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Abstract: Breast cancer has now overtaken lung cancer as the world’s most commonly diagnosed
cancer, with thousands of new cases per year. Early detection and classification of breast cancer
are necessary to overcome the death rate. Recently, many deep learning-based studies have been
proposed for automatic diagnosis and classification of this deadly disease, using histopathology
images. This study proposed a novel solution for multi-class breast cancer classification from
histopathology images using deep learning. For this purpose, a novel 6B-Net deep CNN model, with
feature fusion and selection mechanism, was developed for multi-class breast cancer classification.
For the evaluation of the proposed method, two large, publicly available datasets, namely, BreaKHis,
with eight classes containing 7909 images, and a breast cancer histopathology dataset, containing
3771 images of four classes, were used. The proposed method achieves a multi-class average accuracy
of 94.20%, with a classification training time of 226 s in four classes of breast cancer, and a multi-class
average accuracy of 90.10%, with a classification training time of 147 s in eight classes of breast cancer.
The experimental outcomes show that the proposed method achieves the highest multi-class average
accuracy for breast cancer classification, and hence, the proposed method can effectively be applied
for early detection and classification of breast cancer to assist the pathologists in early and accurate
diagnosis of breast cancer.

Keywords: deep features selection; machine learning; breast cancer; multi-class; fusion; 6B-Net;
deep learning

1. Introduction

Breast cancer is a widespread disease with a very high mortality rate, commonly
present in middle-aged women all over the world. According to a cancer survey, breast
cancer has been declared the second most common cause of demise after lung cancer among
all types of cancer-related mortalities around the globe [1]. A recent survey of 36 cancers
shows that the newly diagnosed cases of breast cancer are approaching a rate of 7.3%, with
a death rate of 6.9%, which shows that breast cancer is the most prevalent cancerous disease
with an excessive death rate [2]. The US breast cancer statistics show that there are expected
to be 281,550 newly diagnosed cases of invasive cancer in 2021, and that 43,600 women
will lose their lives due to this disease. Moreover, statistics show that approximately 30%
of newly investigated cancer cases in American women in 2021 will be breast cancer [3].
An accurate and prior diagnosis of this deadly disease is highly desirable to overcome the
death rate. It is estimated that approximately 90% of breast cancer patients may be cured
and treated with an early and accurate diagnosis [4].

The initial diagnosis of breast cancer is carried out by physical examination and visual
analysis of mammography and ultrasonic images. The final diagnosis of cancer is then
confirmed using microscopic analysis of the extracted region after surgery. The pathologist
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makes the final diagnosis of breast cancer from a microscopic modality [5]. The manual
diagnosis of this deadly disease is a laborious and complex task, due to a lack of standards,
the need for expert pathologists, and it is also subjective. The diagnosis of the same patients
may produce different results from different pathologists. According to a study, diagnosis
conflict among different pathologists using biopsy samples is about 25% [6—8]. In most
cases, breast cancer diagnosis is carried out with the help of histopathology images [9].
Diagnosis is being made easier with the advancement in computer technology machine
learning (ML), and deep learning (DL) is being applied on a large scale to automate
the manual diagnosis of different diseases [10,11]. Deep convolution neural networks
(DCNN) produced promising results in medical diagnosis [12]. The high performance of
DCNN in medical image analysis makes it possible to implement DCNN for breast cancer
early diagnosis, by using histopathology analysis outcomes in the form of images. The
DCNN utilized the different patches of whole slide images to detect the different categories
of breast cancer, by using the majority voting scheme on the last layer of the network.
Moreover, feature extraction using DCNN and ML algorithms for classification are also
being implemented in the early detection of cancer [13]. Recently, many computer-aided
solutions for the early and accurate detection of breast cancer have been proposed and
successfully tested. Yassin et al. propose a study and discuss the different computer-
aided diagnosis systems that utilize different imaging methods to accurately diagnose
breast cancer. Their review suggests that a more efficient and accurate CAD system for
breast cancer detection is highly desirous [14]. In another recent review, Fujiok et al.
discuss the recent progress and challenges of breast cancer detection by using DL with
the help of ultrasonography, and report that deep learning-based diagnosis of breast
cancer is gaining increased attention, due to high performance and the research gap in
terms of accuracy and model improvement [15]. For a more in-depth view of breast cancer
segmentation and classification from histology images, interested readers are referred to the
latest survey articles [16-20].

