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Abstract

Aim: To investigate which metabolic pathways are targeted by the sodium-glucose

co-transporter-2 inhibitor dapagliflozin to explore the molecular processes involved

in its renal protective effects.

Methods: An unbiased mass spectrometry plasma metabolomics assay was per-

formed on baseline and follow-up (week 12) samples from the EFFECT II trial in

patients with type 2 diabetes with non-alcoholic fatty liver disease receiving

dapagliflozin 10 mg/day (n = 19) or placebo (n = 6). Transcriptomic signatures from

tubular compartments were identified from kidney biopsies collected from patients

with diabetic kidney disease (DKD) (n = 17) and healthy controls (n = 30) from the

European Renal cDNA Biobank. Serum metabolites that significantly changed after

12 weeks of dapagliflozin were mapped to a metabolite-protein interaction network.

These proteins were then linked with intra-renal transcripts that were associated

with DKD or estimated glomerular filtration rate (eGFR). The impacted metabolites

and their protein-coding transcripts were analysed for enriched pathways.

Results: Of all measured (n = 812) metabolites, 108 changed (P < 0.05) during

dapagliflozin treatment and 74 could be linked to 367 unique proteins/genes. Intra-

renal mRNA expression analysis of the genes encoding the metabolite-associated

proteins using kidney biopsies resulted in 105 genes that were significantly associ-

ated with eGFR in patients with DKD, and 135 genes that were differentially

expressed between patients with DKD and controls. The combination of metabolites

and transcripts identified four enriched pathways that were affected by dapagliflozin

and associated with eGFR: glycine degradation (mitochondrial function), TCA cycle II

(energy metabolism), L-carnitine biosynthesis (energy metabolism) and superpathway

of citrulline metabolism (nitric oxide synthase and endothelial function).

Conclusion: The observed molecular pathways targeted by dapagliflozin and associ-

ated with DKD suggest that modifying molecular processes related to energy
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metabolism, mitochondrial function and endothelial function may contribute to its

renal protective effect.
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bioinformatics, dapagliflozin, kidney function, metabolomics, sodium-glucose co-transporter-2,

type 2 diabetes

1 | INTRODUCTION

Sodium-glucose co-transporter 2 inhibitors (SGLT2is) are approved

for glucose-lowering treatment of patients with type 2 diabetes.

SGLT2is show beneficial effects on body weight, blood pressure and

albuminuria and reduce the risk of heart failure hospitalization and car-

diovascular (CV) death as well as end-stage renal disease in patients

with diabetic kidney disease (DKD).1-4 The precise underlying mecha-

nisms responsible for these protective effects remain to be resolved.

Although SGLT2is are primarily indicated as glucose-lowering agents,

they have a broad range of effects that could explain the salutary

effects on CV and renal health including effects on energy metabolism,

renal function, electrolyte and plasma volume homeostasis.5-8

Although several theories on the mechanism of action have been

proposed, sophisticated mechanistic studies in humans as well as

unbiased approaches are needed to understand the molecular mecha-

nism underlying the protective effect of SGLT2is on CV and renal

outcomes. To this end, a prior study performed untargeted met-

abolomics, that is, the measurement of low-weight intermediates and

end-products of cellular functions in biological fluids, to investigate the

effect of short-term (4 weeks) treatment with the SGLT2i empagliflozin

on serum metabolites in patients with type 2 diabetes.9 However, this

study only described a subset of metabolites changed during

empagliflozin treatment and did not perform an integrative bioinfor-

matic approach to examine which kidney tissue-associated molecular

pathways may be associated with SGLT2i-altered metabolites.

In the current study, we have used an unbiased high-throughput

metabolomics assay to measure metabolites involved in all major met-

abolic pathways in plasma from patients with type 2 diabetes treated

with dapagliflozin for 12 weeks. We subsequently integrated the

metabolites with transcriptomic features measured in kidney tissues

in a bioinformatic analysis to identify molecular pathways through

which dapagliflozin may exert renal protective effects in order to

improve our understanding of the mechanistic action of dapagliflozin.

