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Background: Kinarm Standard Tests (KSTs) is a suite of upper limb tasks to assess
sensory, motor, and cognitive functions, which produces granular performance data
that reflect spatial and temporal aspects of behavior (>100 variables per individual). We
have previously used principal component analysis (PCA) to reduce the dimensionality of
multivariate data using the Kinarm End-Point Lab (EP). Here, we performed PCA using
data from the Kinarm Exoskeleton Lab (EXO), and determined agreement of PCA results
across EP and EXO platforms in healthy participants. We additionally examined whether
further dimensionality reduction was possible by using PCA across behavioral tasks.

Methods: Healthy participants were assessed using the Kinarm EXO (N = 469) and
EP (N = 170–200). Four behavioral tasks (six assessments in total) were performed
that quantified arm sensory and motor function, including position sense [Arm Position
Matching (APM)] and three motor tasks [Visually Guided Reaching (VGR), Object Hit
(OH), and Object Hit and Avoid (OHA)]. The number of components to include per task
was determined from scree plots and parallel analysis, and rotation type (orthogonal
vs. oblique) was decided on a per-task basis. To assess agreement, we compared
principal components (PCs) across platforms using distance correlation. We additionally
considered inter-task interactions in EXO data by performing PCA across all six
behavioral assessments.

Results: By applying PCA on a per task basis to data collected using the EXO,
the number of behavioral parameters were substantially reduced by 58–75% while
accounting for 76–87% of the variance. These results compared well to the EP analysis,
and we found good-to-excellent agreement values (0.75–0.99) between PCs from the
EXO and those from the EP. Finally, we were able to reduce the dimensionality of the EXO
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data across tasks down to 16 components out of a total of 76 behavioral parameters,
which represents a reduction of 79% while accounting for 73% of the total variance.

Conclusion: PCA of Kinarm robotic assessment appears to capture similar
relationships between kinematic features in healthy individuals and is agnostic to
the robotic platform used for collection. Further work is needed to investigate the
use of PCA-based data reduction for the characterization of neurological deficits in
clinical populations.

Keywords: Robotics, behavior, motor system, principal components analysis, agreement

INTRODUCTION

Robotic assessment tools can capture granular and
high-dimensional kinematic information from the upper
limbs that would be very difficult to measure with a human
observer, thus potentially facilitating both assessment and
rehabilitation (Wu et al., 2013; Colombo et al., 2014; Pila et al.,
2017; Veerbeek et al., 2017). Kinarm is one such device, and
provides objective parameters of motor, sensory, and cognitive
function using the participants’ arms. It has been validated across
multiple patient groups (Coderre et al., 2010; Dukelow et al.,
2010, 2012; Debert et al., 2012; Simmatis et al., 2017; Gaprielian
et al., 2019). Kinarm Standard TestsTM (KSTs) consist of several
behavioral tasks that include automated data analysis routines,
and which generate up to 20 performance items per task that
describe spatial and temporal aspects of performance. However,
the breadth of behavioral tasks results in complex datasets
being produced (>100 parameters per participant), which may
impede meaningful interpretation of data – particularly for those
unfamiliar with the meaning or neuroscientific importance of
each metric. Therefore, this technology may benefit from the
application of data reduction techniques.

Principal component analysis (PCA) is a statistical procedure
that is commonly used for dimensionality reduction, which
preserves the maximal amount of variance in a given dataset
(Pearson, 1901; Hotelling, 1933; Ringnér, 2008). The first
principal component (PC) is a linear combination of variables
that accounts for the largest amount of variance, followed
by the second and so forth (Jolliffe and Cadima, 2016). Our
previous study examined PCA for healthy participant’s data.
We found that data from the Kinarm End-Point Lab (EP)
could be substantially reduced while accounting for a large
amount of variance, and that many PCs were comprised of
task parameters with high loadings and minimal cross loadings
(i.e., items that loaded substantially across multiple components)
(Wood et al., 2018).