Most of the work in breast cancer classification attempted to solve the binary class
classification of breast cancer. Very few studies have presented that try to solve multi-class
breast cancer classification into four classes, and, in addition, the multi-class classification
of breast cancer into eight classes is rarely discussed, due to the high resemblance of eight
classes of breast tumors. Due to the high similarity in input images of different classes
of breast cancer, it is a very challenging task to automatically classify breast cancer into
eight classes. Most of the recent work in multi-class classification of breast cancer was
carried out with simple transfer learning, or CNN models with fixed receptive fields of
convolutional kernels that are unable to extract the discriminative features. To solve the
multi-classification problem of breast cancer, this work proposed a 6B-Net with six branches
implemented, each with different receptive fields to capture the most discriminative high-
level features. For performance enhancement of the proposed method, feature fusion and
selection are also implemented before the final classification task. Experimental results show
that the proposed method achieves the best performance in terms of accuracy, and hence,
the proposed method can effectively be applied for the early detection and classification of
breast cancer to assist pathologists in the early and accurate diagnosis of breast cancer.

2. Material and Methods

The proposed DL-based method for breast cancer multi-class classification is presented
in Figure 1. Breast cancer is a widely spread, fatal disease, and to overcome the mortality
rate of this disease, an early and effective diagnosis is highly desirable. In this regard, this
research work proposed a DL-based automated solution for multi-class breast classification.
The proposed technique was comprised of three steps. Initially, a 35-layer deep CNN
model with one concurrent processing block was introduced. The proposed network was
first pre-trained using a third-party CIFAR-100 dataset [21] for feature learning. After
the successful pre-training of the proposed model, this model was further utilized as a
feature extractor for the breast cancer multi-class classification problem. After the feature
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extraction phase, the extracted feature vector was passed as input to the PSO feature
selection algorithm for the best feature selection. In the feature extraction phase, a feature
vector was also extracted by using pre-trained RESNET-50 [22], and a feature selection
method of ACS was applied to this feature vector for feature selection. To enhance the
performance of breast cancer classification, the outputs of the proposed 6B-Net model
selected vector and RESNET-50 selected vector were fused serially. After serial feature
fusion, a feature selection method of EBS was applied before classification. Finally, for
classifying breast cancer into eight different classes, diverse ML algorithms were employed.
The complete detail of the proposed CNN model and the selection process is presented in
the next two subsections of the article.
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Figure 1. The framework of the proposed fusion and selection-based method of breast cancer multi-
class classification. The feature extraction using the proposed 6B-Net block represents the feature
extraction process; feature fusion and selection block represent the proposed feature fusion and
selection process; and finally, the classification block represents the eight classes of breast cancer.
Here BC is representing breast cancer, FC is representing the fully connected layer, and ReLU is the
rectified linear unit.

2.1. Proposed 6B-Net CNN Model

This study proposed a novel six-branch deep CNN model for multi-class breast cancer
classification. The details of the layers of the proposed network architecture are presented
in Figure 2, and the complete implementation detail of every layer, with the number of
kernels and filter size, is presented in Table S1. The proposed model consists of a total of
35 layers and 39 connections. The input size of the 6B-Net CNN model is 227 x 227 x 3,
and it takes three-channel RGB images as input. Subsequently, the next 2D convolution
layer was implemented with 128 kernels, of size 9 x 9. The purpose of the convolution
layer is the extraction of features from the input image. The mathematical implementa-
tion of the convolution layer is presented in Equation (1), where img.,, represents the
image after the convolution step, fil5; shows the filter, ‘sz” represents the size of the filter
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(9 x 9), and ‘st’ represents the stride size, which in this case is 2. The first convolution
layer was implemented with the same padding and dilation factor of 1,1. After the first
convolution layer, the next activation layer was implemented with the ReLU. The purpose
of the activation layer is the transformation of the weighted sum from input to output
in the form activation function. The mathematical function of the activation function is
presented in Equation (2). The third layer in the proposed network is the max-pooling
layer, implemented with a window size of (5,5), stride size of 2, and the same padding
strategy. The purpose of using the max-pooling layer is the downsampling of the input
features, by only choosing the most prominent feature from the pooling window. The
mathematical formulation of this layer is presented in Equation (3), where MAXY; denotes
the max-pooling function, ‘w’ represents the window size, and ‘st’ represents the stride
size. This max-pooling window was convolved through the input images by selecting the
maximum value from the window size for further processing.

imgeon = Zlik fils % (imginpur -Weight) + bias 1)

. 0, im <0
OReLU = f(lmgcon) = {1 imgzzz >0 (2)
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Figure 2. The pre-training and layer architecture diagram of the proposed 6B-Net deep CNN model.

In the next step, the proposed 6B-Net deep network introduced a novel block 6B, which
contained six branches with concurrent processing. Each branch contained a convolution
layer, a ReLU layer, and a batch normalization layer. The purpose of using the batch
normalization layer was to normalize the data at the batch level for speeding up the
training process of the model. The main difference between the six branches was the size
of the convolutional kernel. To extract the high-level image feature, the filter size of each
convolution layer was reduced gradually, from 13 x 13 to 3 x 3 in every concurrent branch
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of the proposed model. The number of convolutional kernels in each concurrent branch
was kept at 96. Each branch was a combination of three layers, including convolution
with different filter sizes, an activation function, and a batch normalization layer. The
branch normalization was applied to every mini-batch of whole data in every epoch during
the training process. The mathematics behind the batch normalization layer can be seen
in Equations (4)—(6). In the batch normalization layer, mean M,,;,; ; of the mini-batch
was calculated using Equation (4), and then the variance Uarzmmu, of the images were
computed by utilizing Equation (5). In the last step for this layer, batch normalization B,
was carried out using Equation (6), where y and f§ are the learnable parameters. The main
contribution of the proposed model is the concurrent processing block that mainly consists
of six branches, each with different kernel sizes and an equal number of filters.