2 | MATERIALS AND METHODS

2.1 | Study design

For the current study, all patients with type 2 diabetes treated with

dapagliflozin (n = 19) were selected from the EFFECT II study.10 The

design and primary results of the EFFECT II study were published pre-

viously.10 Briefly, it was a 12-week, multicentre, randomized, placebo-

controlled, double-blind, four-arm, parallel group trial performed at

five clinical research centres at university hospitals in Sweden. Indi-

viduals enrolled in this study were eligible if they had been treated

with a stable dose of metformin or sulphonylurea alone or in combi-

nation for at least 3 months, if they had a liver proton density fat

fraction of >5.5%, which is commonly used as a cut-off for non-

alcoholic liver fatty disease, and a body mass index (BMI) of

>25 kg/m2. Exclusion criteria included the use of SGLTis, insulin or

glucagon-like peptide receptor agonists, or a history of hepatic dis-

ease and creatinine clearance of <60 mL/min (Cockcroft-Gault).

Patients were randomly assigned to dapagliflozin 10 mg/day,

omega-3 carboxylic acids 4 g/day, combined dapagliflozin and

omega-3 carboxylic acids, or matching placebo. For the purpose of

this analysis, data from patients with available samples for met-

abolomics analysis and assigned to dapagliflozin (n = 19) or placebo

(n = 6) were used. The study was approved by the Regional Ethics

Review Board in Uppsala, registered at ClinicalTrial.gov (ClinicalTrial.

gov identifier NCT02279407) and conducted in accordance with the

Declaration of Helsinki and the International Conference on

Harmonisation of Good Clinical Practice. All participants provided

written informed consent before participating.

To link the metabolomics signature derived from the EFFECT II

study to a kidney-specific pathophysiological context, we used cross-

sectional transcriptomics data from patients with DKD (n = 17) and

healthy donors (n = 30) who participated in the European Renal cDNA

Bank-Kroener-Fresenius Biopsy Bank (ERCB) cohort (n = 47). The

study design and characteristics of these participants have been

described previously.11,12

2.2 | Participant characteristics and measurements

In the EFFECT II cohort, patient characteristics were obtained as pre-

viously described.10 Briefly, height and weight were measured with

standard methods in light clothing without shoes and BMI was calcu-

lated as body weight (kg) divided by height (m) squared. Fasting blood

samples were taken in the morning before intake of the investiga-

tional products. HbA1c was determined with ion-exchange high-

performance liquid chromatography (All Variant II and Variant II Turbo

Hemoglobin A1c reagents, Bio-Rad, Hercules, CA).

In the ERCB cohort, fresh renal biopsy samples from patients with

DKD and healthy donors were micro-dissected into glomerular and

tubulointerstitial compartments. RNA was isolated and prepared for

microarray analysis as described previously.11,12
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2.3 | Metabolomic platform

The non-targeted metabolomic analysis was performed at Metabolon

(Morrisville, NC). All plasma samples were stored at −80�C until

processed. Fasting plasma samples from baseline (visit 1) and end-of

study (visit 4) were extracted. The samples were extracted with meth-

anol and the supernatants divided into five equal fractions: two for

analysis by two separate reverse phase (RP)/ultra-performance liquid

chromatography-tandem mass spectrometry (UPLC-MS/MS) methods

with positive ion mode electrospray ionization (ESI), optimized for

more hydrophilic and hydrophobic compounds, respectively, one for

analysis by RP/UPLC-MS/MS with negative ion mode ESI, one for

analysis by hydrophilic interaction liquid chromatography/UPLC-MS/

MS with negative ion mode ESI, and one sample was reserved for

backup.13 All methods utilized a Waters ACQUITY UPLC and a

Thermo Scientific Q-Exactive high resolution/accurate mass spec-

trometer interfaced with a heated ESI source and Orbitrap mass ana-

lyser operated at 35 000 mass resolution. The MS analysis alternated

between MS and data-dependent MSn scans using dynamic exclusion.