Kinarm Standard Tests can also be completed on a second
robotic platform called the Kinarm EXO1. The EXO robots
are attached to the arm using troughs and the entire arm
is constrained to move in the horizontal plane. In contrast,
the EP robots are grasped in each hand permitting horizontal
movements of the manipulanda, but with the plane of the arm
being largely vertical (i.e., elbows pointing down with the wrist

1www.kinarm.com

halfway between pronation and supination). These differences in
arm geometry could potentially influence motor strategies and
the structure of motor performance, even for similar behavioral
goals (Beer et al., 2004). As such, it is important to validate
results from reduction techniques performed on data from
these different Kinarm platforms to ensure that they can produce
findings in a manner that is agnostic to the technology used to
collect movement data.

Previous studies have explored the use of PCA or exploratory
factor analysis with other robotic platforms (Gilliaux et al.,
2014; Longhi et al., 2016; Panarese et al., 2016) and others
have employed PCA as a dimensionality reduction tool for
analyzing motor synergies (Ozturk et al., 2016; Wang et al., 2020).
However, some studies reporting PCA of behavioral data have
relied on small sample sizes (typically N < 50) that could limit
generalizability to other samples of participants. Other previous
work has explored the use of non-variance-based dimensionality
reduction measures to create aggregate representations of
Kinarm data (Kenzie et al., 2017); however, this has the limitation
of being difficult to relate back to the underlying variables
that contribute to the summary statistic that is produced. Our
central objective was to replicate PCA across robotic platforms
to understand how similar the groupings of kinematic features
are across data collection systems with varying arm geometries.
We did this by quantifying the agreement between PCA results
derived from the EP [published previously (Wood et al., 2018)]
and the current Kinarm EXO analysis. Further, the large size of
the EXO dataset permitted an examination of whether further
data reduction was feasible across behavioral tasks. As such,
comparable data reduction results across platforms, and tasks,
would suggest similar strategies or features of motor execution
that are common across behaviors.

MATERIALS AND METHODS

Participant Recruitment
Healthy participants were community-based and were recruited
via advertisements on lab and departmental websites, in local
classifieds (online and print), and by word-of-mouth. Trained
research staff screened each adult participant (≥18 years old)
to ensure that task instructions could be easily understood,
and that participants had no prior neurological deficits or
medical conditions that could affect upper limb function. Once
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enrolled, participants were then assessed by our research staff
at one of four sites in Canada, which included three sites in
Kingston, ON (Providence Care Hospital, St. Mary’s of The
Lake Hospital, and Kingston General Hospital) and one in
Calgary, AB (Foothills Medical Centre). Participants’ handedness
was determined using the Modified Edinburgh Handedness
Inventory (Oldfield, 1971). The Queen’s University and Affiliated
Hospitals Health Sciences Research Ethics Board and The
University of Calgary Conjoint Health Research Ethics Board
approved participants’ recruitment and assessment. Informed
consent was obtained from each participant prior to the Kinarm
assessment. Participants were recruited separately for studies
conducted using the EP and EXO platforms. Note that the EP
platform is newer and therefore the number of participants who
completed each of the tasks presented here is lower and more
variable across tasks than with the EXO.

Robotic Assessment
Participants were either seated in a height-adjustable chair that
was locked in place in front of the EP robotic system (Figure 1A)
or were seated in the height-adjustable wheelchair seat when
using the EXO robotic system (Figure 1B; Kinarm, Kingston,
ON, Canada). For the former, participants were instructed to
grasp the EP robotic handles with each hand, permitting free
movement of the hands in the horizontal plane with the arm itself
in the vertical plane (i.e., elbow largely pointing downward). For
the latter, the EXO seat height was adjusted for each participant
to achieve shoulder abduction (∼85◦) to provide comfort and
anti-gravity support of the upper arm and forearm/hand. Thus,
movements in the workspace maintained the hand, elbow, and
shoulder in the horizontal plane. Participants were seated in the
EP or EXO in front of a virtual reality system that displayed each
task in the horizontal workspace, and vision of the participant’s
arms and hands were occluded with a physical barrier. The
participant’s head was positioned in the front center of the
display case and visual feedback of actual hand position (when
provided) was typically represented on the screen by a white circle
(radius = 0.5 cm) in the middle of the handle grasped by the
participant (EP) or over their index fingertip (EXO). A trained

operator provided instructions from a standardized script prior
to starting each task.