— 1&.
Miini_p = x Zlmginput 4)
1
5 1& . — 2
Var”mini b = E Z(lmginput - Mmini_h) (5)
1
. iMGinout — Mopini jeld .
B Sinput mini_b 1j16_>5 ')’Bnor"‘ﬁ ©)

nor — 5
\ 0are i p + €

The mathematical formulation of six concurrent branches is presented in Equation (7).

The parameter 3; represents the branch number, i’ represents 1 to 6 branches, fil, 4 shows
the filter size with the stride of [2, 2], and I X j represents the filer sizes of six concurrent
branchesas 3 x 3,5 x 5,7 x 7,9 x 9,11 x 11, and 13 x 13, respectively. The o, 1;; repre-
sents the activation function of each branch i, and B,,,,; represents the batch normalization
layer for each branch i.

Bi = ((( fZIIZJZ * (imginput 'WEight) + bias) UReLLIi) Enuri) (7)

After concurrent processing of six branches, an additional layer was implemented for
the further feature learning process. In the next step, an activation layer with ReLU was
implemented before the global pooling layer. In the global max-pooling layer, pooling was
carried out globally, with a filter depth of 1 x 1 x 96. The working principle of global
max-pooling is the same as max-pooling, but instead of taking values from the pool window,
it takes the max value from the input image-sized window. After that, a grouped convolution
layer was implemented, with a filter depth of 1 x 1 x 9216 and a stride of [1, 1]. In the
next stage, the ReLU activation layer was implemented before the max-pooling layer.
A max-pooling layer with a window size 5 x 5 was implemented with stride [1, 1] and
the same padding. Subsequently, a 50% dropout layer was implemented, which ensures
that every neuron has a 50% probability of being activated in the subsequent layer. After
this layer, an FC layer with a size of 4096 was implemented, before the activation layer.
Following this, a 50% dropout layer was implemented before the 2nd FC layer. In the
last step, a softmax layer was implemented above the classification layer for a multinomial
probability distribution. The mathematical form of this layer is presented in Equation (8),
where SoftMax(input;) shows the softmax function that is taking the input feature I,
e"Puti s utilized to standardize the input data that produces a high value for positive input
and a very small value for negative input, Z;‘:l input; represents the probability normalization
term to set the output in the zero and one range, and k represents the number of classes.

einput;
SoftMax(input;) = 8)

k .
ijl input;
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2.2. Feature Fusion and Selection

Feature selection (FS) is a method of choosing the most relevant and best features from
the input feature vector, in order to enhance the classification accuracy in machine learning.
Generally, features extracted from the CNN models, or by using other feature extraction
methods, contain redundant information that misleads the classifiers trying to accurately
classify the problem. A large feature set may also be a burden for further processing
such as segmentation. Different FS techniques have been proposed to tackle these issues.
In this study, three different well-known feature selection methods including ant colony
system (ACS), particle swarm optimization (PSO), and entropy-based selection (EBS) were
applied for the best feature selection. Furthermore, the outputs of these feature selection
methods were combined serially, by using the feature fusion technique for performance
enhancement. After the fusion of the 6B-Net and RESNET-50 feature vectors, the best
features were chosen using the EBS algorithm for further multi-class classification of breast
cancer disease. The proposed feature selection mechanism is presented in Figure 3. The
working principle of these three algorithms is explained in the next three paragraphs.

Input BC Image Dataset

Feature Selection
Using ACS
NX1000
Selected FV1

Feature Extraction Using
RESNET-50
FV1=NX2040

Feature Fusion
NX2000
(1000+1000)

Feature Selection FV1+FV2

Using PSO
NX1000
Selected FV2

Feature Extraction Using
Proposed 6B CNN
FV2=NX4096

Classes

Breast Cancer
Classification into Eight

Different Machine Learning Classifiers

Figure 3. The proposed feature selection and fusion strategy with details of the number of features.

In the initial step of the FS strategy, the PSO algorithm was implemented as a selection
method. The feature vector extracted from the proposed 6B-Net was passed as input to the
PSO algorithm. PSO is a biologically inspired optimization method that works based on
the collective behavior of bird flocks, and was first proposed by Kennedy and Eberhart [23].
In PSO, a set of solutions or particles known as the population are represented by a point in
multidimensional space. In searching for the optimal solution, every particle flies through
the search space, based on its flying memory and its neighbor particle experience. Each
particle updates its parameters to improve the search space, based on the previous best and
global best. The moving velocity that is updated according to the objective function in the
next iteration is presented in Equation (9).