The scan range varied slightly between methods but covered

70-1000 m/z. Compounds were identified by comparison with stan-

dard library entries of purified standards or recurrent unknown enti-

ties based on retention time, molecular weight, preferred adducts and

in-source fragments, as well as associated MS spectra, and were

curated by visual inspection for quality control using proprietary soft-

ware developed by Metabolon. The method by which each metabolite

is quantitated was dependent on factors such as interference by

neighbouring peaks and reproducibility/variability. The quantitation

was performed by proprietary software that matched ions to an in-

house library of standards for metabolite identification followed by

metabolite quantitation by peak area integration.14

2.4 | Statistical analysis

Before analysis, the metabolic dataset was imputed with the lowest

observed value in the sample for that metabolite. All values were

median scaled and before analysis were transformed using the natural

logarithm. Changes in metabolites were primarily evaluated in a uni-

variate fashion. To determine whether metabolites had significantly

changed, paired t-tests were used on the difference between baseline

and end of study in logarithmic scale. The results of the paired t-tests

are presented as geometric mean ratios and P-values. No adjustment

for multiplicity was performed because of the hypothesis-generating

nature of the study; instead we evaluated the results based on a path-

ophysiological context and pathway analysis using the significant

changes from the paired t-test. A P-value below 0.05 was regarded as

significant. The changes in metabolites were also adjusted for changes

in fasting plasma glucose by looking at the intercept of a linear regres-

sion model with change in the logarithm of glucose as a covariate. In

an additional analysis, the effect of dapagliflozin compared with pla-

cebo on the change in the metabolite from baseline was also assessed

by an analysis of covariance model (ANCOVA) with treatment and

baseline measurement as covariates. Because of the small sample size

of the placebo group, a P-value of ≤0.1 was adopted to indicate statis-

tical significance. A sensitivity analysis was performed by adding an

interaction term in the ANCOVA. All statistical analyses were per-

formed with R version 3.3.3 to 3.5.2 (R Project for Statistical Comput-

ing, www.r-project.org). A schematic overview of the multi-omics

approach to identify molecular pathways associated with progressive

kidney function decline is shown in Figure 1. All metabolomic features

were used for analyses as there were no missing values. The human

metabolite database (HMDB) version 4.0 was used to select related

genes. Significant metabolites (ρ ≤ 0.05) identifiable by an HMDB

identifier were used for mapping and pathway analysis. To link these

metabolomic molecular features to a kidney-specific pathophysiologi-

cal context, all significant metabolomic molecular features that could

be mapped to a gene were subsequently associated with kidney

biopsy-derived transcriptomic features. SGLT2i-induced changes in

metabolome were probably affecting the high energy-demanding

tubules, making it a probable candidate for cross-omics integration.

To select the transcripts, we used the annotated protein-metabolite

interactions in the HMDB and selected protein-coding transcripts.

The selected transcriptomic features were used for the pathway inte-

gration if they either correlated with the estimated glomerular filtra-

tion rate (eGFR) assessed by Pearson correlation in patients with

DKD, or when they were differentially expressed between healthy liv-

ing donors without diabetes or chronic kidney disease and patients

with DKD, as assessed by Student's t-test (Figure 1).

Ingenuity pathway analysis (QIAGEN) version 01–14 software

was used to assign enriched pathways from the selected molecular

metabolic or transcriptomic features using Fischer's exact test. The

significantly enriched pathways (P < 0.05) based on transcriptomic or

metabolomics features were compared. The set pathways identified

by overlapping significant pathways from both metabolites and tran-

scripts were used as a probable mechanism, on a mechanistic molecu-

lar level, for how dapagliflozin can attenuate kidney function decline.

3 | RESULTS

3.1 | Participants

The participants in the EFFECT II study had an average age of

64.7 years and were all overweight or obese (Table 1). At baseline, the

mean diabetes duration was 4.7 years. Most individuals were treated

with metformin alone (58%) or in combination with sulphonylurea

(21%), 16% were drug-naïve and one patient was treated with sul-

phonylurea alone (5%). No change in medication occurred during the

study period. Mean HbA1c was 56 mmol/mol or 7.3%. As previously

reported, dapagliflozin treatment decreased body weight by 3%

(P < 0.05) and fasting glucose by 10% (P < 0.05) from baseline.9 In the

ERCB cohort, participants with DKD had a lower eGFR compared

with living donors and EFFECT II participants (Table 1).
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3.2 | Metabolomic profiles

A total of 1216 metabolites were measured, including 812 identified

metabolites and 404 which were unknown. The paired t-test evaluat-

ing differences between baseline and week 12 in the dapagliflozin

treatment arm identified 108 metabolites that significantly changed,

of which 22 metabolites were significantly increased and 86 were sig-

nificantly reduced (Tables S1 and S2). In order to understand how the

reduction of glucose could have influenced the metabolites, the

changes in metabolites were also adjusted for changes in glucose

(Tables S1 and S2). An additional analysis was performed to examine

the effect of dapagliflozin compared with placebo on the metabolites.