The Arm Position Matching (APM) (Dukelow et al., 2010;
Mochizuki et al., 2019) task assessed upper-limb position sense
(an element of proprioception), whereas the other three tasks
broadly assessed upper-limb motor behavior: Visually Guided
Reaching (VGR) (Coderre et al., 2010), Object Hit (OH)
(Tyryshkin et al., 2014), and Object Hit and Avoid (OHA)
(Bourke et al., 2016). Detailed descriptions of all tasks have
been reported previously (Coderre et al., 2010; Dukelow et al.,
2010; Tyryshkin et al., 2013; Bourke et al., 2016; Wood et al.,
2018), but are summarized in Table 1 for reference. Task
parameter descriptions can be obtained from Kinarm (see text
footnote 1). Within each task, 9–20 performance parameters
were produced (parameters analyzed were the same across both
robotic platforms), and completing all 4 tasks took < half an
hour on a given robotic platform. Note that, in this study,
VGR and APM data were analyzed from each of the dominant-
and non-dominant arms separately, and so we report 6 total
behavioral assessments (i.e., OH, OHA, two separate scores for
VGR, and two separate scores for APM, totaling 6). To prevent
potential handedness confounds, mixed handedness participants
(n = 2) were removed from the analysis, and we used performance
parameters from both the dominant and non-dominant limbs for
two of the tasks (i.e., VGR and APM).

Automated data collection and analysis software was used
to measure arm movements and quantify task performance.
Task parameter values for the healthy cohort (also reported in
this study) were standardized (mean subtracted and divided by
the standard deviation), and then used to create a Box-Cox
transform (Box and Cox, 1964), which converted the distribution
of standardized scores into a standard Normal distribution
(i.e., mean = 0, standard deviation = 1, distribution symmetric).
Regression models were used to adjust scores for the influence of
age, sex, handedness, and robotic platform. Robotic platform was
included as a covariate because data from each platform are on
the same scale within each task, but note that behavioral patterns
across tasks may vary. These equations were implemented in
the software used to run the Kinarm tasks (Dexterit-E version

FIGURE 1 | (A) Kinarm End-Point Lab with graspable robots and virtual reality system aligned with the horizontal workspace. (B) Kinarm Exoskeleton Lab with
adjustable robots attached to the arms maintaining arm motion in the horizontal plane and a similar virtual reality system.
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TABLE 1 | Kinarm behavioral battery task descriptions.

Task Description

Arm Position Matching The robot moves one of the participant’s arms (the “active” arm), and the goal for the participant was to mirror-match the
position using their contralateral arm. The participant could not see where their arms were, and as such they had to complete
the task “by feel” (i.e., using proprioception).

Visually Guided Reaching Participants were instructed to perform center out and back reaches to a series of visual targets, starting from a central target.
The task instructions specified that the reaches be both quick and accurate.

Object Hit Virtual objects “fell” toward the participant from the top of the screen, and participants had to hit them away using virtual
paddles – one controlled by each hand. Objects fell faster as the task progressed, although the task lasted for a fixed amount of
time (∼2.25 min). The objective was to hit as many objects as possible.

Object Hit and Avoid This task was very similar to Object Hit, except that some of the objects that fell toward the participant were distractors to be
avoided. Altogether, eight different object types fell toward the participant, but only two were targets to be aimed for; the other
distractors counted against the participant if they were hit by mistake. The objective of this task was to hit as many targets, and
as few distractors, as possible.

3.7; see text footnote 1) and generated Z-scores for measures of
performance for each healthy individual. This process has been
described in greater detail previously (BKIN Technologies, 2019;
Simmatis et al., 2020a).

Principal Component Analysis
Principal component analysis was conducted in R version 3.4.1
(R Core Team, 2017) using psych package version 1.8.12 (Revelle,
2019). Kinarm performance items were converted to Z-scores
(Simmatis et al., 2020a) prior to PCA, with parallel analysis
being used to determine the optimal number of components.
Eigenvalues (i.e., proxies of relative variance explained by each
component) were plotted in descending order to generate a scree
plot (Cattell, 1966; Sakaluk and Short, 2017). Parallel analysis
was used to generate a random data set that possessed the
same dimensionality (i.e., number of columns and sample size)
as the observed data. The 95th percentile (i.e., 1.645 standard
deviations above the mean) of eigenvalues calculated from the
randomized data was graphed over the scree plot of the observed
data. The components retained from the observed data were
those with larger eigenvalues than the corresponding random
dataset (Horn, 1965; Cattell, 1966; O’connor, 2000; Sakaluk and
Short, 2017). Parallel analysis was chosen as the method to retain
components as the scree plot is only useful as an adjunct due to
variability in accuracy, whereas parallel analysis has been shown
to be highly robust to variation in data size/structure (Zwick
and Velicer, 1986). See Supplementary Figure 1 for the scree
plots and respective parallel analysis across tasks. Rotation was
then implemented to help yield the most interpretable solution.
An oblique rotation (oblimin) was first conducted (Jennrich and
Sampson, 1966), which allows for correlated components. If all
inter-component correlations were < | 0.30|, then an orthogonal
rotation (varimax) (Kaiser, 1958) was implemented. Taking the
current sample size into account, and using a two-tailed α

