
 

Open Peer Review

Discuss this article

 (0)Comments

RESEARCH ARTICLE

   Systematic assessment of multi-gene predictors of
pan-cancer cell line sensitivity to drugs exploiting gene

 expression data [version 2; referees: 2 approved]
Linh Nguyen ,   Cuong C Dang , Pedro J. Ballester 1-4

Cancer Research Center of Marseille, INSERM U1068, Marseille, France
Institut Paoli-Calmettes, Marseille, France
Aix-Marseille Université, Marseille, France
Cancer Research Center of Marseille UMR7258, Marseille, France

Abstract
Selected gene mutations are routinely used to guide the selectionBackground: 

of cancer drugs for a given patient tumour. Large pharmacogenomic data sets,
such as those by Genomics of Drug Sensitivity in Cancer (GDSC) consortium,
were introduced to discover more of these single-gene markers of drug
sensitivity. Very recently, machine learning regression has been used to
investigate how well cancer cell line sensitivity to drugs is predicted depending
on the type of molecular profile. The latter has revealed that gene expression
data is the most predictive profile in the pan-cancer setting. However, no study
to date has exploited GDSC data to systematically compare the performance of
machine learning models based on multi-gene expression data against that of
widely-used single-gene markers based on genomics data.  Here weMethods: 
present this systematic comparison using Random Forest (RF) classifiers
exploiting the expression levels of 13,321 genes and an average of 501 tested
cell lines per drug. To account for time-dependent batch effects in IC
measurements, we employ independent test sets generated with more recent
GDSC data than that used to train the predictors and show that this is a more
realistic validation than standard k-fold cross-validation. Results and

Across 127 GDSC drugs, our results show that the single-geneDiscussion: 
markers unveiled by the MANOVA analysis tend to achieve higher precision
than these RF-based multi-gene models, at the cost of generally having a poor
recall (i.e. correctly detecting only a small part of the cell lines sensitive to the
drug). Regarding overall classification performance, about two thirds of the
drugs are better predicted by the multi-gene RF classifiers. Among the drugs
with the most predictive of these models, we found pyrimethamine, sunitinib
and 17-AAG.  Thanks to this unbiased validation, we now knowConclusions: 
that this type of models can predict   tumour response to some of thesein vitro
drugs. These models can thus be further investigated on   tumour models.in vivo
R code to facilitate the construction of alternative machine learning models and
their validation in the presented benchmark is available at 

.http://ballester.marseille.inserm.fr/gdsc.transcriptomicDatav2.tar.gz
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Introduction
Personalised approaches to the diagnosis and treatment of cancer is 
a strong current trend, often based on the analysis of tumour DNA1. 
Somatic DNA mutations can affect the abundance and function of 
a range of gene products, including those involved in the response 
of the tumour to anticancer therapy2. Therefore, the genomic pro-
file of a tumour is usually valuable for predicting its sensitivity to 
a certain drug3,4. Thus, a number of studies have profiled tumours 
using single-nucleotide variants or copy-number alterations to use 
them as input features to predict which tumours will be sensitive to 
a given drug. In addition, transcriptomic data has also been proven 
to be an informative molecular profile5, as the expression levels of 
genes have led to the identification of cancer subtypes, prognosis 
prediction and drug sensitivity prediction6.

Human-derived cancer cell lines, especially immortalised cancer 
cell lines, play an important role in preclinical research for the 
discovery of genomic markers of drug sensitivity5,7–9. This type of 
tumour model permits experiments to be implemented quickly and 
with a relatively low cost10,11, unlike more patient-relevant models, 
such as ex vivo tumour cultures12,13 or patient-derived xenografts14,15 
(in contrast to these advantages, cell lines have also well-known 
limitations that have to be kept in mind10). The molecular pro-
files of such cell lines are often used as input features for drug  
sensitivity prediction5,8 via the development of both single-gene 
markers and other models, like pharmacogenomics16–18, pharma-
cotranscriptomics19–21, multi-task learning16,17,22–25 and quantitative 
structure-activity relationship (QSAR) models26,27. Recently, several 
consortia have generated large pharmacogenomic data sets, which 
consist of both molecular and drug sensitivity profiles of several 
hundreds of cancer cell lines, e.g. Genomics of Drug Sensitivity 
in Cancer (GDSC)8, Cancer Cell Line Encyclopedia (CCLE)9, and 
profiling a panel of 60 cancer cell lines from the National Cancer 
Institute (NCI-60)7. Among them, GDSC data is currently offering 
the highest number of cell lines tested per drug8.

To date, predictive models based on GDSC data have been mostly 
restricted to single-gene markers of drug sensitivity8 (i.e. statisti-
cally significant drug-gene associations). However, multi-gene 
elastic net models have also been used for a related purpose, namely 
estimating the importance of somatic mutations in drug sensitivity 
prediction8. Some researchers have also investigated the perform-
ance of multi-gene machine learning models exploiting GDSC 
data16. Nevertheless, we and others9,17,18 have not studied how well 

multi-gene markers compare to single-gene markers. Such analysis 
is essential to understand the benefits of modelling multiple gene 
alterations. Very recently, machine learning models have been used 
to compare the predictive value of various molecular profiles in 
drug sensitivity modelling5, but without comparing such models to 
single-gene markers. An important outcome of that study revealed 
that gene expression data was the most predictive molecular pro-
file in the pan-cancer setting. Beyond this research area, multi- 
variate machine learning models are also starting to be advocated 
for genomic-based prediction of other complex phenotypic traits28.

In practice, it is entirely possible that models based on one feature 
(single-gene markers) are more predictive than those based on 
more than one feature (multi-variate classifiers). In part, this is 
due to the high-dimensionality of training data (in the present 
study, the number of gene expression values is much higher than 
that of cell lines treated with the considered drug), which poses a 
challenge to classifiers. In addition, while both models look at the 
same drug sensitivity data, each model employs a different set of 
features (genomic vs transcriptomic). Therefore, a single gene 
mutation might sometimes be more predictive of drug sensitivity 
than a model based on gene expression values. Furthermore, only 
a very small subset of features might be predictive of cell line 
sensitivity to a given drug, a case that could be challenging for a 
model using all the transcriptomic features. Moreover, the size of 
training and test sets varies because each drug was tested with a 
different number of cell lines (thus, class imbalances in training 
set and test set are also different depending on the drug). Taking all 
these convoluted factors into account, the relative performance of 
these models should be drug-dependent and hard to anticipate prior 
to the corresponding numerical experiments.

This leads to a key question: for which drugs are multi-variate 
markers more predictive of cell line sensitivity than univariate 
markers. Very recently, this question has been finally investigated 
using large-scale GDSC data5, although there are several limitations 
in this analysis. First, this study considered LOBICO logic mod-
els with up to four features because searching for more complex 
models was not feasible with the underlying integer linear pro-
gramming solver5; however, a drug can have many more than four 
informative gene alterations. Second, machine learning models 
were only used to establish which molecular profiles were more 
informative on average across all drugs. Hence, the performances 
of these models were not compared against those of single-gene 
markers (this was only done with logic models). Third, both logic 
model selection and its classification performance assessment 
were performed using the same data folds in the adopted cross- 
validation procedure. Therefore, these cross-validated results 
represent an overoptimistic performance assessment of LOBICO 
models and hence it is not clear how predictive the resulting 
markers really are.

Here we study the performance of machine learning exploiting 
gene expression profiles. In addition, we compare the performance 
of these multi-gene machine learning models to that of single-gene 
markers. For each drug, this analysis is conducted by selecting its 
best single-gene marker and its multi-gene model on a training set 
representing the data available at model selection time. Thereafter, 
we test both models in an unbiased manner using a time-stamped 

            Amendments from Version 1

In response to the feedback of the reviewers (see our responses 
online), the following changes have been made: • We have now 
defined the abbreviation “GDSC” in the abstract too. • Figure 3’s 
caption has been clarified. • What constitutes an acceptable 
performance prediction has been clarified in page 8. • In page 6, 
we now state that RF is also robust to overfitting, as evidenced 
in Figure 1. • In page 3, reasons for differences in predictive 
performance of single-gene vs multi-gene markers across drugs 
are clarified. • The abstract is also modified to indicate how to get 
the R code, which was requested by one of the reviewers. 
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independent test set, i.e. data that was generated after the training 
data and not used for model building or selection. The advantages 
of using a time-stamped data partition instead of K-fold cross- 
validation are that this mimics a blind test, the same data is not  
used for both model selection and performance assessment (thus 
avoiding performance overestimation) and real-world issues like 
time-dependent batch effects29 are taken into account. On the  
other hand, since transcriptomic data has been found to be the 
most predictive in the pan-cancer setting5, our study focuses on 
the exploitation of transcriptomic data. In particular, the predic-
tive performance of pan-cancer markers of drug sensitivity on an 
independent test set is most relevant to help stratify patients for 
basket trials30, where patients with any type of cancer are included 
if their tumours are predicted to be sensitive to the investigated 
treatment. Another reason to limiting the scope to transcriptomic-
based machine learning models is that models integrating data from 
multiple molecular profiling technologies would be less amenable 
for clinical implementation, due to much higher requirements in 
cost, time and resources per patient. Therefore, there is a need to 
understand for which drugs models combining gene expression 
values provide better cell line sensitivity prediction than standard 
single-gene markers.

