the potential photo-
luminescence and optoelectronic properties of the Al–ZnO nanoparticles. The effectiveness of these nanoparticles in degrading organic 
pollutants, particularly MG dye adsorption, is another area of attention for the research. The 0.2 % Al–ZnO sample outperforms the 0.1 
% and undoped ZnO samples in terms of effectiveness due to its enhanced adsorption capacity and smaller particle size, as per the 
results. The study also clarifies the optical and structural properties of the nanoparticles, including their absorption spectra, band gap 
energy, and lattice defects. In conclusion, the finding highlights the versatility of Al–ZnO nanoparticles in both technological and 
environmental contexts, making them advantageous for the efficient breakdown of organic pollutants. 
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