Fourteen metabolites increased compared with placebo while

16 metabolites decreased compared with placebo (Tables S1 and S2).

The subsequent presentation and analyses are based on the

placebo unadjusted metabolite changes during dapagliflozin treat-

ment. Metabolites belonging to the superpathway of amino acids

were largely over-represented among the metabolites that

significantly increased and constituted more than 80% of the identi-

fied metabolites, while the remaining metabolites belonged to the

superpathways of xenobiotics, carbohydrates and co-factors and vita-

mins (Table S1). The most significant was N-acetyl aspartate (NAA),

which is uniquely synthesized by neuronal mitochondria.15 An

increase in carnitines derived from partly metabolized branch chain

amino acids (BCAAs) (isobutyryl-, isovaleryl- and tiglylcarnitines) was

observed, while the levels of the corresponding amino acids did not

change. Three out of the 22 metabolites identified as significantly

increased by SGLT2is belonged to the sub-pathway of histidine

metabolism. Plasma levels of urea as well as four other metabolites,

including N6-N6-N6-trimethyllysine and arginate, belonging to the

urea cycle sub-pathway, were increased. Plasma levels of creatine,

sarcosine and heme also increased.

Among the metabolites that were reduced, lipids were over-

represented and constituted >50% of the downregulated identified

metabolites (Table S2). Lipid species from several different lipid clas-

ses were reduced, including diacylglycerols, endocannabinoids,

F IGURE 1 Schematic overview of a metabolomics to intra-renal transcriptomics approach to identify molecular pathways targeted by
dapagliflozin and associated with progressive kidney function decline. (A) Metabolomics were performed in the EFFECT II randomized controlled
trial. (B) Metabolites changed during dapagliflozin were identified. (C) To link the metabolomic features with kidney-specific pathophysiology,
unique protein-coding genes derived from metabolomic features that significantly changed during dapagliflozin treatment were identified, and the
gene expression profiles measured in kidney tissues from ERCB participants representing these genes were selected. (D) The gene expressions
were then associated with estimated glomerular filtration rate decline, and significant features were selected. (E) Pathway analysis was then
performed based on selected metabolomics and transcriptomic features, and (F) integration analysis of enriched molecular pathways based on
metabolites and intra-renal transcripts was performed to select molecular pathways targeted by dapagliflozin and associated with diabetic kidney
disease progression. ERCB, European Renal cDNA Bank-Kroener-Fresenius Biopsy Bank
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dicarboxylic acids and monohydroxylated, mainly 3-hydroxylated, fatty

acids. A marked reduction in a dihydroxy fatty acid, 12, 13-HOME, was

also observed. Interestingly, several primary and secondary bile acids

were reduced, indicating reduced bile acid pool. As expected, treatment

reduced plasma glucose levels and other simple carbohydrates. The

change in fasting glucose correlated well with the quantitative changes

in fasting glucose measured previously (ρ = 0.79, P < 0.0001). As previ-

ously observed, plasma levels of urate were reduced.5 Three metabolites

in xanthine metabolism including theophylline, which is upstream urate

in purine degradation, were reduced. Alanine and glutamine were the

only amino acids reduced in plasma. Intermediates in the TCA cycle,

including succinate, fumarate and malate, were reduced.

3.3 | Metabolomics to transcriptomics linkage

As a next step, we took advantage of our database containing trans-

criptomic profiles derived from micro-dissected tubulointerstitial com-

partments of patients' biopsies and corresponding eGFR. The aim was

to identify early effects of dapagliflozin on kidney function by corre-

lating changes associated with DKD with effects of dapagliflozin in

the diabetic EFFECT II patients with normal eGFR. To link the metabo-

lites to a kidney-specific pathophysiological context, the metabolomic

molecular features that significantly changed during dapagliflozin

treatment and could be linked to a gene were subsequently associ-

ated with kidney biopsy-derived transcriptomic features. The number

of metabolites and transcripts that were selected for pathway identi-

fication are shown in Table 2. Of the 812 measured metabolites,

535 metabolites could be linked to a known HMDB identifier. Of

these identified metabolites, 74 (Tables S1 and S2) were significantly

changed by dapagliflozin and were mapped to proteins. Because a

single metabolite can be derived from multiple proteins, the 74 known

metabolites resulted in 367 unique proteins with corresponding

protein-coding gene (Table 2). To link these proteins to molecular sig-

natures within a kidney-specific context, genes were selected from

the same proteins that were associated with the metabolomics

molecular features that changed upon dapagliflozin treatment. The

expression value of these genes was then extracted from trans-

criptomic data derived from micro-dissected tubulointerstitial com-

partments of patients' biopsies. Of the 367 selected tubular protein-

coding genes, 292 passed quality control. Linear regression analyses

and differential expression analysis subsequently showed that

105 genes were significantly associated (P < 0.05) with eGFR in

patients with DKD (n = 17) and 135 genes were differentially

expressed (P < 0.05) between DKD (n = 17) and healthy donors

(n = 30) (Table 2).

