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Abstract: Various stem cells gradually turned to be critical players in tissue engineering and
regenerative medicine therapies. Current evidence has demonstrated that in addition to growth
factors and the extracellular matrix, multiple metabolic pathways definitively provide important
signals for stem cell self-renewal and differentiation. In this review, we mainly focus on a detailed
overview of stem cell metabolism in vitro. In stem cell metabolic biology, the dynamic balance of
each type of stem cell can vary according to the properties of each cell type, and they share some
common points. Clearly defining the metabolic flux alterations in stem cells may help to shed light
on stemness features and differentiation pathways that control the fate of stem cells.
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1. Introduction

Stem cells, which can be generated not only from adult tissues but also from embryonic tissues,
have gradually turned out to be critical players in regenerative medicine therapies. In addition,
terminal somatic cells can be converted from a differentiated state to a pluripotent state similar to
embryonic stem cells (ESCs) by overexpressing transcription factors, namely induced pluripotent stem
cells (iPSCs) [1]. iPSCs exhibit levels of OCT4 or NANOG that are similar to ESCs so that they display
a high level of pluripotency and self-renewal similar to that of ESCs. Both types of cells can indefinitely
self-renew and are superior in their primitive stemness, giving rise to virtually any somatic cell type.
In contrast, stem cells derived from adult tissue benefit from their easy access and abundant supply,
but their potency is limited by their differentiation capacity.

Current evidence has demonstrated that in addition to growth factors and extracellular matrix
cues, various metabolic pathways definitively provide important signals for the self-renewal
and differentiation potency of stem cells [2] (Figure 1). The metabolic profile distinguishes the
undifferentiated state from the differentiated state of stem cells, with a dynamic mitochondrial
morphology and a shift from glycolysis to mitochondrial oxidative phosphorylation (OXPHOS) [3–7].
Glycolysis rapidly fulfills energy requirements by producing pyruvate in the cytosol, which is only
accompanied by a net gain of two moles of adenosine triphosphate (ATP) per mole of glucose. However,
pyruvate is likely to enter the tricarboxylic acid (TCA) cycle for OXPHOS and generate reducing
equivalents to efficiently produce ATP for a significantly higher energy yield than glycolysis [8]. In fact,
the mitochondrial metabolites including ATP, intracellular Ca2+ homeostasis, and reactive oxygen
species (ROS) are crucial for multiple cellular processes. In stem cell metabolic biology, the dynamic
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balance of each type of stem cell can vary according to the properties of each cell type, and they share
some common points. In this review, we mainly discuss how various stem cells metabolize to self-renew
and differentiate in vitro. Understanding the mitochondrial properties of stem cells may effectively
clarify the stemness and differentiation pathways that control stem cells for regenerative medicine.
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the spherical and cristae-poor mitochondria of undifferentiated stem cells are transformed into 
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and mitochondrial ROS are improved, but the expression levels of glycolytic genes and the 
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2. Energy Metabolism and Stem Cell Fate

In mammalian cells, several vital biosynthetic pathways and the generation of ATP are
primarily accomplished through the harmonious expression of proteins encoded by nuclear DNA
and mitochondrial DNA (mtDNA) [9]. Additionally, the extent, efficacy and coordination of mtDNA
processing are pivotal parameters of the mitochondrial status in living cells [10]. ATP demand can
be measured with specific analyzers, ATP determination kits or other methods according to different
requirements [11–13]. Furthermore, defects in the mitochondrial electron transport chain (ETC) are
associated with mtDNA damage and will consequently increase ROS production [14]. Uncoupling
protein 2 (UCP-2) effectively reduces carbon substrates in OXPHOS by transporting four carbon
TCA cycle intermediates out of the mitochondria [15]. The pyruvate dehydrogenase (PDH) complex
effectively oxidizes pyruvate to generate acetyl coenzyme a (AcCoA) and CO2 [16]. AcCoA can
form citrate by condensing with oxaloacetate and can subsequently be transferred to the cytosol
to further metabolize to provide carbon for lipid biosynthesis [16]. The TCA cycle also provides
AcCoA for acetylation and lipogenesis, whereas deprivation of nutrients can lead to limited substrates
in the cytosol [17]. In addition, mitochondrial glucose oxidation releases ROS, which may lead to
accumulated damage and an impaired reconstitution capacity [18]. Further, PGCs are essential for
mitochondrial biogenesis and the production of several ROS-detoxifying enzymes after exposure to
oxidative stress [19]. The balanced expression of regulatory proteins guarantees genomic stability
through the cell cycle activation when stem cells respond to DNA damage or oxidative stress [20].

