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Abstract

Several adenoviruses are known to cause severe disease in veterinary species. Recent evidence suggests that canine

adenovirus type 1 (CAV-1) persists in the tissues of healthy red foxes (Vulpes vulpes), which may be a source of infection for

susceptible species. It was hypothesized that mustelids native to the UK, including pine martens (Martes martes) and

Eurasian otters (Lutra lutra), may also be persistently infected with adenoviruses. Based on high-throughput sequencing and

additional Sanger sequencing, a novel Aviadenovirus, tentatively named marten adenovirus type 1 (MAdV-1), was detected in

pine marten tissues. The detection of an Aviadenovirus in mammalian tissue has not been reported previously. Two

mastadenoviruses, tentatively designated marten adenovirus type 2 (MAdV-2) and lutrine adenovirus type 1 (LAdV-1), were

also detected in tissues of pine martens and Eurasian otters, respectively. Apparently healthy free-ranging animals may be

infected with uncharacterized adenoviruses with possible implications for translocation of wildlife.

Adenoviruses have been shown to infect a wide range of
species. The vast majority of the literature relating to adeno-
viruses in mammals concerns those which infect human
beings and non-human primates. Despite the high preva-
lence of infection with adenoviruses it is recognized that,
particularly in human beings, adenoviruses uncommonly
cause severe systemic disease and usually only in infants
and the immunosuppressed [1, 2].

In veterinary medicine, some adenoviruses have been well
characterized, primarily those which cause overt disease,
including canine adenovirus types 1 (CAV-1 [3, 4]) and 2
(CAV-2 [5]), bovine adenoviruses [6, 7] and avian adeno-
viruses [8–10]. As has been shown in human beings and
non-human primates [11, 12], adenoviruses in infected
non-primate species can be detected in a wide range of tis-
sues, in the presence of neutralizing antibodies and in the
absence of gross pathology, which is suggestive of persis-
tent infections [13, 14]. Some animals may also shed
infectious virus for a prolonged period of time after infec-
tion [14, 15]. However, the mechanisms which allow

adenoviruses to persist in the tissues of hosts have not
been fully elucidated.

In non-domestic species, the prevalence of adenoviruses and
the characterization of disease that they may cause has not
been extensively explored, particularly in free-ranging species
with no perceived commercial benefit. Intermittent studies
have demonstrated the presence of adenoviruses in wildlife in
the UK. For example, adenoviruses have been detected in both
red squirrels (Sciurus vulgaris) and grey squirrels
(S. carolinensis), leading to the recommendation that adenovi-
ruses should be considered in squirrel conservation pro-
grammes [16]. Furthermore, it has been reported that red
foxes play a major role as a wildlife reservoir of CAV-1 in the
UK [14] and Italy [17] and may be a disease risk for dogs.

There are several species of mustelid in the UK, including Eur-
asian otters (Lutra lutra; hereafter referred to as otters) and
pine martens (Martes martes). In the UK, otters are wide-
spread and frequent rivers and coastal areas, where they prey
mainly on fish and crustaceans, but also small reptiles, birds
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and other mammals. Pine martens are a more elusive species
and are uncommon in the UK due to historical persecution,
despite being widespread across mainland Europe. Pine mart-
ens feed on a wide range of available prey species including
birds, small mammals, reptiles and invertebrates, in addition
to nuts and berries. It is important to establish whether adeno-
viruses, along with other novel pathogens, have an impact on
these species and whether they should be considered in con-
servation policies. For example, a recent translocation project
involving pine martens was initiated in the UK in an attempt
to increase the total population [18]. The home ranges of dif-
ferent species of mustelids, as well as other predators such as
red foxes (Vulpes vulpes), may overlap and there is potential
for cross-infection with pathogens via indirect contact with
urine, faeces and infected fomites [19], particularly if translo-
cated pine martens are migrating during the establishment of
new colonies.