TABLE 1 Baseline characteristics from the EFFECT II and ERCB cohorts

EFFECT II ERCBa

Dapagliflozin (n = 19) Placebo (n = 6) Living donor (n = 30) Diabetic kidney disease (n = 17)

Age, years 64.7 (6.6) 64.7 (6.9) 48 (12) 58 (10)

Sex

Male 14 3 15 12

Female 5 3 15 5

BMI, kg/m2 30.5 (2.9) 30.7 (2.2)

Diabetes duration, years 4.7 (9.3) 7.2 (7.0)

HbA1c, % 7.3 (0.5) 7.9 (0.6)

Cholesterol, mmol/L 4.9 (1.0) 4.2 (1.2)

Triglycerides, mmol/L 2.1 (1.2) 2.2 (1.0)

Diastolic blood pressure, mmHg 86.2 (7.8) 84.6 (6.2)

Systolic blood pressure, mmHg 147.3 (12.2) 136.2 (6.7)

eGFR, mL/min per 1.732 86.5 (11.2) 87.7 (11.9) 106.2 (30.9) 44.3 (24.9)

Diabetes medication

Metformin, n (%) 11 (58%) 4 (67%)

Sulphonylurea, n (%) 1 (5%) 0 (0%)

Metformin + sulphonylurea, n (%) 4 (20%) 1 (17%)

None/other, n (%) 3 (16%) 1 (17%)

Hypertension medication

ACEi, n (%) 8 (42%) 1 (17%)

ARB, n (%) 6 (32%) 3 (50%)

Abbreviations: ACEi, angiotensin-converting enzyme inhibitor; ARB, angiotensin II receptor blocker; BMI, body mass index; eGFR, estimated glomerular

filtration rate; ERCB, European Renal cDNA Bank-Kroener-Fresenius Biopsy Bank.
aClinical chemistry and diabetes medications were not recorded in the ERCB cohort.
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3.4 | Pathway analysis

Pathway selection occurred on the basis of the overlap between the

enriched pathways derived from selected transcriptomic and met-

abolomics features. At the pathway level, enrichment analysis of the

significantly deregulated metabolites resulted in seven metabolic

pathways (Figure 2). Four of these pathways were also significantly

enriched in the transcriptome and resulted in 15 unique genes and

11 metabolites of interest (Table 3, Figure 3). Thus, in total, four

molecular pathways associated with dapagliflozin and DKD were

identified based on the overlap between metabolomic- and

transcriptomic-derived pathways (Figure 3). The bioinformatic analysis

revealed that dapagliflozin upregulated the superpathway of citrulline

metabolism, as well as the TCA cycle II, and the L-carnitine biosynthesis

pathways, and seemed to decrease the glycine degradation (creatine bio-

synthesis) pathway. When comparing dapagliflozin with placebo treat-

ment, metabolites included in the superpathway of citrulline metabolism

and the glycine degradation pathway were significantly different, while

metabolites in the TCA cycle II and L-carnitine pathways were not signif-

icantly different between the groups.

4 | DISCUSSION

In this study, we investigated the effect of 12 weeks of treatment of

dapagliflozin, an SGLT2i, on plasma levels of more than 800 identified

metabolites. In general, our results show that treatment of

dapagliflozin in the fasting situation is associated with increased

amino acid metabolites and reduced levels of lipid species from sev-

eral subclasses. We used a bioinformatic approach to delineate molec-

ular pathways that may contribute to the renal protective effects of

the SGLT2i dapagliflozin. Overlap at the gene expression level

between metabolites targeted by dapagliflozin and intra-renal

transcripts associated with DKD pointed to upregulation of the

TABLE 2 Summary of feature selection. The number of features measured and associated with dapagliflozin and diabetic kidney disease
(DKD) are shown for metabolomic and transcriptomic features