Highly proliferative stem cells convert pyruvate with lactate dehydrogenase (LDH) to lactate
at high rates to meet energy requirements, and consequently, glucose metabolism is kept separate
from oxidative metabolism [21,22]. When stem cells divide to proliferate, the older mitochondria are
asymmetrically apportioned into one daughter cell, and the younger mitochondria are apportioned to
another daughter cell [23]. Then, one cell maintains stem cell characteristics, and the other assumes a
more lineage-specific role [24]. After specified lineage differentiation, mtDNA levels and emerging
energy requirements are gradually increased in support of mitochondrial biogenesis [25,26]. Indeed,
the spherical and cristae-poor mitochondria of undifferentiated stem cells are transformed into
tubular and cristae-rich structures to guarantee sufficient ATP for energy metabolism after specific
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lineage differentiation [26]. Concomitantly, the production of mitochondrial-related key enzymes and
mitochondrial ROS are improved, but the expression levels of glycolytic genes and the production of
antioxidant defenses are suppressed [26–30]. The addition of saturated metabolites to differentiation
media promotes lineage transition, whereas unsaturated fatty acids impair lineage specification by
inhibition of the eicosanoid pathway [30]. Furthermore, fatty acid oxidation (FAO) produces one
molecule of AcCoA in each cycle and two molecule of AcCoA in the final cycle, with AcCoA-induced
oxaloacetate to produce citrate for the generation of NADPH [31]. FAO also acts to maintain enough
production of ATP and NADPH to counteract oxidative stress during metabolic stress [32,33]. Along
with these, other amino acids and TCA-associated metabolisms were also related to the self-renewal
and differentiation of stem cells [34].

3. Totipotent Stem Cells

Totipotent stem cells (ESCs and iPSCs) refer to stem cells that are highly plastic and can potentially
be directed to any cell type. Somatic mitochondrial biology, including organelle morphology and
distribution, mtDNA content, expression levels of mitochondrial biogenesis related nuclear factors,
intracellular ATP production and lactate generation, reverts to an immature ESC-like state [35].
However, unsaturated fatty acids were expressed at increased levels in ESCs when compared to
iPSCs, which indicates that metabolic differences certainly exist in both pluripotent cell types [21].
Although the metabolic characteristics of iPSCs are not exactly the same as those of ESCs, both
of them primarily rely on glycolysis to meet energy requirements and in contrast to their somatic
counterparts [36]. Compared with mature fibroblasts, rapidly self-renewing ESCs and iPSCs have
significantly lower levels of mitochondrial activity, antioxidant enzymes, oxidative proteins, ROS
levels and lipid hydroperoxides [25,37,38]. Mitochondria within iPSCs and ESCs are transformed to a
mature morphology analogously, and metabolism changes from an anaerobic state to an aerobic state
upon differentiation [37].