of 0.01, we considered a component loading to be substantial
if the loading was ≥ | 0.40| (Stevens, 2009). Note that for
n = 300 a loading of 0.298 (2∗0.149) is considered substantial, we
used ≥ |0.40| to keep in line with our previous work (Wood et al.,
2018) and to remain stringent in identifying substantial loadings.
Additionally, an item was considered to cross-load if the loading
was ≥ | 0.30| on two or more components (Costello and Osborne,

2005). To further characterize performance, components and
their respective parameters that loaded highly were used to
generate intuitive labels. For complete details of the EP PCA, see
our previously published findings (Wood et al., 2018). Although
we considered all {1. . .k; k ≥ n} – component models, we
describe in detail only the optimal n-component solution for the
sake of brevity.

We retained the restricted analysis of right-handed individuals
only from our previous work (Wood et al., 2018). We allowed
individuals with left-hand dominance to be analyzed in the
present study to maintain maximum comparability to our
previous work and also ensure that we further expanded upon
this previous limitation to now include both left- and right-
handed participants. Importantly, the participants analyzed in
the previous study had completed tasks with their non-dominant
arms, but we chose to exclude these data for simplicity of
interpretation of our results; our primary objective was the
implementation of the PCA technique on granular robotic
data. Furthermore, in the present work, we sought to expand
the application of our technique to include non-dominant
arm information.

Determining PCA Agreement Across
Platforms
We compared patterns of PC loadings after PC rotation by using
the distance correlation metric (Székely et al., 2007). Briefly, the
distance correlation is a tool for generalized correlation between
series of data that are not necessarily linearly related. It calculates
a Euclidean distance measure between two series of data (i.e., one
set of PCs derived from each robot type) to determine how
“close” they are in absolute terms without requiring specific data
distributions (e.g., we would not expect PC values to be Normally
distributed). Thus, we applied this technique to each pair of
PC loadings to identify their similarity regardless of being in
the same feature space due to rotation. Distance correlation is
bounded between 0 and 1, with 0 indicating no agreement, and
1 indicating perfect agreement (Székely et al., 2007). We refer
the interested reader to (Székely et al., 2007) for the in-depth
calculation of the distance correlation and more detailed notes on
its interpretation. Distance correlations and associated p-values
(derived using a permutation method built into the software)
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were calculated using the Pingouin 0.3.8 package implemented
in Python 3.7.1. Given the number of correlations performed
(n = 61), we set the significant α value for correlations at 0.05/61
≈ 8.19e-4 (i.e., we used the Bonferroni correction to control for
the family-wise error rate).

RESULTS

Data Reduction Related to the EXO
Table 2 provides a brief summary of demographics for each
cohort. Of all participants assessed using the EXO (N = 469), 211
(45%) were male, mean age was 46.4 (range: 18–93 years), and
418 (89%) were right-handed. Figure 2 displays the PC loadings
for parameters of each task completed using the Kinarm EXO
and EP platforms. The number of performance parameters per
task (range 9–20) was substantially reduced (range 58–75%) by
discovering groups of related parameters that gathered into 3–5
components, which explained a large amount of overall variance
(range 76–87%) in each task. Although the ordering/variance
accounted for by the PC varied across robotic platforms, the EXO
PCs were comprised of several of the task parameters that
loaded highly onto PCs derived from the EP data (i.e., consistent
across platforms). For example, in APM (dominant arm), similar
parameters that described EP variability (contraction/expansion
ratio) had high loadings on the first component (all loadings
>0.8) but several parameters loaded highly onto PC2 on the EP.
Another example can be observed in OH, in which parameters
related to either left- or right-hand speed, had moderate-to-
high loadings on the first component (all >0.6). For complete
details regarding the proportion of variance accounted for,
data reduction, and component loadings, see Supplementary
Tables 1, 2. The interpretation of the PCs derived from the EXO
dataset was often similar to that for PCs from the EP dataset, and
we have provided a summary of the interpretations of the top two
PCs from each task across both platforms in Table 3.