Vel]l?rl = Witiper - Vel]l?rl + ajrmy (prehest;_ — pos;-) + ayrmy (globhest; - pos;-) 9)

Here, Vel]l:Jrl represents the velocity of the jth particle in i + 1 iteration, Wt;,,,, denotes
the inertial weight, a; and a; represent the acceleration constant, pre, i represents the
j

previous position of the particle, pos;. denotes the article position in d dimensional search
space, glob, . f shows the global best position of the particles, and rm; and rm; represent
the random values between zero and one. The position updating equation of the ith particle
is presented in Equation (10).

posj*l = pos; + Vel]’:Jrl (10)
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A binary PSO algorithm is needed to utilize the power of PSO for feature selection,
and was achieved by applying the sigmoid transformation. The purpose of this transfor-
mation was the controlling of velocity range between zero and one that is represented
mathematically in Equation (11).

- 1
Vposit = —_— (11)
j 14 eV

The position updating of each particle was carried out based on the comparison of
\Y pos;*l of with vecy, which is the d-dimensional vector that generally contains the uniform
random values between zero and one, as represented in Equation (12).

0, Vposfrl < vecy

posit! = f(x) = { (12)

1, Vposfrl > vecy

In the second step of feature selection, ACS [24] was applied as the best feature
selection. The FV extracted from the pre-trained RESNET-50 CNN was passed as input to
the ACS algorithm. The ACS selection algorithm is the derived version of the ant colony
optimization algorithm that works based on the food search strategy of ants, in which the
food path is updated based on pheromones. The probability of including the feature ‘f” into
the solution set by ant ‘a” at any time f is calculated by Equation (13), where s* represents
the feasible feature set that can be added by ant a, I'y represents the pheromone of the
feature, {¢ shows the heuristic function, and « and f represent the pheromone weight and
heuristic function value, respectively.

O () .
pTObjlt(t) = Yoest (rm(t))tx - (l:m)ﬁ lf fE S
0, otherwise

(13)

In the third step of feature selection, the EBS selection method was applied [25].
Entropy-based FS is generally practiced in characterizing the input feature set for best
selection. In this work, to compute the entropy of the input feature vector FV if we have m
number of features, FV = {1, i ... P}, and the probability of occurrence of each element
is presented by the Pr(i;), then the entropy of the feature vector is calculated with the help
of Equation (14).

m

Entropy (FV) = ZPr(l[Jj)-logz PI‘(I/J]') (14)

j=1

In the final step of feature selection, the two selected feature vectors extracted from
6B-Net and RESNET-50 were fused horizontally by using the feature fusion method, and
the top features were selected by using EBS. The final selected vector was then passed as in-
put to different ML algorithms for multi-class breast cancer classification. The feature-level
fusion process of the three selection algorithms is presented in Equation (15), where,
FSV represents the final selected vector, Fpgo represents the PSO based selected vector,
F 4cs shows the ACS based selected vector, and Fgpr represents the EBS-based selected vector.

FSV = Fegs((Fpso + Facs)) (15)

2.3. Datasets

In this work, for the training and testing of the proposed method, two publicly avail-
able breast cancer multi-class classification datasets were utilized. The BreaKHis dataset
was used as dataset_1, and the breast cancer pathology dataset was used as dataset_2. For
experimental results, the ratio of training and testing images was set as 70:30 respectively.
The ethical issues are not applicable in this work, as we used publicly available datasets for
research purposes only.
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e  The first dataset, namely, BreaKHis, contains the eight classes of breast cancer and is
available at [26]. The dataset is available with complete information about each
class. All the dataset images were generated from H & E sustained breast can-
cer biopsies. The dataset was compiled at several exaggeration scales including
40x, 100x, 200x, and 400 x, with a total number of 7909 images. The dataset was
collected from 82 patients. All the images in the database are three-channel RGB
images in PNG format. The file names include information about the malignancy type
and subtype, and information about the dataset is included in the dataset directory.

o  The second dataset, namely, the breast cancer pathology dataset of breast cancer
pathology images with four classes is presented in [27], and is publicly available. This
dataset is the high-resolution, publicly available dataset with four categories of breast
cancer. The images in every class have a resolution of 2048 x 1536, and all the dataset
is available in TIFF format. This dataset consists of 3771 breast pathology images. The
samples images from this public breast pathology archive are presented in Figure S1.