Methods
GDSC pharmacogenomic data
From the Genomics of Drug Sensitivity in Cancer (GDSC) ftp  
server (ftp://ftp.sanger.ac.uk/pub4/cancerrxgene/releases/), the 
following files from the first data release (release 1.0) were down-
loaded:gdsc_manova_input_w1.csv and gdsc_manova_output_
w1.csv. There are 130 unique drugs in gdsc_manova_input_w1.csv, 
as camptothecin was tested twice (drug IDs 195 and 1003), and 
thus we only kept the instance that was more widely tested (i.e. 
drug ID 1003 on 430 cell lines). Hence, the data represent a panel 
of 130 drugs tested against 638 cancer cell lines resulting in a 
total of 47748 IC

50
 values (57.6% of all possible drug-cell pairs). 

In addition, we downloaded new data from release 5.0 (gdsc_
manova_input_w5.csv), which is the latest release using the same 
experimental techniques to generate pharmacogenomic data, and 
considering the same genes as in the first release. Release 5.0 con-
tains 139 drugs tested on 708 cell lines comprising 79,401 IC

50
 val-

ues (80.7% of all possible drug-cell pairs). Hence, the majority of 
the new IC

50
 values came from previously untested drug-cell pairs 

formed by drugs and cell lines in common between both releases. 
The downloaded IC

50
 values are actually the natural logarithm of 

IC
50

 in µM units, so negative values came from drug responses more 
potent than 1µM. Each of these values were converted into their 
logarithm base 10 in µM units, denoted as logIC

50
 (e.g. logIC

50
=1 

corresponds to IC
50

=10µM). In this way, differences between the 
two drug response values are expressed as orders of magnitude in 
the molar scale.

gdsc_manova_input_w1.csv also contains genetic mutation data for 
68 cancer genes (these were selected as the most frequently mutated 
cancer genes8 and their mutational statuses characterise each of 
the 638 cell lines). For each gene-cell pair, a ‘x::y’ description is 
provided, where ‘x’ specifies a coding variant and ‘y’ states copy 
number information from SNP6.0 data. As usual8, a gene for which 
a mutation is not detected in a given cell line is annotated as wild-
type (wt). A gene mutation is annotated if a) a protein sequence 

variant is detected (x ≠{wt,na}) or b) a gene deletion/amplifica-
tion is detected. The latter corresponds to a copy number (cn) range 
that is different from the wt value of y=0<cn<8. Furthermore, three 
genomic translocations were considered (BCR_ABL, MLL_AFF1 
and EWS_FLI1) by the GDSC. For each of these gene fusions, cell 
lines are either identified as a not-detected fusion or the identified 
fusion is stated (i.e. wt or mutated with respect to the gene fusion, 
respectively). The microsatellite instability (msi) status of each cell 
line is also determined and provided. Further details can be found 
in the original publication by Garnett et al.8.

GDSC pharmacotranscriptomic data
Gene expression data was generated using Affymetrix Human 
Genome U219 Array Chip and was normalized with the Robust 
Multi-Array Average method. The number of cell lines with gene 
expression data in releases 1.0 and 5.0 of the GDSC are 571 and 
624, respectively. In terms of data in common, both releases contain 
the expression level of 13,321 genes across 624 cancer cell lines. 
These genes consist of 12,644 protein coding genes, 47 pseudo-
genes, 29 non-coding RNA genes and 601 uncharacterized genes 
according to the HUGO Gene Nomenclature Committee (HGNC).

Non-overlapping training and test sets by partitioning data 
in chronological order
There are 127 drugs in common between both releases. Three drugs 
are exclusively included in the first release (A-769662, Metformin 
and BI-D1870), whereas release 5.0 contains 12 additional drugs 
(TGX221, OSU-03012, LAQ824, GSK-1904529A, CCT007093, 
EHT 1864, BMS-708163, PF-4708671, JNJ-26854165, TW 37, 
CCT018159 and AG-014699).

Regarding genomic features, cell lines from both releases have been 
profiled for 71 common gene alterations in cancer. In addition to 
the three translocations and msi status, the mutational statuses of 67 
genes could be considered (i.e. those for the 68 selected genes in the 
first release except for the mutational status of the WT1 gene, which 
was not included in the subsequent 5.0 release). To ensure that we 
are using exactly the same drug-gene associations as in the GDSC 
study, we directly employed the associations and their p-values as 
downloaded from release 1.0.

There are two non-overlapping data sets per drug. The training set 
contains the cell lines tested with the drug and gene expression data 
in release 1.0 (the minimum, average and maximum numbers of cell 
lines across training data sets are 237, 330 and 467, respectively), 
along with their IC

50
s for the considered drug. The test set contains 

the new cell lines tested with the drug and with gene expression 
data in release 5.0 (the minimum, average and maximum numbers 
of cell lines in the test data sets are 42, 171 and 306, respectively). 
Thus, a total of 254 pharmacotranscriptomic data sets were assem-
bled and analysed for this study.

Measuring predictive performance of a classifier on a given 
data set
The pharmacotranscriptomic data for the ith drug (D

i
) can be repre-

sented as follows:

( ){ }( )( )
50, 1

,
ik nk

i i k
D IC

=

=
= x klog
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in which, the sensitivity of cancer cell lines against the ith drug 
has been tested on n

i
 cell lines. x is the vector with 13,321 gene 

expression values. The data can act as a training set, cross- 
validation fold or test set of any of the tested drugs.

First, a cell line sensitivity threshold is defined to distinguish 
between those resistant or sensitive to a given drug. For each drug, 
we calculated the median of all the logIC

50
 values from training set 

cell lines and fix it as the threshold. Cell lines with logIC
50

 below 
the threshold are therefore sensitive, while those with logIC

50
 above 

the threshold are resistant to the drug of interest.

Upon using the model to make predictions in a given data set, two 
different sets of cell lines will be obtained for each drug: those 
predicted to be sensitive and those predicted to be resistant. Then, 
using the threshold for the drug, we can assess classification per-
formance by calculating the number of cell lines in each of these 
four categories: true positive (TP), true negative (TN), false posi-
tive (FP) and false negative (FN). These can be summarised by the  
Matthews Correlation Coefficient (MCC):

. .

. . .( ) ( ) ( ) ( )

TP TN FP FN
MCC

TP FN FN TN TN FP FP TP
−

=
+ + + +

MCC takes values from -1 to 1. A MCC value of 0 means that  
the tested model has no predictive value, MCC lower than 0 means 
that the tested model predicts drug sensitivity worse than ran-
dom and an MCC value equal to 1 indicates that the tested model  
perfectly predicts the sensitivity of the cell lines against the drug 
of interest.

In addition to MCC, we also investigated precision (PR), recall 
(RC) and F1-scores (F1) of the model for each drug to provide a 
more comprehensive comparison of multi-gene models to single-
gene markers. Precision and recall are the two measures of per-
formance for binary classifier, which can be calculated as follows:

TP TP
PR RC

TP FP TP FN
= =

+ +

Both metrics can take values from 0 to 1. Precision and recall equal 
to 0 means that TP = 0, the model fails to identify any cell line 
sensitive to the drug. By contrast, PR and RC equal to 1 means that 
FP and FN are equal to 0, respectively. In these cases, either the 
model does not predict any resistant cell line as sensitive (FP = 0) 
or it does not misclassify sensitive cell lines as resistant (FN = 0), 
respectively.