3.1. ESCs

ESCs prefer high rates of glycolysis rather than OXPHOS even when they are cultured in
conditions with atmospheric oxygen [39]. Although ESCs generally have immature mitochondria,
they demonstrate the Warburg effect with high aerobic metabolism in spite of their high lactate
generation [39]. In contrast, another study showed that human ESCs generated the majority
of ATP through OXPHOS [11]. ESCs can be maintained in various culture media in vitro,
and pluripotent markers and mitochondrial status are concomitantly altered according to the current
microenvironment [40]. Moreover, their enhanced removal capacity helps to ensure low levels of
ROS to defend the genomic integrity of ESCs [29]. In one study, although the expression levels of
pluripotent markers were indistinguishable in ESCs with different mitochondrial membrane potentials,
mouse ESCs with a higher mitochondrial membrane potential exhibited elevated oxygen consumption,
improved mammalian target of rapamycin (mTOR) activity and higher secretion of lactate in vitro [41].
Regulation of anaplerotic pathways including glutaminolysis and pyruvate carboxylase are always
prerequisite for proliferating mouse ESCs to maintain the levels of TCA cycle in energy metabolism [42].
Let-7 serves as an important mediator in energetic metabolism and leads to a down-regulation of
the PI3K/AKT/insulin pathway but an up-regulated metabolism of fatty acid [43]. Growth factor
erv1-like serves to protect the integrity of structural and functional mitochondria and plays an
obligatory pro-survival role in the maintenance of pluripotency in murine ESCs [44], whereas ATAD3B
is a negative regulator of the ubiquitous ATAD3A and functions as an adaptor of mitochondrial
homeostasis in human ESCs [45].
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The activation of glycolysis, accelerated activation of the TCA cycle, activated lipid synthesis, and
activation of glutaminolysis are initiated during the early phase of ESC specific differentiation [46].
The abundance of proteins associated with RNA processing and protein folding is higher in
undifferentiated human ESCs, whereas the metabolism of proteins associated with redox, vitamin and
energy metabolism and ubiquitin dependent proteolysis is more abundant in differentiated cells [47].
Depletion of Ptpmt1 does not influence homeostasis in conditional knockout ESCs, whereas the
proliferation and differentiation abilities are likely to decrease through oxygen consumption and
enhanced glycolysis concomitantly [48]. Rapamycin acts to inhibit the mTOR activity by decreasing
metabolic activity and consequently promotes the mesodermal differentiation of ESCs [49]. Under
differentiating conditions, loss of PKC lambda/iota may lead to injury to mitochondrial organization
and maturation and a metabolic shift toward glycolysis [50]. Junctophilin2, which physically links
the mitochondria to the sarcoplasmic reticulum, is vital for proper mitochondrial function and
Ca2+ homeostasis in cardiomyogenic differentiation of mouse ESCs [51]. Agonists of peroxisome
proliferator-activated receptor a (PPARa), are able to accelerate the cardiomyogenesis of mouse
ESCs by increasing ROS production [52]. Ectopic expression of prohibitin 2 in mouse ESCs can
result in mitochondrial swelling and inhibit lineage-specific differentiation toward neurons [53].
Moreover, many lipid molecules are expressed differently in undifferentiated ESCs compared to
terminal neurons and cardiomyocytes, and consequently, the pluripotency of ESCs can be increased
and the expression levels of unsaturated fatty acids can be maintained by inhibiting the eicosanoid
signaling pathway [30]. Furthermore, the disruption of the rate-limiting enzyme for FAO may result
in decreased ATP production and attenuated resistant ability to nutrient deprivation in fatty acid
metabolism in ESCs [54].