3. Results

The detailed results of the proposed method for multi-class breast cancer classification
are presented in this section. To demonstrate the robustness of the proposed fusion-based
method of breast cancer classification, different experiments were performed using the
two publicly available multi-class breast cancer datasets, with four and eight classes. The
experiments were performed using 3-fold, 5-fold, and 10-fold cross-validation procedures.
The training and testing ratio was selected as 70:30. All the experiments were performed
using MATLAB 2019 as a simulation tool, on a core I7 personnel computer with 20 GB of
RAM. The experimental results based on utilizing two multi-class breast cancer datasets
are presented in the next two subsections.

3.1. Experimental Results on BreaKHis Dataset

In this section, the experimental outcomes of the proposed method using dataset_1 are
presented in detail. Dataset_1, namely, BreaKHis, is a publicly available multi-class breast
cancer dataset, with eight classes of breast tumor. The complete detail of the dataset is
presented in the dataset section of this article. In this experiment, the results are computed
using four configurations. In the first configuration, the results are computed with a pre-
trained RESNET-50 deep model. The concept of TL is implemented to extract the deep
features from the FC layer fc1000, and the extracted feature vector is represented by FV1.
Finally, for the classification of eight breast cancer classes, two machine learning algorithms,
ensemble subspace KNN (ESKNN) and ensemble subspace discriminant (ESD), are utilized.
In the second configuration, the results are computed with the same procedure, using our
proposed 6B deep CNN model. The feature vector generated in this step is presented by
FV2. In the third configuration, the results are computed by applying feature selection
methods. In this step, an FS method of ACS is implemented at FV1 before classification,
and an FS method of PSO is implemented at FV2, before inputting it to the ML classifiers.
In the fourth configuration, the results are computed using the horizontal feature fusion of
FV1 and FV2. As a result of this step, a new fused feature vector is generated by the fusion
of FV1 and FV2. In the second step of this configuration, an entropy-based feature selection
method is applied at the fused vector before classification. The training time for model training
and classification accuracy in percent, using the 10-fold method, are presented in Table 1.

The highest multi-class accuracy of 90.10% is achieved using the ESKNN classifier, with
a training time of 147 s, while the ESD classifier produces 75.60% accuracy with a training
time of 298 s. The experimental results using the five-fold method are presented in Table 2.

The experimental results using the three-fold cross-validation method are given in
Table 3. The results present that the highest accuracy is achieved with the 10-fold method,
while the lowest multi-class average accuracy is reported in the 3-fold method. From
Tables 1-3, it is concluded that the lowest training time is observed with three-fold validation.
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Table 1. Results using proposed feature fusion and selection-based method on BreaKHis dataset
with eight classes and ten-fold validation, where Ac% represents the accuracy in percent, and T(S)
represents the training time in seconds.

RESNET50 6B-Net Selected Selected Fused F-Selected
Classifiers FV1 Fv2 FV1 Fv2 FV1 +FV2 FV1 +FV2
Ac% T(s) Ac% T(s) Ac% T(s) Ac% T(s) Ac% T(s) Ac% T(s)

ESKNN 80.10 153 82.03 142 82.30 148 85.10 150 87.90 160 90.10 147
ESD 69.40 290 70.43 283 71.60 285 73.01 280 74.30 310 7560 298

Table 2. Results using proposed feature fusion and selection-based method on BreaKHis dataset
with eight classes and five-fold validation, where Ac% represents the accuracy in percent, and T(S)
represents the training time in seconds.

RESNET50 6B-Net Selected Selected Fused F-Selected
Classifiers FV1 Fv2 FV1 FV2 FV1 +FV2 FV1 +FV2
Ac% T(s) Ac% T(s) Ac% T(s) Ac% T(s) Ac% T(s) Ac% T(s)

ESKNN 79.11 133 81.13 125 83.32 130 84.14 132 86.90 145 90.00 128
ESD 68.40 190 70.20 175 71.60 180 71.81 185 72.30 198 73.60 181

Table 3. Results using proposed feature fusion and selection-based method on BreaKHis dataset
with eight classes and three-fold validation, where Ac% represents the accuracy in percent, and T(S)
represents the training time in seconds.

RESNET50 6B-Net Selected Selected Fused F-Selected
Classifiers FV1 Fv2 FV1 Fv2 FV1 +FV2 FV1 +FV2
Ac% T(s) Ac% T(s) Ac% T(s) Ac% T(s) Ac% T(s) Ac% T(s)

ESKNN 78.10 130 79.03 118 80.30 125 82.10 115 84.90 130 87.09 112
ESD 66.40 148 67.43 142 67.60 143 69.01 140 69.30 160 69.90 142

The confusion matrix of eight classes of breast cancer with a ten-fold method, using
the ESKNN classifier is presented in Figure 4. A comparison of the proposed feature fusion
and selection-based method with the recent method of eight-class classification of breast
tumors is presented in Table S2. Albashish et al. [28] utilize the pre-trained VGG-16 model
for multi-class classification, and report an accuracy of 89.83%. In another work, Karthiga
and Narasimhan [29] propose the deep CNN and transfer learning-based solution, with an
accuracy of 89.29%. Rao PMM et al. [30] present the ensemble of the pre-trained CNNSs,
and report the highest accuracy of 89.00% with eight classes. Bardou et al. [31] propose the
solution for the same task with classical and deep CNN models, and attain an eight-class
classification accuracy of 88.23%. The proposed fusion-based method achieves the highest
eight-class classification accuracy of 90.10%. For a more in-depth view of the presented
results of the 10-fold method, a bar graph comparison is presented in Figure 5.