The F1-score is another measure combining PR and RC. F1-score 
can be computed as:

.
1 2

PR RC
F

PR RC
=

+

The F1-score is at most 1 (when both PR and RC = 1) and minimum 
value equal to 0 (RC =0 regardless of the PR value or vice versa). 
High F1 scores mean that both precision and recall are high for the 
classifier.

Single-gene markers built from the training dataset
We downloaded gdsc_manova_output_w1.csv containing 8701 
drug-gene associations with their corresponding p-values computed 
by MANOVA test. Then, we kept those associations involving the 
127 common drugs leading to a set of 8330 drug-gene associations, 
of which 386 were significant (i.e. p-value smaller than a FDR 20% 
Benjamini-Hochberg adjusted threshold of 0.00840749). As in pre-
vious studies5,8, each statistically significant drug-gene association 
is regarded as a single-gene marker of in vitro drug response.

The best single-gene marker for a drug was identified as its 
drug-gene association with the lowest p-value. This constitutes 
a binary classifier with a single independent variable, built using 
training data alone and fixed at this model selection stage. These  
drug-lowest p-values were not statistically significant in 15 of the 
127 drugs, with the highest of these being P = 0.0354067. In these 
cases, we still selected them as the best available for these single-
gene classifiers. Otherwise, multi-gene markers would be directly 
better than the single-gene approach for these drugs.

After the model selection step, the single-gene marker for each 
drug is assessed on the corresponding independent test set. This 
form of external validation is particularly demanding since the test 
data is completely separate from training data and constitutes future 
data from the model training perspective. In 27 drugs, none of the 
cell lines in the test set harbour the marker mutation and hence 
TP=FP=0. Therefore, no prediction is provided by these markers 
and thus MCC and PR are assigned a zero value.

Multi-gene transcriptomic markers built from the training 
data set
For each of the 127 drugs, we built a Random Forest (RF) clas-
sification model31 using exactly the same pharmacological data 
for training as the corresponding single-gene marker. However, 
while single-gene markers leverage genomic data, these RF mod-
els exploit transcriptomic data instead. All the 13321 gene expres-
sion values are used as features (RF_all). Each RF model was 
built using 1000 trees and the recommended value of its control  
parameter m

try
 (the square root of the number of considered  

features, thus m
try

=115 here). All the described modelling was 
implemented in R language, using Microsoft R Open (MRO)  
version 3.2.5.

Results and discussion
Comparing single-gene markers and transcriptomic-based 
models on the same test sets
A single-gene marker is a classifier considering the mutational  
status of a given gene as its only independent variable (i.e. whether 
the gene is wild-type or mutated). As the gene used as a marker 
arises from the analysis of which drug-gene associations are  
statistically significant based on the training data, external vali-
dation of such markers is not carried out. In this sense, machine 
learning represents a different culture32, where the validity of the  
predictor is only demonstrated if its prediction is better than  
random on a test set independent of the employed training set. In 
this study, we use the same test set to compare the performance of 
both single-gene markers and multi-gene transcriptomic-based RF 
models.

Page 5 of 16

F1000Research 2017, 5(ISCB Comm J):2927 Last updated: 14 MAR 2017



For each drug, there were two data sets generated with non- 
overlapping sets of cancer cell lines. The first data set was the  
training set, which contains cell lines that were tested prior to the 
release of release 1.0 of the GDSC data, each with its IC

50
 val-

ues for the drug and its gene expression profile. The second data 
set was the test set, including the new cell lines from release 5.0  
(i.e. new data not included in the first release). The median  
logIC

50
 in µM units of all cell lines in the training set defines the  

sensitivity threshold for both the training set and the test set. The 
next step was evaluating the performance of both methods in both 
data sets by calculating the Matthews Correlation Coefficient 
(MCC), Precision (PR), Recall (RC) and F1-score (F1). The Meth-
ods section provides further details on performance evaluation.

Random Forest (RF)31 is a machine learning technique that is robust 
to overfitting and works well on high-dimensional data33, includ-
ing GDSC data16. Therefore, without making any claim about its 
optimality for this class of problems, we constructed a RF clas-
sification model on the same training data set as the single-gene 
marker. This permits a direct comparison of the two models. Each 
RF model was built using 1000 trees, with the default value of the 
control parameters m

try
 (the square root of the number of considered 

features to split a tree node). The built RF model was subsequently 
tested on the corresponding test set. Figure 1 displays the results 
for the drug pyrimethamine as an example. Pyrimethamine targets 
dihydrofolate reductase in the DNA replication pathway34 and its 
strongest association is to the BRAF gene (P=0.002) leading to a 

moderate level of prediction in this training set (Figure 1A). The 
prediction of this single-gene marker on the test set (Figure 1B) 
is worse than random (MCC=-0.03), with its recall being partic-
ularly poor (RC=0.03) and average precision at 0.50. Unsurpris-
ingly, RF prediction on the training set is perfect due to intense 
overfitting35 arising from the high dimensionality of the problem 
(Figure 1C). Nevertheless, it is important to note that this overfit-
ted model achieves a substantially better test set performance than 
that of the best single-gene marker (compare Figures 1D and 1B, 
respectively).

Large inter-drug variability in the response rate of cell lines 
predicted to be sensitive
To assess the proportion of cell lines predicted to be sensitive that 
are actually sensitive to a drug by each model, we calculated their 
precision (PR) on the test set. Figure 2 shows the comparison 
between test set precision of single-gene markers and that of multi-
gene models across 127 drugs. The precision of each method is 
highly drug-dependent and 61 drugs had their best single-gene 
marker leading to higher precision than the corresponding multi-
gene model, whereas the other 66 drugs had the multi-gene model 
with better precision (see Supplementary File 2). In other words, 
the sensitivity of cancer cell lines against 66 drugs can be predicted 
with higher precision when exploiting multi-variate gene expression 
data rather than a single gene mutation. In particular, the multi-gene 
model provides better precision for all the drugs for which the best 
single-gene marker involves a relatively rare mutation (i.e. those for 

Figure 1. Predictive performance of markers of cell sensitivity to the approved drug pyrimethamine. (A) The single-gene marker with 
the lowest p-value on the training set was the pyrimethamine-BRAF sensitising association (P=0.002)8. (B) The boxplots show the sensitivity of 
cell lines on the independent test set for pyrimethamine depending on whether these harbour mutations in the BRAF gene or not (WT). Using 
this marker, BRAF-mutant cell lines are predicted to be sensitive to this drug (i.e. below the threshold in red established with training data), 
but the prediction is worse than random (Matthews Correlation Coefficient (MCC)=-0.03) with its recall being particularly poor (RC=0.03) and 
average precision (PR)=0.50. (C) The multi-gene marker RF_all was built using Random Forests (RF) and all the gene expression values on 
exactly the same drug-cell pairs as the single-gene markers. (D) On the test set, the RF classifier achieves a substantially better performance 
than single-gene markers (MCC=0.36 vs -0.03) with PR=0.76 and RC=0.66.
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Figure 3. Examples of drugs for which transcriptomic markers predict  their cell  line sensitivity with better precision than that of 
single-gene markers on the test set. (A) Test set precision obtained by the AZD628-BRAF marker is moderate (PR=0.50) despite being a 
strong drug-gene association (P=3∙10-15). By contrast, the multi-gene marker for AZD628 achieves a substantially higher precision (PR=0.88). 
(B) The sunitinib-Kinase Insert Domain Receptor (KDR) association (P=0.0002) offers no precision in the test set, since none of the test cell 
lines harbour mutations in the KDR gene. By contrast, the transcriptomic marker achieves a much higher precision (PR=0.75). Interestingly, 
both multi-gene markers achieve much better recall (RC=0.37 for AZD628 and RC=0.75 for sunitinib) than their corresponding single-
gene markers (RC=0.05 and RC=0.00), which means that a substantially higher proportion of sensitive cell lines are correctly predicted as 
sensitive.

Figure 2. Test set precision of MANOVA single-gene markers versus RF transcriptomic models across the 127 drugs. A large variability 
is observed, with 66 drugs obtaining better precision with Random Forest (RF) classifiers using all transcriptomic features. Cytotoxic drugs 
are in red and targeted drugs are in blue.
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which no test set cell line is mutated with respect to the marker gene 
and thus are unable to provide any level of precision).