Moreover, it is also important to establish whether mustel-
ids are reservoirs of disease, including uncharacterized
adenoviruses, for other wildlife and for domestic mammals,
including ferrets (Mustela putorius furo) and dogs. Severe
disease has been identified in a single captive otter in Seoul
Grand Park Zoo, South Korea; this was thought to have
been caused by CAV-1, although sequencing was based on a
relatively short amplicon [20]. Disease caused by skunk ade-
novirus type 1 (SkAdV-1) has been reported in a single
striped skunk (Mephitis mephitis; family Mephitidae) in
Canada [21]. However, to the authors’ knowledge, no
adenoviruses have been detected previously in free-ranging
species in the family Mustelidae in the UK. In southwest
France, some mustelid species had antibodies against ade-
novirus, but these were not necessarily specific towards the
test antigen (CAV-1) [22]. Due to serological cross-reactiv-
ity amongst adenoviruses [23, 24], there is a possibility that
novel adenoviruses may be present in free-ranging mustel-
ids. In the present study, we have screened tissues from pine
martens and otters for the presence of adenoviruses.

Nine otter carcasses were obtained from the Shetland Islands,
Scotland, UK, and a total of 14 pine marten carcasses were
obtained from mainland Scotland, mainly in the Aberdeen
region. The animals had died as a result of road traffic acci-
dents or were found dead due to inapparent causes. During
the post-mortem examinations of both species, a range of tis-
sues were collected (Table S1, available in the online Supple-
mentary Material). There were no signs of gross pathological
changes that might indicate the presence of viral disease. The
tissues were unsuitable for histological examination because
the carcasses had been frozen and thawed, and were subject to
varying degrees of autolysis. DNA was extracted from samples
using the DNeasy Blood and Tissue Kit (Qiagen, Hilden, Ger-
many) and the E.Z.N.A Stool DNA Kit (Omega Bio-tek, Nor-
cross, Georgia, USA). Procedures to minimize cross-
contamination were followed, and DNA from faecal samples
and tissues was extracted separately.

The livers from the otters and pine martens were initially
screened using an adenovirus consensus nested PCR, which

amplifies adenovirus DNA polymerase. This was adapted
from the original method of Wellehan et al. [25], previously
described by Walker et al. [4]. Following gel electrophoresis
of the second-round products, amplicons from positive
samples were sequenced directly (Edinburgh Genomics,
University of Edinburgh, UK). Sequences were analysed
using the Basic Local Alignment Search Tool (BLAST) [26].

Using the nested PCR, two different novel adenovirus DNA
polymerase sequences were detected in two pine marten livers,
tentatively named marten adenovirus type 1 (MAdV-1) and
marten adenovirus type 2 (MAdV-2). Pooled DNA from three
adenovirus-positive otter livers revealed another novel adeno-
virus sequence, tentatively named lutrine adenovirus type 1
(LAdV-1; the detected sequences not submitted to GenBank
are available in the Supplementary Material).

Unexpectedly, the MAdV-1 DNA polymerase nucleotide
sequence shared most identity (71%) with an Aviadenovi-
rus, fowl adenovirus type 3 (GenBank KT862807.1). Kidney
and faeces from the same pine marten, and the faeces of an
additional pine marten, were positive for the same adenovi-
ral sequence using the consensus adenovirus PCR. MAdV-
2, detected in the liver of one pine marten, shared 75%
identity with vespertilionid adenovirus type 1 (GenBank
KM043089.1), a Mastadenovirus, but was not present in any
other samples or animals. The nucleotide sequence from
LAdV-1 shared 81% identity with Indian flying fox adeno-
virus type 5 (GenBank KC692421.1), aMastadenovirus.

Additional novel sequences from the faecal samples of five
pine martens, included in BLAST analyses, shared most iden-
tity with adenoviruses originating from bird, lizard and
mammal hosts. These were not present in the tissues (liver,
kidney or lung) of the same pine martens. It was assumed
that this DNA was present as a result of digestion of adeno-
virus-infected prey by the pine martens shortly before death,
and could have represented part of a mixed population of
several adenoviruses in the faeces. These sequences were not
analysed further in this study.