3.2. Experimental Results on Breast Cancer Pathology Dataset

In the second experiment, the results are computed using dataset_2, which contains
high-resolution images of four categories of breast tumors. The complete detail of dataset_2
is presented in the dataset section of this article. In this experiment, after the feature
extraction, fusion, and selection steps, six different ML learning classifiers are utilized for
breast cancer multi-class classification. The experimental outcomes from applying a ten-
fold procedure are tabulated in Table 4. The highest average accuracy of 94.20% is achieved
using the ESD classifier, while the lowest accuracy of 83.70% is achieved using the EBT
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ensemble boosted tree classifier. The SVM support vector machine classifiers, with different
kernels including cubic CSVM, quadratic QSVM, and linear LSVM, produce 85.62%, 86.82%,
and 86.11% accuracy, respectively. The ESKNN classifier achieves an accuracy of 84.50%.
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Figure 4. The confusion matrix results of the proposed method on the BreaKHis dataset, with ESKNN
classifier using the 10-fold validation.
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Figure 5. Bar graph representation of results using the proposed method on BreaKHis dataset, with
five- and ten-fold validation.
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Table 4. Results using the proposed method on breast cancer pathology dataset with ten-fold validation,
where Ac% represents the accuracy in percent, and T(S) represents the training time in seconds.

RESNET50 6B-Net Selected Selected Fused F-Selected
Classifiers Fv1 Fv2 FvV1 Fv2 FV1 +FV2 FV1+FV2
Ac% T(s) Ac% T(s) Ac% T(s) Ac% T(s) Ac% T(s) Ac%  T(s)
ESD 81.10 225 83.03 218 83.30 223 86.10 220 88.90 260 9420 226
ESKNN 79.40 290 80.43 283 80.60 285 81.01 280 82.30 310 84.50 274
EBT 77.30 460 78.51 456 79.60 458 80.11 452 81.20 480 83.70 466
CSVM 79.55 196 80.10 190 80.18 193 81.20 191 83.16 199 85.62 188
QSVM 80.12 180 81.20 168 81.35 175 82.15 172 84.13 188 86.82 170
LSVM 80.10 123 80.13 118 81.15 125 81.99 122 83.15 135 86.11 117
In the second experiment, dataset_2 results are computed using a five-fold validation
method. Experimental results using a five-fold cross-validation method are presented
in Table 5. In the case of five-fold validation, the highest accuracy of 93.60% is achieved
using the ESD classifier, while the lowest accuracy of 83.00% is achieved using the EBT
classifier. All the results are computed using different configurations, based on the simple
transfer learning of RESNET-50, and the proposed 6B-CNN model that produces FVI and
FV2. Next, the results are computed at the selected feature vector, by applying ACS at FV1
and the selected feature by applying PSO at FV2. In the next configuration, the results
are computed by applying horizontal feature fusion at both selected vectors FV1 and FV2.
Finally, the EBS selection method is applied to the fused vector to compute the results. The
experimental outcomes show that the highest accuracy is produced with the EBS selection
after the fusion step. In all the results, the average accuracy and training time are recorded
and reported in tabular form.
Table 5. Results using proposed feature fusion and selection-based method on breast cancer pathology
dataset with four classes and five-fold validation, where Ac% represents the accuracy in percent, and
T(S) represents the training time in seconds.
RESNET50 6B-Net Selected Selected Fused F-Selected
Classifiers FV1 Fv2 Fv1 Fv2 FV1+FV2 FV1 + FV2
Ac% T(s) Ac% T(s) Ac% T(s) Ac% T(s) Ac% T(s) Ac%  T(s)
ESD 80.10 135 82.03 130 83.00 136 85.75 132 88.10 180 93.60 136
ESKNN 78.40 249 80.13 245 80.10 242 80.88 245 82.00 270 85.0 250
EBT 76.30 218 78.00 211 79.11 215 81.00 212 81.10 225 83.00 209
CSVM 78.55 116 79.10 107 79.88 113 80.20 111 83.06 129 84.11 109
QSVM 80.12 109 81.20 103 81.01 107 81.15 105 84.01 118 85.5 103
LSVM 79.10 61 80.77 59 80.85 60 82.00 62 83.00 77 85.1 57

The confusion matrix of the proposed results using four classes of breast tumors, with
the highest accuracy classifier ESD and by applying five-fold and ten-fold methods, are
presented in Figure 6.