Next, we present two examples of drugs for which the test set  
precision generated by the multi-gene model is higher than that 
of the single-gene model (Figure 3). AZD628 is a b-raf inhibi-
tor, which plays a regulatory role in the MAPK/ERK pathway36. 
This drug is associated with the mutations in the BRAF gene  
(P=3∙10-15), which codes for the b-raf kinase. In total, 50% of  
BRAF-mutant cell lines are sensitive to this drug, while using the 
RF model combining all 13,321 transcriptomic features results in 
88% of cell lines predicted to be sensitive being actually sensi-
tive to this drug. The second example is the prediction of sensi-
tivity to sunitinib, which targets multiple receptor tyrosine kinases  
regulating different aspects of cell signaling37. The most strongly 
associated gene to sunitinib is Kinase Insert Domain Receptor 
(KDR) (P=0.0002). As no KDR mutation was found in any test 
cell lines, the single-gene marker could not predict the sensitiv-
ity of any cell line to sunitinib (PR=0). In contrast, the multi-gene 
model provides a much better precision for this drug (PR=0.66). 
The multi-gene models of both drugs generate a higher recall than 
their corresponding single-gene model, which is investigated in the 
following section.

Multi-gene markers generally achieve much higher recall 
than single-gene markers
Figure 3 shows that the test set recall is much higher for multi- 
gene markers than for single-gene markers of AZD628 and  
sunitinib. To examine whether this is a general trend, Figure 4A 
plots test set recall across all the drugs. There is indeed a clear 

trend: 119 out of 127 drugs obtain a higher proportion of correctly 
predicted sensitive cell lines with the multi-gene markers.

Figure 4B shows the test set F-score (F1) for the same drugs. High 
F1 values highlight markers achieving both high precision and  
high recall in the test set. Notably, the multi-gene classifiers lead 
to better recall and F1-scores in all the cytotoxic drugs. We have 
selected two drugs with high F1 values by the multi-gene marker, 
BAY-61-3606 and 17-AAG, in order to analyse them further  
(Figure 5).

Figure 5A compares the test set performance between single- 
gene and multi-gene models for the drugs BAY-61-3606 and  
17-AAG, respectively. BAY-61-3606 is an inhibitor for the spleen 
tyrosine kinase, with key roles in adaptive immune receptor  
signalling, as well as regulation of cellular adhesion and vascular 
development38. The single-gene model generates poor precision  
and recall for this drug (PR = RC = 0), as the only cell line that 
harbours the actionable mutation was incorrectly predicted as 
resistant (TP = 0). By contrast, the multi-gene model achieves high 
performance in terms of both precision and recall (PR = 0.68 and 
RC = 0.83). On the other hand (Figure 5B), 17-AAG specifically 
inhibits HSP90, a protein that chaperones the folding of proteins 
required for tumour growth39. The multiple-gene model provides 
much higher PR (PR = 0.61) and RC (RC = 0.75) compared with 
its best single-gene marker (PR = 0.50 and RC = 0.03). This 
case exemplifies a common problem with single-gene markers: 
often only a small proportion of tumours harbour the actionable  
mutation40. This translates to very low recall, which in a clinical  
setting would mean that only a small proportion of patients  

Figure 4. Test set recall and F-scores of single-gene and transcriptomic models across the 127 drugs.  (A) Transcriptomic markers 
achieve much higher recall than single-gene markers in 117 of the 127 drugs. (B) Similarly, multi-gene markers achieve higher F-scores 
in 117 of the 127 drugs. In each plot, cytotoxic drugs are in red and targeted drugs are in blue. All cytotoxic drugs have better recall and  
F-scores by the Random Forest (RF) transcriptomic models.
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Figure 5. Examples of drugs that have high recall and F-scores. (A) Mutated Smoothened, Frizzled Class Receptor (SMO) was the most 
significant single-gene marker for BAY-61-3606 resistance (P=0.03) using training data. On the test set, this marker obtained no precision 
and no recall because the only SMO-mutant test set cell line was misclassified. By contrast, the corresponding multi-gene marker, built 
with the same training data, obtained a high precision (PR=0.68) and better recall (RC=0.83) on the same test data. (B) Mutated receptor 
tyrosine-protein kinase erbB-2 (ERBB2) is the most significant single-gene marker of 17-AAG sensitivity (P=0.008), but its test set recall is 
poor (RC=0.03). By contrast, the multi-gene marker achieves a much higher precision (PR=0.61) and recall (RC=0.75).

responsive to the drug would be treated with it because of it being 
missed by its marker.

The importance of using independent test sets to 
benchmark markers of drug sensitivity
After separately analysing the two sources of classification error 
via precision and recall, we analysed both types of error together 
in order to assess which predictors are better than random 
classification (i.e. MCC = 0)41. In the context of this study, we are 
interested in those RF models offering a MCC value on the test 
set higher than that provided by the best single-gene marker of the 
same drug. Note that the higher the test set MCC of the model, the 
better its ability to discriminate between unseen cell lines.

The classification of both models can in principle be assessed 
in three ways across the considered drugs (Figure 6). Figure 6A 
evaluates the MCC of both predictors on the training data, which 
is common practice with single-gene markers. Figure 6C presents 
the evaluation of MCC on the non-overlapping test sets. Single-
gene markers perform better on the training set than on the test 
set (on average, MCC

training
=0.11 vs MCC

test
=0.05; Figures 6A  

and C), which is due at least in part to the identification of  
chance correlations in the training set. Unsurprisingly, multi-gene 
models perform much better on the training set due to intense over-
fitting (on average across drugs, MCC

training
=1 vs MCC

test
=0.12). 

However, despite overfitting, it is important to note that these  

models provide on average better test set performance than  
single-gene markers (MCC

test
=0.12 vs MCC

test
=0.05). This is a 

well-known characteristic of the RF technique, which is robust to 
overfitting, in that it is able to provide competitive generalisation 
to other data sets despite overfitting (this behaviour has also been 
observed in analogous applications of RF43).

Figure 6B shows the comparison between performance of the  
single-gene markers on the test set and the 10-fold cross- 
validated performance of the multi-gene markers on the training 
set. The latter provides a more optimistic performance assess-
ment (average MCC=0.18 and 84.2% of drugs better predicted 
by the multi-gene models). This is likely due to effects between  
different batches of culture medium that are known to affect drug 
sensitivity measurements10,42. As expected, testing the models on 
the independent test sets generates worse results than on the train-
ing test or the cross-validation set.

Conclusions
To the best of our knowledge, this is the first systematic  
comparison of single-gene markers versus transcriptomic-based 
machine learning models of cell line sensitivity to drugs. This is 
important as transcriptomic data has been shown to be the most 
predictive data type in the pan-cancer setting5. A closely related 
analysis was included in a very recent study5. However, this anal-
ysis is based on logic classifiers that can only exploit up to four 
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features instead of fully-featured machine learning classifiers.  
Furthermore, the performance results in that study are based on 
cross-validations, thus leading to overoptimistic performance, due 
to batch effects as we have seen here. The latter would be exacer-
bated if the same cross-validation is also used for model selection, 
as it was the case in the previous study5. Despite these limitations, 
these new logic classifiers are very valuable as they can potentially 
explain why a particular cell line is sensitive to the drug, something 
that machine learning classifiers are not suitable for.

Although single-gene markers were able to predict the sensitiv-
ity of cancer cell lines to anti-cancer drugs with generally high 
test set precision (Figure 2), very poor precision and a very low 
recall was provided for other drugs, especially those that are best 
associated with relatively rare actionable mutation. On the other 
hand, multi-gene classifiers obtained a much better recall, also 
known as sensitivity, for most of the drugs (Figure 4). This result 
is in line with criticism of single-gene markers, which lead to an 
extremely small proportion of patients that can benefit40. In this 
sense, one could argue that there is a need for not only precision 
oncology, but for precision and recall oncology, and that multi-
variate classifiers have the potential to identify all the responsive 
patients, not only a subset of those with an actionable mutation.

While no strong single-gene markers of sensitivity were found 
for cytotoxic drugs8, the multi-gene machine learning models  
perform better than the single-gene markers in 12 of the 14 cyto-
toxic drugs (Figure 6C), with all cytotoxic drugs having better 
recall (Figure 4A). This suggests that the sensitivity to cytotoxic 
drugs has a stronger multi-factorial nature, which is thus better 
captured by multi-gene models. Although much less developed to  
date, personalised oncology approaches have already been  
suggested for cytotoxic drugs44,45.