Agreement Between EXO and EP PCs
For the End-Point robot, N = 80/200 to 86/190 (40–46%) of
participants were male, mean age was 42.5 (range 18–88) to
46.3 (range 18–87), and all participants for each task were
right-handed. Note that this group included only right-handed
individuals (Wood et al., 2018). We quantified agreement
between EP and EXO robot PCs using the distance correlation,

which were generally substantial (>0.50) (Figure 3). For tasks in
which there were the same numbers of PCs across both analyses
(i.e., VGR and OHA), each PC from the EXO robot had a clear
correspondent in the EP data. For example, PC1 of VGR (EXO)
had a distance correlation of 0.96 (p < 1e-4) with PC2 of VGR
(EP), which is intuitive as PC2 of VGR (EP) was comprised
of 6/8 of the task parameters that loaded highly onto PC1 of
VGR (EXO). This PC agreement across platforms was most
evident for the OHA task, where distance correlations across all
five PCs were high (≥ 0.97; all p-values < 8.19e-4). However,
other situations arose where there were differing numbers of
components across platforms (i.e., APM and OH). Specifically,
both OH and APM-D were represented by three PCs for the EP,
but by more for the EXO (4 and 5, respectively). In these cases,
high correlations (>0.80; all p < 8.19e-4) were still observed
between the three PCs for the EP and one of the top three PCs
for the EXO. Finally, we observed a case in VGR-D where a
correlation was substantial (0.88) but not statistically significant
(0.05 > p > 8.19e-4) between EP PC1 and EXO PC2.

Principal Component Analysis Across All
Four Kinarm Tasks
Our final analysis examined if greater dimension reduction was
possible if all the parameters across all behavioral tasks were
considered simultaneously. According to the scree plot and
parallel analysis, 16 models warranted further examination. For
2- through 16-component solutions, we kept the orthogonal
rotation because the inter-component correlations ranged from
−0.18 to 0.29. For the 16-component solution, all items had
substantial loadings (>| 0.40|). See Figure 4 for a visual
representation of the component loadings across tasks and
respective items. When pooled together across all six tasks, PCA
reduced this large data set from 76 parameters to 16 components,
reducing the overall data by 79% while still retaining 73% of the
variance. The across-task PCA identified fewer components than
PCA on the individual tasks (16 PCs compared to a total of 24
PCs across individual tasks). Interestingly, each task generally
remained separate on its own PC. Notably, both VGR and APM
tasks commonly shared PCs across dominant and non-dominant
arms. For example, PC2 was dominated by VGR across both
arms. APM across both arms had several parameters that loaded
onto PC4. As well, OH and OHA tasks also shared PCs (i.e.,
PC1 and PC3). In contrast, PCs never included OH or OHA

TABLE 2 | Participant demographics and task characteristics.

Task N Mean age (range) Male sex (%) Right-handedness (%)

Exoskeleton Arm Position Matching 469 46.39 (18–93) 211 (45%) 418 (89%)

Visually Guided Reaching 469 46.39 (18–93) 211 (45%) 418 (89%)

Object Hit 469 46.39 (18–93) 211 (45%) 418 (89%)

Object Hit and Avoid 469 46.39 (18–93) 211 (45%) 418 (89%)

End-Point Arm Position Matching 184 44.43 (18–87) 84 (46%) 184 (100%)

Visually Guided Reaching 200 42.51 (18–88) 80 (40%) 200 (100%)

Object Hit 190 46.28 (18–87) 86 (45%) 190 (100%)

Object Hit and Avoid 170 45.56 (18–87) 76 (45%) 170 (100%)
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FIGURE 2 | Heatmaps depicting substantial (>| 0.40|) loadings in the EXO and EP tasks. Results are summarized only for VGR and APM in the dominant arm, for
comparison across robotic platforms (EP data do not include non-dominant arm analyses). Left column: EXO loadings. Right column: EP loadings. Both
columns: highly positive loadings are indicated by red hues and highly negative loadings are indicated by blue hues. Loadings less than | 0.40| are white. “-D”
signifies dominant arm.

parameters with VGR or APM parameters, and no PCs included
VGR and APM parameters.