3.2. iPSCs

After terminal somatic cells are reprogrammed to a pluripotent state, iPSCs exhibit morphology,
gene expression, self-renewal properties and differentiation potential that are almost indistinguishable
from those of ESCs. Successful reprogramming is always accompanied by a metabolic shift from
an oxidative state to glycolysis, and it will conversely shift after differentiation (Figure 2). Nuclear
reprogramming reverts mitochondria to an immature state with an oxidative capacity equivalent to
ESCs, whereas greater glycolytic capacity has been found in iPSCs with c-Myc when compared to cells
without c-Myc [55]. The estrogen-related receptor (ERR) α and γ, accompanied by their partnered
co-factors including peroxisome proliferator-activated receptor-gamma coactivator 1 (PGC-1) α and
β are transiently induced and consequently lead to a burst of OXPHOS activity at an early stage of
reprogramming [56]. Furthermore, the expressed proteome demonstrates that the protein expression
levels of ETC complexes I and IV are reduced during early-stage reprogramming, whereas ETC
complexes II, III, and V are momentarily increased in the midterm phase of mouse iPSC generation [57].
mtDNA mutagenesis is considered a critical factor in the reduction of iPSC reprogramming efficiency
by increasing mitochondrial H2O2, and mitochondria-targeted ubiquinone and N-acetyl-L-cysteine
can efficiently rescue the defects of mtDNA mutagenesis and enhance reprogramming efficacy [58].
In contrast, Prigione et al. demonstrated that mtDNA mutations may not necessarily influence the
accurate establishment of pluripotency and associated metabolic reprogramming [59]. Aged iPSCs
that fail to properly undergo in vitro neurogenesis present an increased number of mitochondria
per cell [60].
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By inhibiting glycolysis or promoting oxidative metabolism, the reprogramming process can be
impaired, whereas enhancement of glycolysis improves reprogramming efficiency [61]. For example,
activation of AMP-activated protein kinase (AMPK) builds a metabolic barrier to reprogramming
by shifting away the glycolysis, which fuels the maintenance of stemness [62]. Inhibited expression
of dynamin-related protein 1 (DRP1) sustains the fused mitochondrial network and inhibits iPSC
reprogramming [63], whereas shRNA knockdown of DRP1 does not impair iPSC reprogramming but
only leads to mitochondrial fusion [64]. REX1, which increases the phosphorylation and activation of
DRP1, fission of the mitochondrial network and glycolytic metabolism in iPSCs, is required to maintain
self-renewal [65]. By down-regulating expression of the mitochondrial inner membrane protein,
reprogramming efficiency can be significantly reduced [66]. Additionally, an inhibitor of pyruvate
dehydrogenase kinase (PDK) activity named dichloroacetate decreases pluripotent iPSC generation
by increasing pyruvate transport into the mitochondria and TCA metabolism [67]. Mitochondrial
inhibition effectively converts the refractory intermediates to pluripotent states without supernumerary
genetic or epigenetic modifications [67,68]. Furthermore, the addition of antioxidants into the culture
medium of human iPSCs enhances genomic stability, repairing DNA damage and maintaining
low ROS [69].

According to two-dimensional differential gel electrophoresis, half of the identified proteins,
which are differentially expressed in iPSCs and the differentiated cells, are localized in the mitochondria
and participate in metabolic kinetics and pluripotent regulation [70]. Expression levels of PDH
phosphorylation and 3-phosphoinositide dependent protein kinase-1 (PDK1), which are likely to reduce
oxidation of glucose carbon in the TCA cycle, are significantly higher in human iPSCs compared with
terminally differentiated fibroblasts [36]. iPSCs proliferate slower after differentiation, accompanied by
a progressively fused mitochondrial network, decreased glycolysis, increased respiratory capacity and
improved mitochondrial oxidation [71]. Inhibition of the mitochondrial permeability transition pore
by cyclosporin A demonstrates an increased expression of mitochondria-related genes, mitochondrial
calcium, ATP level, mitochondrial membrane potential, and oxygen consumption rate (OCR),
which consequently leads to promotion of cardiomyogenic differentiation of iPSCs [72]. When iPSCss
from familial Parkinson’s disease patients were differentiated to neural cells, they demonstrated
cellular vulnerability related to mitochondrial dysfunction, but the defects could be recovered by
coenzyme Q(10), rapamycin or the LRRK2 kinase inhibitor GW5074 [73].



Int. J. Mol. Sci. 2016, 17, 253 6 of 15

4. Mesenchymal Stem Cells (MSCs)

Adult somatic stem cells are fibroblast-like and non-hematopoietic, and they can be isolated from
adult somatic tissues including bone marrow, adipose, placenta, umbilical cord, umbilical cord blood
and other resources [74]. They have emerged as a useful tool without ethical issues in regenerative
medicine; they have lower tumorigenicity compared with ESCs and iPSCs, and their potency and
organ availability are higher than that of lineage-specific stem cells [74].