The study of molecular markers for drug sensitivity is currently  
of great interest. This endeavour is not limited to improve  
personalised oncology, it is also important for drug develop-
ment and clinical research46,47. As a part of cancer diagnosis and  
treatment research, a vast amount of tumour molecular profiling 
data is typically generated48 and thus there is an urgent need for 
their optimal exploitation49. Here we propose a method to exploit 
transcriptomic data of cancer cell lines to classify them into  
sensitive and resistant groups. Our study has found that cancer  
cell sensitivity to two thirds of the studied drugs, including 12  
of the 14 cytotoxic drugs, are better predicted with multi-variate 
transcriptomic-based RF classifiers. These models are particu-
larly useful in those drugs where their best genomic markers 

Figure  6.  Global  performance  assessment  of  single-gene  markers  versus  transcriptomic  markers  across  all  127  drugs.  
(A) Performance assessment on the training data would be strongly biased towards multi-gene markers due to intense overfitting (given 
the high dimensionality of training data, multi-gene markers obtain maximum (Matthews Correlation Coefficient) MCC for all drugs). (B) The 
performance of single-gene markers on the test set is compared to the 10-fold cross-validated performance of multi-gene markers using 
training data. The cross-validation is not used for model selection as there is only one Random Forest (RF) model per drug (i.e. no RF control 
parameter is tuned because the recommended mtry is used, due to the high dimensionality of each of the 127 classification problems). 
However, cross-validation results are substantially better than those from the test set with more recent GDSC data (MCC of 0.18 averaged 
over the drugs), which suggests time-dependent batch effects10,42. (C) Using all the comparable data released after the initial GDSC release 
as a time-stamped test set, 66.1% of drugs are better predicted by the transcriptomic features (this figure is 84.2% using cross-validation). 
This is the most realistic form of retrospective performance assessment, which leads to the worse results on this challenging problem (MCC 
of 0.12 averaged over the drugs).
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Supplementary material

Supplementary File 1: For each analysed drug, the performances of the best MANOVA-based single-gene marker and Random Forest 
(RF)-based multi-gene marker on the same test set (both methods were in addition trained on the same data set) are provided. Furthermore, 
the 10-fold cross-validated performance of the RF-based multi-gene marker is included.

Click here to access the data.

are based on rare mutations. Another contribution of this study 
is in the proposal of a more realistic performance assessment of 
markers, which leads to less spectacular, but more robust results. 
Beyond this proof-of-concept study across 127 drugs, there are 
several important avenues for future work, which are far too 
extensive to be incorporated here. For instance, there is a pleth-
ora of feature selection techniques that can be applied to reduce 
the dimensionality of the problem prior to training the classi-
fier for a given drug. Furthermore, the predictive performance of 
these models can be evaluated on more data or integrated with 
other molecular profiles. Lastly, we have used a robust classifier 
technique, RF, but there are many others available and some of 
these may be more appropriate depending on the analysed drug.

Data availability
The Genomics of Drug Sensitivity in Cancer data sets used in the 
present study can be found at: ftp://ftp.sanger.ac.uk/pub4/cancer-
rxgene/releases/release-1.0/ 

ftp://ftp.sanger.ac.uk/pub4/cancerrxgene/releases/release-5.0/ 

Author contributions
P.J.B. conceived the study, designed its implementation and wrote 
the manuscript with the help of L.N. L.N. and C.C.D. implemented 
the software and carried out the numerical experiments. All authors 
discussed results and commented on the manuscript.

Competing interests
No competing interests were disclosed.

Grant information
This work has been carried out thanks to the support of a 
A*MIDEX grant (#ANR-11-IDEX-0001-02) funded by the French  
Government ‘Investissements d’Avenir’ programme, and the 911 
Programme PhD scholarship from Vietnam National International 
Development.  

The funders had no role in study design, data collection and analysis, 
decision to publish, or preparation of the manuscript.

References

1. Wheeler HE, Maitland ML, Dolan ME, et al.: Cancer pharmacogenomics: 
strategies and challenges. Nat Rev Genet. 2013; 14(1): 23–34.  
PubMed Abstract | Publisher Full Text | Free Full Text 

2. McLeod HL: Cancer pharmacogenomics: early promise, but concerted effort 
needed. Science. 2013; 339(6127): 1563–1566.  
PubMed Abstract | Publisher Full Text | Free Full Text 

3. Azuaje F: Computational models for predicting drug responses in cancer 
research. Brief Bioinform. 2016; bbw065.  
PubMed Abstract | Publisher Full Text 

4. Covell DG: Data Mining Approaches for Genomic Biomarker Development: 
Applications Using Drug Screening Data from the Cancer Genome Project and 
the Cancer Cell Line Encyclopedia. PLoS One. 2015; 10(7): e0127433.  
PubMed Abstract | Publisher Full Text | Free Full Text 

5. Iorio F, Knijnenburg TA, Vis DJ, et al.: A Landscape of Pharmacogenomic 
Interactions in Cancer. Cell. 2016; 166(3): 740–754.  
PubMed Abstract | Publisher Full Text | Free Full Text 

6. Rapin N, Bagger FO, Jendholm J, et al.: Comparing cancer vs normal 
gene expression profiles identifies new disease entities and common 
transcriptional programs in AML patients. Blood. 2014; 123(6): 894–904. 
PubMed Abstract | Publisher Full Text 

7. Abaan OD, Polley EC, Davis SR, et al.: The exomes of the NCI-60 panel: a 
genomic resource for cancer biology and systems pharmacology. Cancer Res. 
2013; 73(14): 4372–82.  
PubMed Abstract | Publisher Full Text | Free Full Text 

8. Garnett MJ, Edelman EJ, Heidorn SJ, et al.: Systematic identification of genomic 

markers of drug sensitivity in cancer cells. Nature. 2012; 483(7391): 570–575. 
PubMed Abstract | Publisher Full Text | Free Full Text 

9. Barretina J, Caponigro G, Stransky N, et al.: The Cancer Cell Line Encyclopedia 
enables predictive modelling of anticancer drug sensitivity. Nature. 2012; 
483(7391): 603–307.  
PubMed Abstract | Publisher Full Text | Free Full Text 

10. Weinstein JN: Drug discovery: Cell lines battle cancer. Nature. 2012; 483(7391): 
544–5.  
PubMed Abstract | Publisher Full Text 

11. Majumder B, Baraneedharan U, Thiyagarajan S, et al.: Predicting clinical 
response to anticancer drugs using an ex vivo platform that captures tumour 
heterogeneity. Nat Commun. 2015; 6: 6169.  
PubMed Abstract | Publisher Full Text | Free Full Text 

12. Pemovska T, Kontro M, Yadav B, et al.: Individualized Systems Medicine 
Strategy to Tailor Treatments for Patients with Chemorefractory Acute Myeloid 
Leukemia. Cancer Discov. 2013; 3(12): 1416–29.  
PubMed Abstract | Publisher Full Text 

13. Azzam D, Volmar CH, Hassan AA, et al.: A Patient-Specific Ex Vivo Screening 
Platform for Personalized Acute Myeloid Leukemia (AML) Therapy. Blood. 2015; 
126(23): 1352.  
Reference Source

14. Hidalgo M, Amant F, Biankin AV, et al.: Patient-derived xenograft models: an 
emerging platform for translational cancer research. Cancer Discov. 2014; 4(9): 
998–1013.  
PubMed Abstract | Publisher Full Text | Free Full Text 