Features measured (n)a Features selected (n)b Unique compounds (n)c Unique protein-coding genes

Metabolomics

SGLT2i 812 108 74 367

Transcriptomics

Tubular cross sectional eGFR 292 105 105 105

Tubular DN vs. healthy 292 135 135 135

Abbreviations: DN, diabetic nephropathy; eGFR, estimated glomerular filtration rate; SGLT2i, sodium-glucose co-transporter 2 inhibitor.
aNumber of features that could be measured using the assay.
bIdentifiable features by univariate analysis or machine learning.
cUnique identifiable features by univariate analysis or machine learning.

F IGURE 2 Pathways
significantly enriched in features
based on metabolites affected
by dapagliflozin. Significant
genes (green, left column)
derived from the renal tissue
transcriptomics and associated
with estimated glomerular
filtration rate or significantly
different between patients with

diabetic kidney disease and
healthy donors are shown.
Metabolites which significantly
changed during dapagliflozin
and represented in the enriched
pathways are shown in red on
the right side of the figure. In
the middle, enriched pathways
based on the metabolites are
shown in blue, with the bold
pathways also having significant
enrichment in the kidney
transcriptome
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superpathway of citrulline metabolism, the TCA cycle II, and L-carnitine

biosynthesis, as well as possibly a downregulation of the glycine degra-

dation pathway (creatine biosynthesis). These molecular pathways are

linked to energy metabolism, mitochondrial function and endothelial

function, suggesting that dapagliflozin treatment may slow the progres-

sion of DKD by altering the activity of these pathways.

In line with previously published metabolomics results based on

1 month of treatment with empagliflozin, several of the increased

TABLE 3 Summary of pathways and their respective mapping across omics and features sorted by P-value of the univariate enrichment
analysis

Pathway*

Metabolites changed during

dapagliflozin treatment

Intra-renal transcripts and

correlation with eGFR in DKD

Difference in transcripts between

DKD and healthy control

Superpathway of citrulline

metabolism

Fumaric acid, L-glutamine, urea GLS2, ASL, GLS ARG2

TCA cycle II Succinic acid, fumaric acid, L-malic acid SDHB, FH, SDHD, MDH2,

SUCLA2, MDH1, SUCLG1

SDHB, FH, SDHD, MDH2,

SUCLA2, SUCLG1

Glycine degradation

(creatine biosynthesis)

Creatine, guanidinoacetate GAMT, GATM GAMT, GATM

L-carnitine biosynthesis N6,N6,N6-trimethyl-L-lysine, succinic acid BBOX1, ALDH9A1 ALDH9A1

Abbreviations: ALDH9A1, aldehyde dehydrogenase 9 family member A1; ARG2, arginase 2; ASL, argininosuccinate lyase; BBOX1, butyrobetaine (gamma)

2-oxoglutarate dioxygenase (gamma-butyrobetaine hydroxylase) 1; DKD, diabetic kidney disease; eGFR, estimated glomerular filtration rate; FH, fumarate

hydratase; GAMT, guanidinoacetate N-methyltransferase; GATM, glycine amidinotransferase (L-arginine: glycine amidinotransferase); GLS, glutaminase;

GLS2, glutaminase 2 (liver, mitochondrial); MDH1, malate dehydrogenase 1 NAD (soluble); MDH2, malate dehydrogenase 2 NAD (mitochondrial); SDHB,

succinate dehydrogenase complex, subunit B, iron sulphur (Ip); SDHD, succinate dehydrogenase complex subunit D integral membrane protein; SUCLA2,

succinate-CoA ligase ADP-forming beta subunit; SUCLG1, succinate-CoA ligase alpha subunit.

*P-values from Fisher exact test for enrichment of each pathway by metabolites were 0.014, 0.016, 0.020 and 0.028 for superpathways of citrulline

metabolism, TCA cycle II, glycine degradataion and L-carnitine biosynthesis, respectively. P-values for enrichment of these pathways by transcripts were

0.039, <0.01, 0.014 and 0.023, respectively.