Attempts to isolate and purify adenoviruses from pine mar-
ten and otter tissues by cell culture inoculation were unsuc-
cessful. Extractions containing the adenoviral DNA present
in multiple individuals (i.e. MAdV-1 and LAdV-1) were
prepared directly from the liver of pine marten 10 and the
kidney of otter 08 for high-throughput sequencing (HTS;
Table S1), performed at the Centre for Genomic Research
(CGR), University of Liverpool, UK. The DNA library was
prepared using the Tru-seq Nextera system (Illumina, San
Diego, California, USA) and 250 base pair (bp) paired-end
reads were obtained using the MiSeq platform (Illumina).
The initial processing of data, read mapping and assembly
were performed by CGR. Remaining non-assembled reads
were screened and assembled using Geneious 9.1.6 software
(Biomatters, Auckland, New Zealand). Contigs were then
analysed using BLAST to identify adenovirus sequences from
the two mustelid samples. Adenovirus hits were then
imported into MEGA6 [27] and SSE [28] software for
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alignment to selected reference genomes. 18 contigs gener-
ated from the MiSeq reads were identified to be part of the
MAdV-1 genome (including sequences encoding putative
IVa2, pTP, 52K, pIIIa, penton, pVI, DNA-binding protein
and pVIII). All of these contigs from the MAdV-1 genome
had the closest identity to aviadenoviruses using BLAST.

From the otter sample, only three unpaired 250 bp reads
showed significant similarity to Mastadenovirus sequences by
BLAST analysis. These reads were assumed to be from LAdV-1
and showed 72–81% identity to the hexon, DNA polymerase
and 52K coding regions of bat adenovirus WIV13 isolate
(sequences are available in the Supplementary Material).

Additional PCR and Sanger sequencing (Edinburgh Geno-
mics) was performed, using sequences from the putative
MAdV-1 genome, in order to obtain sequences between
contigs. The primers and PCR protocols used to obtain
these sequences are described in the Supplementary Mate-
rial. The complete predicted MAdV-1 hexon and DNA
polymerase gene sequences were subsequently determined
(GenBank KY705357–KY705358). Other assembled sequen-
ces from MAdV-1 were submitted to GenBank under acces-
sion numbers KY705359–KY705373.

Primers were designed from the MAdV-1 DNA polymerase
gene to estimate the frequency of this virus amongst all sam-
ples obtained from the 14 pine martens included in the
study using a specific nested PCR (Supplementary Mate-
rial). The frequency of LAdV-1 amongst all samples
obtained from the nine otters was estimated using the con-
sensus adenovirus DNA polymerase nested PCR [4, 25].
Amplicons from positive samples were confirmed by Sanger
sequencing (Edinburgh Genomics).

MAdV-1 sequences were detected in four of 12 (33.3 %) fae-
cal samples from pine martens. Livers from two of 14
(14.3%) pine martens were positive for MAdV-1; samples
of kidney from the same animals were also positive (two of
13; 15.4%), along with faecal samples. Overall, MAdV-1
was present in samples from four of 14 (28.6%) pine mart-
ens. The PCR-positive animals included the initial positive
pine marten subjected to HTS. LAdV-1 was detected in six
of nine (66.6%) livers and five of nine (55.6%) kidneys
from otters. Three otters were positive for LAdV-1 sequen-
ces in both the kidneys and liver. Overall, the frequency of
LAdV-1 in otters was eight of nine (88.9%) (Table S1; Gen-
Bank KY753135–KY753142).

On the basis of phylogenetic analysis, the MAdV-1 hexon and
DNA polymerase genes group within the Aviadenovirus clade
and appear to be most closely related to an ancestor of the
contemporary fowl adenovirus group (Fig. 1). Although it is a
limitation of the study that the full genome was not obtained
by HTS, it is highlighted that the other contigs obtained by
HTS, corresponding to other genome regions, also had the
closest identity to aviadenoviruses using BLAST (GenBank
KY705359–KY705373). This is a unique and unusual finding,
because all aviadenoviruses discovered to date have been
detected only in avian host species. The partial predicted

amino acid sequences from LAdV-1 (and MAdV-2; GenBank
KY753134) DNA polymerase shared most identity with the
mastadenoviruses by BLAST analysis and upon phylogenetic
reconstruction (not shown due to the limited sequence data
obtained). This was predicted, since all known mastadenovi-
ruses originate frommammalian hosts.