Page 11 of 16

F1000Research 2017, 5(ISCB Comm J):2927 Last updated: 14 MAR 2017

https://f1000researchdata.s3.amazonaws.com/supplementary/10529/2ce0724b-bfb0-4486-9896-67bb76d60fc4.xlsx
ftp://ftp.sanger.ac.uk/pub4/cancerrxgene/releases/release-1.0/
ftp://ftp.sanger.ac.uk/pub4/cancerrxgene/releases/release-1.0/
ftp://ftp.sanger.ac.uk/pub4/cancerrxgene/releases/release-5.0/
http://www.ncbi.nlm.nih.gov/pubmed/23183705
http://dx.doi.org/10.1038/nrg3352
http://www.ncbi.nlm.nih.gov/pmc/articles/3668552
http://www.ncbi.nlm.nih.gov/pubmed/23539596
http://dx.doi.org/10.1126/science.1234139
http://www.ncbi.nlm.nih.gov/pmc/articles/3900028
http://www.ncbi.nlm.nih.gov/pubmed/27444372
http://dx.doi.org/10.1093/bib/bbw065
http://www.ncbi.nlm.nih.gov/pubmed/26132924
http://dx.doi.org/10.1371/journal.pone.0127433
http://www.ncbi.nlm.nih.gov/pmc/articles/4489368
http://www.ncbi.nlm.nih.gov/pubmed/27397505
http://dx.doi.org/10.1016/j.cell.2016.06.017
http://www.ncbi.nlm.nih.gov/pmc/articles/4967469
http://www.ncbi.nlm.nih.gov/pubmed/24363398
http://dx.doi.org/10.1182/blood-2013-02-485771
http://www.ncbi.nlm.nih.gov/pubmed/23856246
http://dx.doi.org/10.1158/0008-5472.CAN-12-3342
http://www.ncbi.nlm.nih.gov/pmc/articles/4893961
http://www.ncbi.nlm.nih.gov/pubmed/22460902
http://dx.doi.org/10.1038/nature11005
http://www.ncbi.nlm.nih.gov/pmc/articles/3349233
http://www.ncbi.nlm.nih.gov/pubmed/22460905
http://dx.doi.org/10.1038/nature11003
http://www.ncbi.nlm.nih.gov/pmc/articles/3320027
http://www.ncbi.nlm.nih.gov/pubmed/22460893
http://dx.doi.org/10.1038/483544a
http://www.ncbi.nlm.nih.gov/pubmed/25721094
http://dx.doi.org/10.1038/ncomms7169
http://www.ncbi.nlm.nih.gov/pmc/articles/4351621
http://www.ncbi.nlm.nih.gov/pubmed/24056683
http://dx.doi.org/10.1158/2159-8290.CD-13-0350
http://www.bloodjournal.org/content/126/23/1352
http://www.ncbi.nlm.nih.gov/pubmed/25185190
http://dx.doi.org/10.1158/2159-8290.CD-14-0001
http://www.ncbi.nlm.nih.gov/pmc/articles/4167608


15. Gao H, Korn JM, Ferretti S, et al.: High-throughput screening using patient-
derived tumor xenografts to predict clinical trial drug response. Nat Med. 2015; 
21(11): 1318–25.  
PubMed Abstract | Publisher Full Text 

16. Menden MP, Iorio F, Garnett M, et al.: Machine Learning Prediction of Cancer 
Cell Sensitivity to Drugs Based on Genomic and Chemical Properties. PLoS 
One. 2013; 8(4): e61318.  
PubMed Abstract | Publisher Full Text | Free Full Text 

17. Ammad-ud-din M, Georgii E, Gönen M, et al.: Integrative and personalized QSAR 
analysis in cancer by kernelized Bayesian matrix factorization. J Chem Inf 
Model. 2014; 54(8): 2347–59.  
PubMed Abstract | Publisher Full Text 

18. Cortés-Ciriano I, van Westen GJ, Bouvier G, et al.: Improved large-scale 
prediction of growth inhibition patterns using the NCI60 cancer cell line panel. 
Bioinformatics. 2016; 32(1): 85–95.  
PubMed Abstract | Publisher Full Text | Free Full Text 

19. Riddick G, Song H, Ahn S, et al.: Predicting in vitro drug sensitivity using 
Random Forests. Bioinformatics. 2011; 27(2): 220–224.  
PubMed Abstract | Publisher Full Text | Free Full Text 

20. Geeleher P, Cox NJ, Huang RS: Clinical drug response can be predicted using 
baseline gene expression levels and in vitro drug sensitivity in cell lines. 
Genome Biol. 2014; 15(3): R47.  
PubMed Abstract | Publisher Full Text | Free Full Text 

21. Kim S, Sundaresan V, Zhou L, et al.: Integrating Domain Specific Knowledge 
and Network Analysis to Predict Drug Sensitivity of Cancer Cell Lines. PLoS 
One. 2016; 11(9): e0162173.  
PubMed Abstract | Publisher Full Text | Free Full Text 

22. Wang Y, Fang J, Chen S: Inferences of drug responses in cancer cells from 
cancer genomic features and compound chemical and therapeutic properties. 
Sci Rep. 2016; 6: 32679.  
PubMed Abstract | Publisher Full Text | Free Full Text 

23. Yuan H, Paskov I, Paskov H, et al.: Multitask learning improves prediction of 
cancer drug sensitivity. Sci Rep. 2016; 6: 31619.  
PubMed Abstract | Publisher Full Text | Free Full Text 

24. Ammad-Ud-Din M, Khan SA, Malani D, et al.: Drug response prediction by 
inferring pathway-response associations with kernelized Bayesian matrix 
factorization. Bioinformatics. 2016; 32(17): i455–i463.  
PubMed Abstract | Publisher Full Text 

25. Zhang N, Wang H, Fang Y, et al.: Predicting Anticancer Drug Responses Using 
a Dual-Layer Integrated Cell Line-Drug Network Model. PLoS Comput Biol. 2015; 
11(9): e1004498.  
PubMed Abstract | Publisher Full Text | Free Full Text 

26. Lee AC, Shedden K, Rosania GR, et al.: Data mining the NCI60 to predict 
generalized cytotoxicity. J Chem Inf Model. 2008; 48(7): 1379–88.  
PubMed Abstract | Publisher Full Text | Free Full Text 

27. Kumar R, Chaudhary K, Singla D, et al.: Designing of promiscuous inhibitors 
against pancreatic cancer cell lines. Sci Rep. 2014; 4: 4668.  
PubMed Abstract | Publisher Full Text | Free Full Text 

28. Okser S, Pahikkala T, Airola A, et al.: Regularized machine learning in the 
genetic prediction of complex traits. PLoS Genet. 2014; 10(11): e1004754. 
PubMed Abstract | Publisher Full Text | Free Full Text 

29. Weinstein JN, Lorenzi PL: Cancer: Discrepancies in drug sensitivity. Nature. 
2013; 504(7480): 381–3.  
PubMed Abstract | Publisher Full Text 

30. Redig AJ, Jänne PA: Basket trials and the evolution of clinical trial design in an 
era of genomic medicine. J Clin Oncol. 2015; 33(9): 975–977.  
PubMed Abstract | Publisher Full Text 

31. Breiman L: Random Forests. Mach Learn. 2001; 45(1): 5–32.  
Publisher Full Text 

32. Breiman L: Statistical Modeling: The Two Cultures (with comments and a 
rejoinder by the author). Stat Sci. 2001; 16(3): 199–231.  
Publisher Full Text 

33. Chen X, Ishwaran H: Random forests for genomic data analysis. Genomics. 
2012; 99(6): 323–329.  
PubMed Abstract | Publisher Full Text | Free Full Text 

34. Tommasino C, Gambardella L, Buoncervello M, et al.: New derivatives of the 
antimalarial drug Pyrimethamine in the control of melanoma tumor growth: an 
in vitro and in vivo study. J Exp Clin Cancer Res. 2016; 35(1): 137.  
PubMed Abstract | Publisher Full Text | Free Full Text 

35. Lever J, Krzywinski M, Altman N: Points of Significance: Model selection and 
overfitting. Nat Methods. 2016; 13: 703–704.  
Publisher Full Text 

36. Anderson DJ, Durieux JK, Song K, et al.: Live-cell microscopy reveals small 
molecule inhibitor effects on MAPK pathway dynamics. PLoS One. 2011; 6(8): 
e22607.  
PubMed Abstract | Publisher Full Text | Free Full Text 

37. Shukla S, Robey RW, Bates SE, et al.: Sunitinib (Sutent, SU11248), a  
small-molecule receptor tyrosine kinase inhibitor, blocks function of the ATP-
binding cassette (ABC) transporters P-glycoprotein (ABCB1) and ABCG2. 
Drug Metab Dispos. 2009; 37(2): 359–65.  
PubMed Abstract | Publisher Full Text | Free Full Text 

38. Pamuk ON, Tsokos GC: Spleen tyrosine kinase inhibition in the treatment of 
autoimmune, allergic and autoinflammatory diseases. Arthritis Res Ther. 2010; 
12(6): 222.  
PubMed Abstract | Publisher Full Text | Free Full Text 