F IGURE 3 Identified molecular pathway
based on metabolite and intra-renal transcripts
integration. Molecular pathways highlighted in
light orange indicate pathways targeted by
dapagliflozin and associated with diabetic
kidney disease progression
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metabolites belonged to the sub-pathway of BCAA, while the

corresponding BCAAs were not changed.9 Also, urea and urea cycle

metabolites, including N2, N5 diacetylornithine, N-delta-acetylornithine

and argininate, were similarly increased in the two studies. In contrast

to the findings of Kappel et al,9 we observed decreased levels of TCA

metabolites. The reason for the different response is unclear but may

be attributable to many factors such as different populations or treat-

ment durations. Whereas Kappel et al found increased levels of acetyl-,

propionyl- and β-hydroxybutyrylcarnitine, we have observed increased

levels of butyrylcarnitine10 and, in this study, reduced plasma levels of

myristoylcarnitine. When fatty acid oxidation is incomplete, surplus

acyl-groups are exported from mitochondria as acylcarnitines.16

Reduced levels of acylcarnitines could therefore reflect a larger degree

of complete fatty acid oxidation. In contrast to the long-chain

acylcarnitines, fasting increases the release of short-chain carnitines,

including acetylcarnitine and propionylcarnitine from the hepa-

tosplanchnic bed.17 Several 3-hydroxy fatty acids decreased by

dapagliflozin and high levels of these fatty acids are markers of fatty

acid oxidation disorders.18 Together, these results could indicate

improved fatty acid oxidation and an enhanced fasting response with a

surplus of 2- and 4-chain carbons.

Plasma metabolomics have also been investigated in animal

models treated with SGLT2is. Treatment of obese non-diabetic mice

with canagliflozin showed activation of catabolic pathways including

fatty acid oxidation and signs of inhibition of mTOR, while there was

activation of AMPK.19 In another study, the effects of ipragliflozin on

metabolites were investigated in a model of diabetic nephropathy on

Black and Tan BRachyury (BTBR) ob/ob mice.20 In line with our

results, they observed that SGLT2is reduced the high levels of TCA

cycle intermediates in the kidney of BTBR ob/ob mice. Collectively,

findings from these cross-species studies underscore the metabolic

effects of SGLT2is, which may potentially contribute to long-term

clinical benefits.

SGLT2i treatment increases haemoglobin and haematocrit. To what

extent this is secondary to plasma contraction or increased red cell mass

is unknown.21 Heme, an intermediate in haemoglobin metabolism, is one

of the metabolites significantly increased after dapagliflozin treatment.

Increased heme levels could reflect an increased heme synthesis, but also

reduced degradation of heme by heme oxygenase. Reduced plasma

levels of bilirubin could indicate reduced heme degradation because car-

bon oxide and biliverdin, which is further reduced to bilirubin, are the

end-products of heme oxygenase activity.22 Regardless of the exact

underlying mechanism, the increase in heme supports a potential effect

of SGLT2is on haematopoiesis.23

The molecular pathways selected through our bioinformatic

approach have been associated with progressive renal function loss in

patients with type 2 diabetes.24-26 The bioinformatics analysis showed

that dapagliflozin treatment increased the TCA cycle activity. Expres-

sion of several TCA cycle enzymes was associated with increased

eGFR, indicating a positive effect on renal mitochondrial function.

Increased levels of metabolites and intermediates of the TCA cycle

have been associated with DKD and endoplasmatic reticulum

stress.24,27 The cause of the reduced levels of TCA-cycle

intermediates is not clear, but may be explained by improved mito-

chondrial efficacy, as reflected by indications of a larger degree of

complete fatty acid oxidation as well as increased gluconeogenesis,

which may take place both in the liver and the kidney to compensate

for urinary glucose loss. Additional support of the salutary effects on

mitochondrial function is our finding that kynurenine was reduced

while picolinic acid, a product of kynurenine metabolism, increased.

This finding may indicate increased activity of the kynurenine path-

way and increased production of quinolinic acid and NAD+ that may

further support improved mitochondrial function after dapagliflozin

treatment. Also, the increased plasma levels of NAA indicate improved

mitochondrial function, specifically in the brain.15 In line with these

observations, a recent study showed that a metabolite panel previ-

ously associated with reduced mitochondrial function improved after

dapagliflozin in patients with type 2 diabetes and chronic kidney dis-

ease.28 Moreover, studies in experimental animals have shown

improved mitochondrial function both in the heart and renal tubules

following treatment with SGLT2is.29,30 These data together support

the notion that long-term renal protective effects of SGLT2is may be

mediated through amelioration of mitochondrial function.