The detection and sequencing of MAdV-1 in pine martens
raises the possibility that a cross-species transmission event
of an adenovirus between divergent predator and prey spe-
cies may have occurred. It has been previously suggested
that atadenoviruses may represent potential host-switching
events, on account of the divergent host species in this
branch [25]. Cross-species transmission events have also
been suggested for closely related or associated species, such
as simians and human beings [29]. An outbreak of fulmi-
nant pneumonia in human beings in contact with a New
World monkey colony was the result of cross-species trans-
mission of titi monkey adenovirus (TMAdV) [30]. Addi-
tionally, a captive otter was determined to have died of
‘infectious canine hepatitis’ caused by CAV-1 in Seoul
Grand Park Zoo, although sequencing was based on a rela-
tively short amplicon [20]. These cases may represent
opportunistic cross-species transmission events.

It is possible that MAdV-1 could represent a historical host-
switching event of an ancestor of the fowl adenoviruses,
which has successfully established in a predator host. The
Aviadenovirus may have become established in pine mart-
ens following predation of infected birds. The virus could
have adapted to transmit among the new host species and
may be endemic in Scottish pine martens. Another possibil-
ity is that MAdV-1 DNA sequences can be detected in the
tissues of pine martens following predation of infected birds
without true replicative infection taking place in the preda-
tor species. This could result from haematogenous dissemi-
nation of viral particles or DNA from the intestinal tract
following ingestion of prey tissues, resulting in positive PCR
results in pine marten tissues.

Several studies that aimed to estimate the prevalence of
adenoviruses in wildlife only screen faecal samples because
of their ready availability (e.g. from wild rodents [31, 32]).
However, detection of adenoviruses in faeces alone (e.g.
without evidence of disease) should be viewed with caution
since the presence of adenoviral DNA may be due to inges-
tion of infected prey, with subsequent excretion of intact
adenoviral capsids and/or DNA following gastrointestinal
passage. In the current study, we detected an Aviadenovirus
(MAdV-1) in both tissues and faeces in multiple animals
and suggest that this most likely indicates the presence of
infection in pine martens. Furthermore, we would have
expected to detect multiple different aviadenoviruses of prey
origin if pine martens were not the true host of MAdV-1.
However, there is a need to screen tissue samples from prey
species for the presence of MAdV-1 sequences.

It remains to be determined if and how MAdV-1 can spread
among pine martens, although the faecal-oral route is likely,
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Fig. 1. The predicted amino acid sequences of MAdV-1 DNA polymerase (a) and hexon (b) genes were imported into MEGA6. Sequences

were aligned to predicted amino acid sequences of other adenovirus hexon and DNA polymerase genes using CLUSTALW [37]. For each

gene, the best maximum likelihood model was selected using MEGA6, which was then used to construct a phylogeny from 500 boot-

strap replications.
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given the presence of the virus in faecal samples. Whether
the virus can re-infect avian species cannot be determined
until the virus is isolated. Furthermore, it is uncertain
whether any disease is caused by MAdV-1. MAdV-2 and
LAdV-1 closely resemble mastadenoviruses and may have
evolved from other mastadenoviruses following co-specia-
tion with their hosts [33].

The lack of gross lesions suggestive of viral infection in pine
martens or otters implies that the animals were likely to be
persistently infected. There is evidence for persistent infec-
tion with CAV-1 in red foxes, which are a wildlife reservoir
of the virus for dogs [14]. Some other adenoviruses also
have broad host ranges [20, 30, 34], so the possibility of
transmission of a novel adenovirus from wild mustelids to
domestic mustelids, such as ferrets, should be considered.

In conclusion, we have detected at least three novel adenovi-
ral sequences in tissues and faeces from two species of mus-
telids in the UK, namely pine martens and otters. Further
work is required to determine whether these are true mus-
telid adenoviruses that are able to undergo replication and
transmission in their respective host species. Further efforts
to isolate the viruses in cell culture are warranted. It is also
important to establish the mechanisms that allow adenovi-
ruses to establish persistent infections. The presence of per-
sistent infection with potentially pathogenic viruses should
be taken into consideration when translocating free-ranging
animals between habitats [35, 36], and also when transfer-
ring captive animals amongst zoological collections.
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