39. Whitesell L, Lindquist SL: HSP90 and the chaperoning of cancer. Nat Rev Cancer. 
2005; 5(10): 761–772.  
PubMed Abstract | Publisher Full Text 

40. Huang M, Shen A, Ding J, et al.: Molecularly targeted cancer therapy: some 
lessons from the past decade. Trends Pharmacol Sci. 2014; 35(1): 41–50. 
PubMed Abstract | Publisher Full Text 

41. Lever J, Krzywinski M, Altman N: Points of Significance: Classification 
evaluation. Nat Methods. 2016; 13: 603–604.  
Publisher Full Text 

42. Haibe-Kains B, El-Hachem N, Birkbak NJ, et al.: Inconsistency in large 
pharmacogenomic studies. Nature. 2013; 504(7480): 389–93.  
PubMed Abstract | Publisher Full Text | Free Full Text 

43. Li H, Leung KS, Wong MH, et al.: Improving AutoDock Vina Using Random 
Forest: The Growing Accuracy of Binding Affinity Prediction by the Effective 
Exploitation of Larger Data Sets. Mol Inform. 2015; 34(2–3): 115–126.  
PubMed Abstract | Publisher Full Text 

44. Felip E, Martinez P: Can sensitivity to cytotoxic chemotherapy be predicted by 
biomarkers? Ann Oncol. 2012; 23(Suppl 10): x189–92.  
PubMed Abstract | Publisher Full Text 

45. Ejlertsen B, Jensen MB, Nielsen KV, et al.: HER2, TOP2A, and TIMP-1 and 
responsiveness to adjuvant anthracycline-containing chemotherapy in  
high-risk breast cancer patients. J Clin Oncol. 2010; 28(6): 984–90.  
PubMed Abstract | Publisher Full Text 

46. de Gramont AA, Watson S, Ellis LM, et al.: Pragmatic issues in biomarker 
evaluation for targeted therapies in cancer. Nat Rev Clin Oncol. 2015; 12(4): 
197–212.  
PubMed Abstract | Publisher Full Text 

47. Tran B, Dancey JE, Kamel-Reid S, et al.: Cancer genomics: technology, 
discovery, and translation. J Clin Oncol. 2012; 30(6): 647–60.  
PubMed Abstract | Publisher Full Text 

48. Ahmed J, Meinel T, Dunkel M, et al.: CancerResource: a comprehensive database of 
cancer-relevant proteins and compound interactions supported by experimental 
knowledge. Nucleic Acids Res. 2011; 39(Database issue): D960–D967.  
PubMed Abstract | Publisher Full Text | Free Full Text 

49. Boutros PC, Margolin AA, Stuart JM, et al.: Toward better benchmarking: 
challenge-based methods assessment in cancer genomics. Genome Biol. 2014; 
15(9): 462.  
PubMed Abstract | Publisher Full Text | Free Full Text 

Page 12 of 16

F1000Research 2017, 5(ISCB Comm J):2927 Last updated: 14 MAR 2017

http://www.ncbi.nlm.nih.gov/pubmed/26479923
http://dx.doi.org/10.1038/nm.3954
http://www.ncbi.nlm.nih.gov/pubmed/23646105
http://dx.doi.org/10.1371/journal.pone.0061318
http://www.ncbi.nlm.nih.gov/pmc/articles/3640019
http://www.ncbi.nlm.nih.gov/pubmed/25046554
http://dx.doi.org/10.1021/ci500152b
http://www.ncbi.nlm.nih.gov/pubmed/26351271
http://dx.doi.org/10.1093/bioinformatics/btv529
http://www.ncbi.nlm.nih.gov/pmc/articles/4681992
http://www.ncbi.nlm.nih.gov/pubmed/21134890
http://dx.doi.org/10.1093/bioinformatics/btq628
http://www.ncbi.nlm.nih.gov/pmc/articles/3018816
http://www.ncbi.nlm.nih.gov/pubmed/24580837
http://dx.doi.org/10.1186/gb-2014-15-3-r47
http://www.ncbi.nlm.nih.gov/pmc/articles/4054092
http://www.ncbi.nlm.nih.gov/pubmed/27607242
http://dx.doi.org/10.1371/journal.pone.0162173
http://www.ncbi.nlm.nih.gov/pmc/articles/5015856
http://www.ncbi.nlm.nih.gov/pubmed/27645580
http://dx.doi.org/10.1038/srep32679
http://www.ncbi.nlm.nih.gov/pmc/articles/5028846
http://www.ncbi.nlm.nih.gov/pubmed/27550087
http://dx.doi.org/10.1038/srep31619
http://www.ncbi.nlm.nih.gov/pmc/articles/4994023
http://www.ncbi.nlm.nih.gov/pubmed/27587662
http://dx.doi.org/10.1093/bioinformatics/btw433
http://www.ncbi.nlm.nih.gov/pubmed/26418249
http://dx.doi.org/10.1371/journal.pcbi.1004498
http://www.ncbi.nlm.nih.gov/pmc/articles/4587957
http://www.ncbi.nlm.nih.gov/pubmed/18588283
http://dx.doi.org/10.1021/ci800097k
http://www.ncbi.nlm.nih.gov/pmc/articles/2561991
http://www.ncbi.nlm.nih.gov/pubmed/24728108
http://dx.doi.org/10.1038/srep04668
http://www.ncbi.nlm.nih.gov/pmc/articles/3985076
http://www.ncbi.nlm.nih.gov/pubmed/25393026
http://dx.doi.org/10.1371/journal.pgen.1004754
http://www.ncbi.nlm.nih.gov/pmc/articles/4230844
http://www.ncbi.nlm.nih.gov/pubmed/24284624
http://dx.doi.org/10.1038/nature12839
http://www.ncbi.nlm.nih.gov/pubmed/25667288
http://dx.doi.org/10.1200/JCO.2014.59.8433
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1214/ss/1009213726
http://www.ncbi.nlm.nih.gov/pubmed/22546560
http://dx.doi.org/10.1016/j.ygeno.2012.04.003
http://www.ncbi.nlm.nih.gov/pmc/articles/3387489
http://www.ncbi.nlm.nih.gov/pubmed/27599543
http://dx.doi.org/10.1186/s13046-016-0409-9
http://www.ncbi.nlm.nih.gov/pmc/articles/5013574
http://dx.doi.org/10.1038/nmeth.3968
http://www.ncbi.nlm.nih.gov/pubmed/21829637
http://dx.doi.org/10.1371/journal.pone.0022607
http://www.ncbi.nlm.nih.gov/pmc/articles/3150364
http://www.ncbi.nlm.nih.gov/pubmed/18971320
http://dx.doi.org/10.1124/dmd.108.024612
http://www.ncbi.nlm.nih.gov/pmc/articles/2680522
http://www.ncbi.nlm.nih.gov/pubmed/21211067
http://dx.doi.org/10.1186/ar3198
http://www.ncbi.nlm.nih.gov/pmc/articles/3046528
http://www.ncbi.nlm.nih.gov/pubmed/16175177
http://dx.doi.org/10.1038/nrc1716
http://www.ncbi.nlm.nih.gov/pubmed/24361003
http://dx.doi.org/10.1016/j.tips.2013.11.004
http://dx.doi.org/10.1038/nmeth.3945
http://www.ncbi.nlm.nih.gov/pubmed/24284626
http://dx.doi.org/10.1038/nature12831
http://www.ncbi.nlm.nih.gov/pmc/articles/4237165
http://www.ncbi.nlm.nih.gov/pubmed/27490034
http://dx.doi.org/10.1002/minf.201400132
http://www.ncbi.nlm.nih.gov/pubmed/22987959
http://dx.doi.org/10.1093/annonc/mds309
http://www.ncbi.nlm.nih.gov/pubmed/20038724
http://dx.doi.org/10.1200/JCO.2009.24.1166
http://www.ncbi.nlm.nih.gov/pubmed/25421275
http://dx.doi.org/10.1038/nrclinonc.2014.202
http://www.ncbi.nlm.nih.gov/pubmed/22271477
http://dx.doi.org/10.1200/JCO.2011.39.2316
http://www.ncbi.nlm.nih.gov/pubmed/20952398
http://dx.doi.org/10.1093/nar/gkq910
http://www.ncbi.nlm.nih.gov/pmc/articles/3013779
http://www.ncbi.nlm.nih.gov/pubmed/25314947
http://dx.doi.org/10.1186/s13059-014-0462-7
http://www.ncbi.nlm.nih.gov/pmc/articles/4318527