The accuracy comparison of the proposed fusion-based method of four-class classifica-
tion with existing work is presented in Table S3, which shows that the proposed method
achieves the highest accuracy of 94.20% in four-class breast cancer classification.
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Figure 6. The confusion matrix results of the proposed method on breast cancer pathology dataset,
with ESD classifier using the ten-fold method on the left, and five-fold method on the right.

4. Discussion

Breast cancer is a common and deadly disease that can be effectively cured by early
detection and proper treatment. To perform an early and accurate diagnosis of this disease,
many studies have proposed to automate the diagnosis process with the help of DL and
ML. Most of the early literature in this area mainly discusses the two-class classification
of breast cancer, and very few studies report on the three-class classification of using
traditional manual feature extraction and machine learning. Classical feature extraction is
a tedious and complex task that requires experts in the domain to work with large datasets.
These methods also have some limitations in extracting the highly discriminative features
from high-resolution images [32-34]. DL-based solutions for the early diagnosis of breast
cancer made huge progress with high accuracy. In deep learning, the automatic feature
learning process is carried out at different layers of CNN models, with different numbers of
convolution kernels [35]. Bernard et al. [36] present a two-stage CNN-based new method
for breast cancer classification into three categories. After the successful training of the
first CNN model, the output of this model is input to the second CNN model for better
performance. This stacked setup of CNN models produces an accuracy of 81.3%. The stacked
nature of the proposed method makes it complex for the training of two CNN models.

Furthermore, with advancements in imaging technology, histopathology databases
are widely utilized to automate manual detection. Sing et al. [37] proposed a TL-based
method to accurately detect breast cancer, and utilized a publicly available histopathology
dataset for model training. In their work, a pre-trained VGG-19 CNN is processed for
training and classification purposes. A limitation of this work is the utilization of the
existing CNN model without any modification. Simple transfer learning is applied, and
binary classification is carried out with 90% accuracy. Roy et al. propose a study for the
classification of breast cancer into binary and four categories from histology images, using
a patch-level based CNN model. Their method classifies breast cancer into four categories,
with an accuracy of 90%, even without utilizing the latest feature fusion and selection
methods [38]. In another recent study [39], a deep learning-based modified dense network
is proposed to automatically detect invasive breast cancer from histopathological images.
In this study, different preprocessing tasks, such as histogram equalization and intensity
normalization, are also performed to enhance the overall accuracy of the proposed model.
In this work, an existing CNN model is utilized with some modifications, and only a binary
classification task is performed.

Mi et al. propose a two-stage hybrid method for breast cancer multi-class classification
including four types of tumors from histopathology images. In their study, 72 statisti-
cal features and the CNN were trained on different patches of the histology images for
multi-classification. A multi-class accuracy of 85.19% is reported by their proposed deep
learning-based method. Their two-stage method of breast cancer classification is so complex
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that it needs a heavy computation device [40]. In another recent work, a hybrid CNN and
RNN-based method for multi-class classification of four breast cancer stages is presented.
For this purpose, a pre-trained CNN model inception v3 is fine-tuned and utilized as a
feature extractor. In the next step, the feature vector is utilized as input to the bidirec-
tional LSTM for multi-class classification. The hybrid method of four-class classification
produces a multi-class accuracy of 91.3% [27]. This study also contributes a large dataset
of high-resolution images of four classes of breast cancer for public research purposes.
The limitation of this work is that fine-tuning was only carried out on the existing CNN
model, and classification is carried out without using any selection method. A transfer
learning-based solution for breast cancer multi-class categorization is presented in [41]. The
Alexnet pre-trained model is utilized as the base for the hierarchical model generation of
multi-class classification. A feature selection method applying information gain is utilized
for feature reduction purposes. For classification tasks, ML algorithms are utilized, and the
highest binary accuracy of 95.48% is reported on test data. The limitation of this work is the
utilization of the existing pre-trained CNN model, with a four-class classification accuracy
of 92%. Sanyal et al. [42] propose a hybrid CNN model-based solution for carcinoma type
categorization by using an ensemble of CNN. The ML algorithm XGBoost is utilized for
carcinoma type classification, instead of the traditional softmax classifier, in order to gain
high performance. This work also utilizes existing pre-trained CNN models for breast
cancer classification task.