In undifferentiated MSCs, mitochondrial activities are maintained at a low level, but glycolytic
activities are consistently maintained at a high level for a majority of glycolytic enzymes and
lactate production [75]. In detail, glycolysis contributes to greater than 97% of ATP production,
whereas OXPHOS contributes less than 3% of ATP production in the energy metabolism of
undifferentiated bone marrow MSCs [76]. Consistent with the metabolic signature, the reduction of
saturated FAO can reduce human bone marrow MSC proliferation and cause cell death to a certain
extent [76]. During hepatocyte maturation of MSCs, the expression levels of major polyunsaturated
fatty acids decreased but the expression levels of saturated fatty acids increased; however, these
alterations did not depend on ROS production and lipid peroxidation in differentiating cells [77].
Linoleic and oleic acids are able to inhibit MSC proliferation and altered the secretion of interleukin-6,
VEGF and nitric oxide [78]. After MSCs were cultured long-term in vitro, the down-regulated levels
of genes associated with cytoskeleton, mitochondria function, focal adhesion and differentiation
simultaneously resulted in alteration of mitochondrial morphology, decreased levels of antioxidants
and increased levels of ROS [79].

During the early stages of MSC differentiation, the new cell fate is redirected by down-regulating
the pluripotent specific genes, up-regulating the terminal-specific genes and switching the subsets
of metabolic enzymes [80]. The mtDNA copy number, content of respiratory enzymes, intracellular
ATP and OCR increase, but the levels of intracellular ROS dramatically decrease in osteogenic
MSCs, and exogenetic addition of mitochondrial inhibitors can delay the osteogenesis of MSCs [81].
Fluorescence lifetime imaging of NADH has been positively correlated with OCR and ATP production
during transition of glycolysis to OXPHOS [82]; JC-1 fluorescence has also been found to be strongly
correlated with the osteogenic differentiation ability of MSCs [83]. Hypoxia inducible factor (HIF)-1α
participates in regulating the metabolic fate and multipotency of human MSCs, and after osteogenic
differentiation, the expression of HIF-1α is reduced and leads to decreased glycolytic metabolism
and increased oxidative metabolism [84]. The mitochondrial ROS production released by the ETC
was able to initiate or enhance adipogenic differentiation in MSCs [38]. The antioxidants catalase and
superoxide dismutase (SOD) increase at day seven of adipogenic differentiation, and furthermore,
adipogenic differentiation of human MSCs has been demonstrated to show a shift toward higher
OCR [27]. The addition of mitochondrial-targeted antioxidants MitoCP/MitoCTPO or knockdown
of the Rieske Fe-S protein of complex III reduce ROS production and impair adipocyte lineage
specification [38]. Overexpression of miR-27a or miR-27b leads to inhibited prohibitin expression and
prohibitive adipocyte differentiation by impairing mitochondrial biogenesis and accumulating ROS
production [85].