DISCUSSION

We performed PCA on Kinarm EXO data, similarly to our
previous work with the Kinarm EP, to quantify the extent
of agreement between the results of PCA on data collected
from both platforms. We then performed PCA across multiple
tasks on EXO data to investigate inter-task interactions between

parameters. We identified that PCA of EXO data produced
interpretable results that were subjectively comparable to our
previous analysis. The strengths of the associations between
results from both platforms suggest that participants performed
behavioral tasks similarly with both the EP and the EXO
systems with minimal, albeit informative, deviation of task
parameter loadings across PCs and platforms. Finally, PCA across
all tasks highlighted further dimensionality reduction beyond
that observed in individual-task PCAs, reflecting interactions
across tasks with similar characteristics. These results have
interesting implications for the ability of different robotic
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TABLE 3 | Top two PCs from each task and their interpretations.

Platform Task: component Interpretation

EXO APM-D: PC1 Contraction/expansion: captures the extent that mirror-matched movements were horizontally (X)/vertically (Y)/both (XY)
increased with respect to the movement of the active arm

APM-D: PC2 Error and shift: captures the horizontal (X) error of the mirror-matched arm with respect to the active arm, as well as
horizontal and vertical displacement (XY) with respect to the active arm

VGR-D: PC1 Initial movement: parameters loading on this PC describe early phases of movement (e.g., reaction time and initial direction
error)

VGR-D: PC2 Corrective-movements and total metrics: this PC captures corrective features of reaching and total metrics, such as number
of speed maxima, movement time, and difference between min and max speeds. Also captures some initial movement
features

OH: PC1 Speed and area: parameters associated with this PC describe hand speed and the amount of the workspace covered
during the task

OH: PC2 Movement laterality: this parameter captures the balance of use of both hands, e.g., hand selection overlap indicates how
much of the workspace was shared by both hands’ movements during the task

OHA: PC1 Area and objects hit: described both the ability to hit objects and the hitting of distractors (positive association), as well as
area of movement throughout workspace (positive association)

OHA: PC2 Object hitting and laterality: captured a negative association between total number of objects hit, and ability to use both
hands to complete the task (e.g., hand selection overlap, which quantifies shared workspace area between both hands)

EP APM-D: PC1 Error and shift: horizontal (X) and horizontal-vertical (XY) error measures and displacement with respect to the active arm

APM-D: PC2 Contraction/expansion: horizontal (X), vertical (Y), and both (XY) stretching of the workspace of the participant’s
mirror-matched movements with respect to the active arm’s target workspace. Also captures vertical and horizontal-vertical
deviation from target locations

VGR-D: PC1 Corrective movements and total metrics: parameters loaded onto this PC describe corrective aspects of reaching, such as
speed maxima count, and total metrics like movement time

VGR-D: PC2 Initial movement: this PC’s parameters emphasize the early phase of reaching, e.g., reaction time and initial distance ratio

OH: PC1 Goal-directed object hitting: this PC described the ability to hit the virtual targets, both in terms of objects hit and also how
long the participant could prolong being overwhelmed (median error)

OH: PC2 Speed and area: this PC primarily captured left- and right-hand speed as well as the area that each hand covered in the
workspace throughout the task

OHA: PC1 Hits and laterality: primarily loaded by parameters describing the ability of both hands to contribute to the objective of hitting
targets. For example, targets hit (both left and right hand) positively covaried with hand selection overlap

OHA: PC2 Object hitting: captured both the ability to hit objects, as well as hitting of distractors (positive association between these)

platforms to quantify motor function, and for the use of robotic
platforms to characterize motor impairments that may arise from
neurological disease.