 

Open Peer Review

  Current Referee Status:

Version 1

 13 February 2017Referee Report

doi:10.5256/f1000research.11347.r19182

 Ronnie Alves
 Federal University of Pará , Graduate Program in Computer Science, Belém, Brazil
 Instituto Tecnologico Vale, Belém, Brazil

The authors present an empirical modeling approach, highlighting the pros and cons of using a robust
machine learning strategy to pan-cancer cell line prediction solely based on gene expression profiles.
Single-gene models may not provide an efficient solution on a such high dimensional data, therefore,
multi-gene models have been used as a potential alternative to handle the combinatorial space (many
candidate gene alterations). Even though the authors introduce quite well the GDSC
pharmacotranscriptomic data, I would suggest the addition of more information regarding the baseline /
benchmark regarding this classification problem. What would be an acceptable performance prediction?
The evolution from single-gene to multi-gene classification could be improved along the feature
engineering adopted within these classification strategies. The authors could motivate more the choice of
the Random Forest (RF) technique. MANOVA has the problems of handling correlations among
dependent variables, and effect size of these correlations. RF provides some improvement on MANOVA's
limitations, however, it might suffer from feature subsampling selection and consequently, can
overestimate the classification. The author could take a look at this work (Impact of subsampling and
pruning on random forests) by Roxane Duroux and Erwan Scornet.

Decision tree models are quite tight on training data. Given that the authors used the R language, there
are many possibilities of tuning parameters along RF. Importance plots and partial plots could allow to
expose features that can help to understand key features of a multi-gene model based on RF. Even
though RF has a good performance, one may observe (Figure 4.A and 4.B) that there are some instances
where MANOVA is better. The authors could share some light on these observations. Why are those ones
hard to classify for RF? Regarding the GDSC data, it is not clear, while splitting the data, whether the data
is well balanced along all drugs or not. The authors did well in keeping an independent test data, and it
would be interesting to share more information regarding class (127 drugs) distribution along training and
test data.

It would be great of the authors to provide the data and model, so other researchers are able to fully
reproduce this study, as well as, devise other robust ensemble learning techniques that might be as good
as RF.

This is an original work and it can be the first, indeed, proposing a benchmark on the estimation of the
importance of somatic mutations in drug sensitivity classification.
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The authors present an empirical modeling approach, highlighting the pros and cons of
using a robust machine learning strategy to pan-cancer cell line prediction solely based
on gene expression profiles. Single-gene models may not provide an efficient solution on
a such high dimensional data, therefore, multi-gene models have been used as a potential
alternative to handle the combinatorial space (many candidate gene alterations). Even
though the authors introduce quite well the GDSC pharmacotranscriptomic data, I would
suggest the addition of more information regarding the baseline / benchmark regarding
this classification problem. What would be an acceptable performance prediction? 
A drug sensitivity model with MCC>0 on the independent test set can be regarded as an
acceptable performance because the performance of classifying cell lines at random is MCC=0. In
the context of this study, we are interested in those acceptable models with a MCC value higher
than that provided by the best single-gene marker of the same drug (i.e. models with positive MCC
in the lower triangular part of Figure 6C). This is now stated in page 8.

The evolution from single-gene to multi-gene classification could be improved along the
feature engineering adopted within these classification strategies. The authors could
motivate more the choice of the Random Forest (RF) technique. MANOVA has the
problems of handling correlations among dependent variables, and effect size of these
correlations. RF provides some improvement on MANOVA's limitations, however, it might
suffer from feature subsampling selection and consequently, can overestimate the
classification. The author could take a look at this work (Impact of subsampling and
pruning on random forests) by Roxane Duroux and Erwan Scornet. Decision tree models
are quite tight on training data. Given that the authors used the R language, there are
many possibilities of tuning parameters along RF.
Thanks for the suggestion. In page 5, we now state that RF is also robust to overfitting, as
evidenced in Figure 1. In our experience, going deeper into the tuning control parameters for RF
only brings marginal improvements in performance, although it could certainly be interesting from a
theoretical point of view.

Importance plots and partial plots could allow to expose features that can help to
understand key features of a multi-gene model based on RF.
We agree with the reviewer. However, we think that properly looking at the feature
selection/importance question for each of the 127 drugs would require a separated study.

Even though RF has a good performance, one may observe (Figure 4.A and 4.B) that there
are some instances where MANOVA is better. The authors could share some light on
these observations. Why are those ones hard to classify for RF? 
This is certainly an interesting question. For example, Figure 6C shows that 33.9% of the drugs are
harder to classify by a multi-variate RF model in the sense that a univariate model performs better.
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harder to classify by a multi-variate RF model in the sense that a univariate model performs better.
In page 3, we explained that the high dimensionality of the training data sets poses a challenge to
classifiers and that these difficulties are drug-dependent. This is due to a number of convoluted
factors. First of all, while both models look at the same data in each drug, each model employs a
different set of features (genomic vs transcriptomic). Therefore, a single gene mutation might be
more predictive of drug sensitivity than a model based on gene expression values in some cases.
Second, only a very small subset of features might be predictive of cell line sensitivity to a given
drug, which could be challenging for a RF using all the transcriptomic features. Third, the size of
training and test sets varies because each drug was tested with a different number of cell lines.
Consequently, class imbalances in training set and test set are also different depending on the
drug. We are now stating these factors in page 3.

Regarding the GDSC data, it is not clear, while splitting the data, whether the data is well
balanced along all drugs or not. The authors did well in keeping an independent test data,
and it would be interesting to share more information regarding class (127 drugs)
distribution along training and test data.
We completely agree with the reviewer in that it is essential to keep an independent test set to
avoid overestimating performance, as standard k-fold cross-validation has been used for both
model selection and performance assessment. Full information about the proportion of sensitive
and resistant cell lines for each drug can be found in the data sets output by the released software
(see below). One can see that training and/or test sets are not well balanced for some drugs and
therefore more predictive RF models are likely to be obtained by using strategies to correct for
class imbalances. However, the composition of training and test sets should not be altered, as this
arise from a time-stamped partition and thus permit a realistic assessment of the performance that
can be expected on future data sets (perhaps class imbalanced).

It would be great of the authors to provide the data and model, so other researchers are
able to fully reproduce this study, as well as, devise other robust ensemble learning
techniques that might be as good as RF.
We have now released the requested R script which is available in Supplementary File 1 (check
the README file for instructions). We hope that this release will facilitate further improvements on
this class of problems.

This is an original work and it can be the first, indeed, proposing a benchmark on the
estimation of the importance of somatic mutations in drug sensitivity classification.
We thank the reviewer for his positive assessment of this study. The released software implements
this benchmark comprising 127 binary classification problems, one per drug. As drug response
data is continuous, it is also possible to use the software to benchmark regression models.
Furthermore, the software outputs the results of our study and hence these can be employed as a
performance baseline for comparison to the results obtained by the benchmarked models. 

 No competing interests were disclosed.Competing Interests:
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This is an original research article reporting a machine learning approach exploiting gene expression
profiles to predict pan-cancer cell line sensitivity to drugs.
The title is appropriate and the abstract represent a suitable summary of the work
I would however suggest that the authors define the abbreviation “GDSC”.
The paper is well written, the experimental design is good and the conclusions fit with the data.
 
Minor point: page 7 figure 3 legend, RC=0.37 is not of the figure: this must be corrected

I have read this submission. I believe that I have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard.

 No competing interests were disclosed.Competing Interests:
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This is an original research article reporting a machine learning approach exploiting gene
expression profiles to predict pan-cancer cell line sensitivity to drugs.
The title is appropriate and the abstract represent a suitable summary of the work
I would however suggest that the authors define the abbreviation “GDSC”.
The paper is well written, the experimental design is good and the conclusions fit with the
data.
We thank the reviewer for his positive appraisal of this article. As suggested, we have now defined
the abbreviation “GDSC” in the abstract too.
 
Minor point: page 7 figure 3 legend, RC=0.37 is not of the figure: this must be corrected
Thanks for the observation. RC=0.37 was in mentioned in the part B of the caption, but referred to
the part A of the figure. As this is confusing, it has been rewritten to specify that RC=0.37 is the test
set recall of the AZ628 (part A) and it compared to that of Sunitinib (RC=0.75) in part B. 
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