5. Lineage-Specific Stem Cells

5.1. Hematopoietic Stem Cell (HSCs)

The mammalian HSC system consists of quiescent long-term (LT)-HSCs, short-term (ST)-HSCs,
multipotent progenitors and various lineage-restricted progeny [86]. When HSCs in whole bone
marrow are less differentiated, they exhibit fewer mitochondria and higher glycolytic capacity [5,87,88],
and the levels of antioxidant enzymes including superoxide dismutase, catalase and glutathione
peroxidase are higher in circulating progenitor cells than in LT-HSCs [89]. An enhanced glycolytic
status promotes LT-HSC cell cycle quiescence in vitro and in vivo [7]; mitochondria and levels
of ROS cooperate to balance self-renewal and cell division in cycling HSCs [90]. Moreover,
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12/15-lipoxygenase-dependent fatty acid metabolism maintains the quiescence of long-term HSCs,
and the defect in HSCs is related with reductive production of bioactive lipid mediators and ROS
and with a decreased Wnt signaling [91]. Peroxisome proliferator-activated receptors regulate critical
enzymes in FAO. The deletion of PPARδ leads to poor HSC self-renewal, whereas the pharmacologic
activation of PPARδ promotes self-renewal and asymmetric division [92]. Depletion of Ppard or Pml,
accompanied with inhibited mitochondrial FAO, leads to symmetrically committed HSCs in vitro and
in vivo [93]. The deletion of the cytoskeleton-modulating protein profilin 1 (pfn1) in HSCs leads to a
switch from glycolysis to OXPHOS with increased ROS levels and then results in loss of quiescence
and apoptosis of HSCs in vivo [94]. Aberrant ROS generation abrogates stem cell properties including
quiescence, self-renewal, and survival as well as the multi-lineage capacity of HSCs [95]. Indeed, lead
acetate perturbs the hematopoietic balance of adult HSCs by increasing intracellular ROS generation
and resulting in cellular mitochondrial defects [96]. FoxOs mitigates the ROS levels of hematopoietic
progenitors, which results in cell cycle arrest, cell apoptosis and oxidative stress resistance in HSCs [97].
Deletion of SOD2 or suppression of the ND75 subunit of complex I in hematopoietic progenitors
by increasing ROS production over general levels may induce progenitors from a premature status
to a mature status. Furthermore, overexpression of GTPx-1 or catalase damages lineage-specific
differentiation by reducing ROS production [98]. As HSCs in bone marrow age, there is an increase in
intracellular superoxide anions, hydrogen peroxide, nitric oxide, and peroxynitrite/hydroxyl compared
with young cells [99].

5.2. Neural Stem Cells (NSCs)

Endogenous NSCs, which exist in specific niches of the brain, restore neurons for the maintenance
of normal conditions and functions [100]. Even under physiologically normoxic O2 conditions,
the levels of mitochondrial oxidative metabolism, glycolysis and ROS in NSCs have been observed to
be similar to those exposed to 20% O2, but cell populations in normoxic O2 conditions possess better
resistance to in vitro inflammatory injury [101]. NSCs have been demonstrated to be dependent on
fatty acid synthase-mediated lipogenesis for the proliferation and neurogenetic differentiation [102].
Inhibition of the rate-limiting enzyme of oleic acid synthesis rescues proliferative impairments of adult
neurogenic niches in Alzheimer's disease mice [103]. Polyunsaturated fatty acid promotes NSCs to
express FAO related enzymes and continuously increase the oxygen consumption; after treatment
with etomoxir, an inhibitor of FAO, the oxygen consumption and the proliferation of NSCs decreases
but the cellular survival is not altered [104]. Increased expression of fatty acid synthase redirects fatty
acid metabolism for the support of the anabolic requirements of proliferating stem cells. In contrast,
inhibition or deletion of fatty acid synthase reduces proliferation of NSCs [102].

In accordance with the dynamic regularity of other stem cells, the mitochondrial mass,
mtDNA copy number and respiration capacity are robustly improved after the differentiation of
NSCs [105]. Ca2+-mediated ROS metabolic cues regulate the differentiation efficiency by regulating
the Wnt/β-catenin signaling pathway [106], and the inhibition of the mitochondrial permeability
transition pore, which serves as a signaling regulator, suppressing neuronal differentiation [107].
The increased respiration activity constrains mtDNA in NSCs vulnerable to oxidative damage,
and defects in mitochondrial 8-oxoguanine DNA glycosylase function leads to the accumulation
of mtDNA damage during differentiation [105]. Although there is no alteration of mitochondrial
mass in NSCs, mitochondrial biogenesis increases after initiation of human NSC differentiation into
motor neurons [108]. Hepatocyte growth factor and metallothionein 2 are always expressed at lower
levels in neural stem cells without functional transcripts of Prdm16 [109–111]. However, genetic
mitochondrial damage is not likely to alter the generation, maintenance or multipotency of glia-like
central NSCs [112]. Intriguingly, oligodendrocyte lineage cells contribute considerably to the metabolic
activity of the central nervous system at late differentiation stages [113].
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6. Hypoxia, Energy Metabolism and Stem Cell Fate