We identified that PCA of Kinarm EXO and EP data captured
relationships between variables that were interpretable, and
that differences across platforms could be emphasized using
these findings. As an illustrative example of interpretability,
consider the first component derived from VGR (dominant arm).
Loadings on this component indicated that as total movement
time decreased, maximum speed increased, as did the path length
ratio (ratio of actual distance the hand traveled relative to the
straight-line distance between start and end points). Intuitively,
this group of variables would appear to be related as time
and speed should be inversely related and longer trajectories
generating a larger path length ratio should tend to require more
time to complete the movement. Interpretability also extends to
across-platform comparisons. Consider PC1 of OHA from the
EXO, and PC2 of OHA from the EP (Figure 2), in which loaded
parameters were largely the same except for “movement area”
for both the right and left hand, which were uniquely observed
with PC1 of the EXO. The covariation of these parameters with
overall metrics of performance such as “total objects hit” suggests
that, in the EXO platform, there was a stronger relationship
between workspace utilization and overall task performance than

there was with the EP. This difference likely reflects the fact that
movement is less encumbered when using the EP as compared to
the EXO robotic systems.

Our results illustrate that PCA on data gathered from the EP
agreed very well with the PCA on data derived from the EXO
versions of Kinarm robotic platforms; this demonstrates that
some fundamental constructs of motor behavior were captured
using both platforms. Similarity across platforms is most evident
in VGR-D, where a three PC structure was chosen for both
platforms; each component is largely comprised of the same
task parameters and only their order differs, which is not
surprising given that PC loadings are sample dependent and
negligible differences will frequently be observed. Similarity in
the parameters captured in a given PC also extends previous
findings that arm movements can be performed similarly whether
the elbow is free, or whether the entire arm is constrained to the
horizontal plane while moving (Beer et al., 2004). The example
of VGR-D has interesting implications from a motor control
perspective. The three PCs that were found to describe VGR-D,
for both platforms, had relevant groupings that correspond to
features of motor behavior. PC1 from the EXO data describes
initial movements, as does PC2 from EP data (see also Table 3).
Interestingly, the parameters that loaded onto this component
correspond to the early feedforward component of reaching
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FIGURE 3 | Distance correlations for each of the tasks in which comparison was possible between EXO and EP robots. Correlation values are colored darkening
shades of blue if they are statistically significant after correcting for multiple comparisons (p < 8.19e-4), (i.e., lighter hues indicate lower correlation values).
PC = “principal component”, “-D” = “dominant arm.” *Indicates correlations that were > 0.80 but had p-values < 0.05 but > 8.19e-4 (i.e., not statistically significant
after multiple comparisons).

(Coderre et al., 2010). This is in contrast to PC2 of EXO data
and PC1 of EP data, which included parameters related to
feedback control (Coderre et al., 2010). Although separating
feedforward and feedback processes may not necessarily be
correct (Todorov and Jordan, 2002; Crevecoeur and Kurtzer,
2018), there is a convenience in delineating early- and later
epochs of movement. Further, the present results highlight that
the strategies implemented by individuals tends to lead to distinct
patterns in performance related to movement initiation and
online corrections.

It is interesting to note the across-task PCA of EXO data
demonstrated interactions within classes of tasks (i.e., reaching,

hitting, and matching), but limited interactions between different
classes of tasks. PCs spanned VGR across arms and APM
across both arms, and OH and OHA, suggesting common
strategies. In contrast, there was little shared information between
the three classes of tasks. For example, speed in VGR and
speed in OH/OHA did not group together. This separation in
performance between motor tasks is consistent with previous
work highlighting relatively low correlations in performance
across different skills or tasks. For example, Drowatzky and
Zuccato (1967) examined the performance of individuals for
various static and dynamic postural tasks and found correlations
were quite low (range from −0.19 to 0.31). As well, previous
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FIGURE 4 | A visual representation of significant loadings (>| 0.40|) from the principal component analysis across four Kinarm tasks with all parameters included for
healthy individuals. The color gradient represents the strength of the component loadings, with the darker shade representing higher loadings. Orange represents
positive loadings with blue representing negative loadings. The gray lines visually separate tasks and the respective limb assessed. APM = Arm Position Matching;
VGR = Visually Guided Reaching; RVGR = Reverse Visually Guided Reaching; OH = Object Hit; OHA = Object Hit and Avoid; D = dominant limb;
ND = non-dominant limb.