We also found the superpathway of citrulline metabolism to be

associated with DKD progression and targeted/increased by

dapagliflozin, as evidenced by the increase in urea and reduction in

glutamine. The citrulline pathway involves nitric oxide synthase as

one of the key enzymes which generates citrulline from arginine in a

single reaction step. Nitric oxide synthase-derived nitric oxide exerts a

wide array of effects and acts in the blood vessels as a potent vasodi-

lator, exerting antithrombotic effects, and also has anti-inflammatory

effects.31 Several studies have shown that SGLT2 inhibition in

patients with type 2 diabetes improves endothelial function as mea-

sured by reactive hyperemia peripheral arterial tonometry and flow-

mediated dilation and endothelial dysfunction has been associated

with accelerated renal function decline.32-34 The exact mechanism of

how SGLT2 inhibition improves endothelial function is not fully

understood but may involve improved glycaemic and metabolic con-

trol, osmotic diuresis, and changes in sodium homeostasis as a result

of increased natriuresis. The current study supports a potential role

for improvements in endothelial function, through the citrulline path-

way, as one of the potential mediators of the protective effects of

SGLT2 inhibition on kidney function.

The results of the bioinformatics approach indicated a change in

the glycine degradation pathway after dapagliflozin treatment. De

novo creatine synthesis starts by the conversion of glycine and argi-

nine to ornithine and guanidinoacetate by glycine amidinotransferase

(GATM), and guanidinoacetate is then converted to creatine by

guanidinoacetate N-methyltransferase (GAMT), a reaction which is

dependent on S-adenosylmethionine as methyl donor.35 In this study,

plasma creatine levels increased, while the creatine precursor,

guanidinoacetate, was reduced, indicating increased GAMT activity.

Alternatively, reduced GATM activity explains reduced levels of

guanidinoacetate and therefore increased creatine levels must be

explained by causes other than changed synthesis, such as increased

dietary intake of creatine. Overall, the bioinformatics analysis
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suggested reduced activity of the pathway, although we cannot rule

out the possibility that increased creatine levels are the result of

increased GAMT activity. Therefore, the suggestion of reduced gly-

cine degradation should be carefully interpreted.

In contrast to previous studies, this study combined met-

abolomics and transcriptomics to identify metabolites and pathways

associated with dapagliflozin response. This approach is potentially

applicable in other chronic disease settings and can be used to identify

novel biomarkers for disease progression and drug efficacy and safety

monitoring. The advantage is that the bioinformatic approach incorpo-

rates molecular pathway information associated with disease progres-

sion as well as biomarkers and pathway information associated with

drug response, thereby decreasing the probability of false positive

findings. A limitation is that the bioinformatic approach only includes

molecular features and molecular pathways which have previously

been annotated and does not include novel mechanisms.

The limitations of this study include the small sample size, which

hampers the statistical power of this study as well as the generalizabil-

ity to the broader type 2 diabetes population because the studied

population was a predominantly male Caucasian population. Although

we compared the effect of dapagliflozin with placebo in an additional

analysis, we only considered metabolites which statistically signifi-

cantly changed from baseline during dapagliflozin treatment for fur-

ther integration analysis because the metabolomics profile could only

be determined in six patients in the placebo group. Secondly, the short

follow-up precluded assessment of the effect of dapagliflozin on

eGFR decline. Thirdly, the EFFECT II trial included patients with pre-

served kidney function, whereas tissue renal transcriptomics was per-

formed in patients with preserved or impaired renal function

participating in the ERCB study. It is possible that the effects of

dapagliflozin on the metabolites are different in patients with different

clinical characteristics, demographics and degrees of renal impairment.

Hence, validation of our findings in larger studies with a longer dura-

tion as well as in patients with type 2 diabetes and chronic kidney dis-

ease, such as the DAPA-CKD trial, is required.36 Unfortunately, urine

was not available, which could reveal a more renal specific signal.

Nevertheless, our finding that metabolites related to mitochondrial

function changed was in keeping with another study using urinary

metabolites.25

In conclusion, the molecular pathways targeted by dapagliflozin

and associated with DKD suggest that molecular processes related to

energy metabolism, mitochondrial function and endothelial function

may be involved in the renal protective effects of dapagliflozin. These

data confirm existing and offer novel hypotheses about the molecular

effects of dapagliflozin in slowing the progression of DKD.
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