Niches provide essential factors for the maintenance of self-renewal and prevention of
differentiation in stem cells, and these niches are where oxygen concentration is extremely low and
stem cells are rigorously regulated [114,115]. Because oxygen serves as the final electron acceptor of
OXPHOS, aerobic metabolism is fundamental in mammalian cells under normoxic environments [116].
For most cell types, hypoxia serves as a modulator of cell proliferation and has been found to decrease
the levels of respiratory enzymes and OCR but increase the production of glycolytic enzymes and
lactate, which eventually forces the cells to rely more on glycolysis [117]. When the availability of
molecular oxygen is limited under hypoxic conditions, the activity of ETC is decreased, and energetic
needs are likely to shift from OXPHOS to glycolysis, and consequently, stem cells enhance their
self-renewal ability and maintenance of pluripotent capacity in vitro [118]. Although hypoxia enhances
the proliferative ability of stem cells and reduces their differentiation potency [40,41], opposing
observations have demonstrated that oxygen has minimal effects on undifferentiated cell growth
and phenotype but becomes influential under differentiating conditions [119]. In addition, the levels
of pluripotency and terminal markers, accompanied by proliferation ability have been shown to be
unaltered at 5% and 20% oxygen concentrations, with the apoptosis rate elevated under 5% oxygen
conditions [120]. ESCs increase anaerobic metabolism and survive oxygen starvation with negligible
cell death, but the total ATP production remains almost constant under hypoxic conditions [119].
MSCs have been demonstrated to be maintained in an undifferentiated state through the suppression
of mitochondrial activity in hypoxia [121], and they retained the ability to be differentiated into
chondrocytes, adipocytes and cardiomyocytes under hypoxic or ischemic conditions [122]. Under
normal metabolic conditions, ROS are produced in small quantities, but they can be significantly
increased after acute inhibition of the ETC or exposure to hypoxic environment [123].

Hypoxia directly decreases ETC activity, not only by reducing oxygen concentration but also by
activating the expression of HIFs [37–39]. The transcription factors of HIFs reduce the expression levels
of mitochondrial enzymes and further up-regulate glycolytic enzymes and glucose transporters [38,39].
HIFα proteins (HIF-1α, HIF-2α, and HIF-3α) demonstrate tissue-specific expression levels and various
functions [124] and are closely correlated with regulation of pluripotency factors [125]. However,
the role of the HIF family in the maintenance of pluripotent ability has emerged as a controversial
issue [126]. HIF-1 has been proven to inhibit the differentiation of ESCs [127], and HIF-2 regulates
the proliferation rather than self-renewal in stem cells [125]. When MSCs are cultured under hypoxic
conditions, the expression of HIF-1α and energy metabolism-associated genes are increased [128,129].

7. Conclusions

Self-renewal and differentiation abilities vary in stem cells, and the regulation of metabolic
pathways has been demonstrated to take part in regulating stem cell fates. We have here highlighted
the general norms of stem cell metabolism, but there are numerous important questions that remain to
be answered in stem cell biology: (1) How can we improve the function of stem cells by regulating
intracellular metabolism? (2) How can we improve reprogramming efficacy with metabolic cues
for direction of terminal somatic cells to high pluripotent cells? (3) Can we gain the comprehensive
understanding of how metabolic signaling molecules cooperate to regulate the stem cell lineage-specific
differentiation that is necessary for tissue engineering? (4) Will we discover if the energy metabolism
of tissue-derived stem cells including MSCs, HSCs and NSCs is similar to that of totipotent stem
cells? (5) What is known about the metabolic characteristics of adult somatic stem cells derived from
other resources? Heretofore, researches have mainly focused on bone marrow-derived MSCs; (6) It is
necessary to clarify the subnets of metabolic biology in hypoxic environments for the regulation of stem
cell development. Because of its critical role in regulating the self-renewal and differentiation process
of stem cells, metabolism will facilitate the optimization of in vitro maintenance and differentiation
protocols by adjusting biochemical properties for regenerative medicine.
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