work demonstrated poor intra-individual correlations between
movement speed and accuracy across unimanual- and bimanual
upper-limb tasks when both hands have to reach to two targets
simultaneously (Mickevičienė et al., 2015), although this may be
different when there is a common goal for both hands (Tresilian
and Stelmach, 1997). These findings suggest a goal-dependency
of the separability of intra-individual unimanual and bimanual
performance, which would additionally align with the differences
in task objective between VGR and OH/OHA in the present
study. As with the case for within-task PC loadings, across-
task PC loading patterns have interesting implications from the
perspective of the neural correlates of motor behavior. Uni- and
bi-manual tasks are executed by the similar brain structures, but
it is not the case that a bimanual movement is simply two yoked
unimanual movements. For example, Grefkes (Grefkes et al.,

2008) demonstrated that stroke can disrupt interhemispheric
communication between supplementary motor area (SMA) and
primary motor cortex (M1), which affected bimanual movements
in a unique way compared to unimanual movements. Bimanual
tasks recruit a distributed network of brain areas involved
in movement control, including the bilateral dorsal premotor
cortices and bilateral parietal association areas (Szameitat et al.,
2012). Potentially, the PCs that we found for bimanual object-
hitting tasks could provide insight into the functionality of these
distributed networks. However, this is beyond the scope of our
current analysis.

Our results suggest that it might be suitable to use Kinarm
platforms interchangeably for clinical research, particularly that
involving high-dimensional data analysis techniques. Using the
example of VGR, it is clear that PC1 of the EXO and PC2 of
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the EP capture nearly an identical behavioral pattern. Platform
interchangeability could potentially be important, for example,
in individuals with multiple sclerosis (MS). People with MS can
have wide-ranging levels of upper limb impairments (Simmatis
et al., 2020b) and, as such, they may require the use of one
machine or another, depending on their status. For less-affected
individuals, it would be ideal to use an EP-style device to
minimize setup time and mitigate fatigue-related effects induced
by a long assessment. Conversely, in more-affected individuals
who suffer from weakness or who readily experience motor
fatigue, an EXO-style device could be used to provide upper-limb
anti-gravity support. Importantly, the Z-scores derived from the
Kinarm assessments are adjusted for age, sex, handedness, and
robotic platform, and so it is valid to compare individual Z-scores
regardless of platform. However, when considering analyses that
might use high-dimensional behavioral data, such as multivariate
statistics or machine learning to detect behavioral patterns, it will
be important to consider the covariation of multiple parameters.
In the example of VGR, because the individual parameters covary
similarly across platforms (e.g., EXO PC1 and EP PC2), it would
likely be suitable to put both EXO and EP data into one common
analysis. Some tasks’ PCs displayed minor changes in loading
magnitude (e.g., OHA EXO PC1 and OHA EP PC2 have similar
but non-identical loading patterns), but likely not to the extent
that it would confound multivariate analysis.

Our study has some limitations to address. First, our
original assessment using EP data was restricted to right-handed
individuals, and the non-dominant arm was not considered
in analysis. Despite this, we identified very high levels of
agreement between the tasks that we included previously and
those analyzed here, and high agreement was consistent across
tasks. Thus, it seems likely that assessments in the non-dominant
limb, or in left-handed individuals, would yield comparable
results to those observed here. Note also that our data analysis
procedure adjusted for handedness in calculating normalized
Z-scores. Given that we performed these assessments on healthy
individuals, it remains to be seen how well these results
generalize to individuals with neurological impairments and if
PCA facilitates separation of healthy individuals and those with
neurological deficits, such as stroke. It is possible that stroke
perturbs normal motor synergies and therefore could disrupt
the way that our kinematic parameters group together, which
would be favorable if used as a preprocessing step for supervised
classification. These problems need to be considered in future
studies. Furthermore, there were differences in the number of
participants in the study across both platforms, which may have
contributed small differences in PC loadings or orderings.

CONCLUSION

We identified that PCA of data from the Kinarm EXO was able
to intuitively describe sensorimotor task performance, in line
with our previous work using the Kinarm EP. We additionally
identified across-task or across-limb associations of parameters
that potentially highlight higher-level patterns of sensorimotor
behavior in healthy individuals. Finally, we can quantitatively

state that behavioral constructs uncovered using PCA on EP-
and EXO robots were conserved across platforms. Future work
should investigate the use of our PCA-based approach to improve
the classification of clinical populations and assist with the
characterization of neurological deficits.
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