A DL-based solution for breast cancer multi-class class classification is presented in [43].
An inception-ResNet-v2-based classification framework is proposed in this work. The
model training task is computed by using histopathology images that produce a multi-class
accuracy of 87%. This work performed the four-class classification of breast cancer that
can be further improved in terms of accuracy. In another work, Bardou et al. propose
two different methods for binary and multi-class categorization of breast cancer by using
histology images. In the first method, classical features are extracted using a traditional
method of the bag of visual words. For the classification task, an input feature vector
was provided to the SVM classifier. In their second method, a CNN model is designed
and trained to automatically detect the type of breast carcinomas. Different combinations
of feature sets are utilized for testing their proposed work, with the conclusion that the
CNN-based method produces higher results as compared to the ML-based method. The
highest multi-class average accuracy of 88% is achieved by their proposed CNN-based
method, which can be further improved by utilizing a better solution [31]. The multi-class
categorization of breast cancer into four classes from histology analysis by using deep
learning is presented in [44]. This study proposes a feature level fusion-based method, by
utilizing the inception v3 and ensemble scheme, and reports a multi-class test accuracy of
87%, which can also be further improved with a better solution. Khan et al. [45] propose
the DL-based method for the same task, with a four-class classification accuracy of 88%,
which can be further improved with a better solution. Wang et al. proposed a deep feature
fusion-based method for breast cancer classification by using CapsNet and CNN. In their
work, only binary classification of breast cancer is carried out, with an accuracy of 94% [46].
In another recent work, Agarwal et al. [47] propose a transfer learning and CNN model
for breast cancer classification using the BreakHis dataset and report an accuracy of 94.6%.
The limitation of their work is the binary classification of breast cancer, as multi-class
classification was not performed. Gupta et al. [48] proposed a modified residual networks-
based DL solution for breast cancer classification, with an accuracy of 99%, and their work
is limited to only binary class classification of breast cancer. The more recent work in breast
cancer classification is presented in [49-52] that can further be improved in terms of accuracy.

From the above discussion of previous methods, it is concluded that most of the work
in breast cancer classification has performed the binary classification or multi-classification
of four breast cancer types. The multi-class classification of breast cancer with eight
types is rarely discussed, with the limitations of low classification accuracy and fixed
receptive field, which can be further improved by using different approaches, such as
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CNN models with different receptive fields, feature selection, and feature fusion. This
study proposed a deep feature fusion and selection-based method for the multi-class
classification of breast cancer into eight and four classes. For this purpose, a novel 6B-
Net, with six concurrent branches and each branch containing different receptive fields,
is proposed. The purposed 6B-Net is implemented with six different receptive field sizes
for high-level feature learning that is not found in earlier studies. The earlier studies
utilized the fixed receptive field-sized convolutions that are unable to extract the highly
discriminative features. This study also implemented the two nature-inspired feature
selection methods ACS and PSO, and one entropy-based selection method. The purpose
of using the nature-inspired feature selection method is the natural searching ability of
ants and birds respectively. The entropy-based feature selection is applied to achieve faster
training of the ML classifiers. Experimental outcomes show that the accuracy is significantly
improved after applying selection and fusion methods. The proposed method achieves
94.20% of accuracy in breast cancer four-class classification, and 90.10% in breast cancer
eight-class classification. The high performance of the proposed method in the multi-class
classification of breast cancer infers that the proposed method can effectively be applied
in the early detection and classification of breast cancer from histopathology images, and
is a useful tool to assist pathologists in the early and accurate diagnosis of breast cancer.
The limitation of the proposed method is the utilization of two publicly available datasets,
but the method may also be tested on other datasets. The real-time implementation of the
proposed method to specific patients was also not carried out, but this can be performed in
future work. This work only tries to solve the multi-class classification of breast cancer and
the segmentation of the breast cancer was not carried out, which will also be performed in
future work.

5. Conclusions

This study proposed a deep 6B-Net with deep feature fusion and selection technique
for multi-class breast cancer classification from histopathology images. For this purpose,
deep features were extracted using the proposed CNN model and RESNET-50 model. After
feature extraction, the feature selection methods of PSO and ACS were applied for feature
selection, and horizontal feature fusion was carried out at both selected feature vectors.
A feature selection method of EBS was applied before the classification task. Finally, for the
multi-class classification of breast cancer different machine learning classifiers were utilized.
The results were computed using the three-, five-, and ten-fold validation procedures. The
highest accuracy of 90.10% for eight class classification of breast cancer was achieved
with a ten-fold method, and an accuracy of 94.20% was achieved with four classes. The
experimental results show that the highest accuracy is achieved with the feature fusion and
selection steps. In the future, this work will be used to propose a unique feature selection
method, with a novel CNN model for higher performance that also includes segmentation
of the tumors.
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/ /www.mdpi.com/article/10.3390 /jpm12050683 /s1: Figure S1: The sample images from the breast
cancer pathology dataset that is publicly available at [27]; Table S1: The internal layers detail of
the proposed 6B-Net deep CNN model; Table S2: The comparison of the proposed fusion and
selection-based method with existing methods of breast cancer multi-class class classification, where
Ac% represents the accuracy in percent; Table S3: The comparison of the proposed fusion and
selection-based technique with existing methods of breast cancer multi-class classification, where
Ac% represents the accuracy in percent.
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