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Abstract
Background and Objectives
Congenital ataxias are rare hereditary disorders characterized by hypotonia and developmental
motor delay in the first few months of life, followed by cerebellar ataxia in early childhood. The
course of the disease is predominantly nonprogressive, and many patients are incorrectly
diagnosed with cerebral palsy. Despite significant advancements in next-generation sequencing
in the past few decades, a specific genetic diagnosis is seldom obtained in cases of congenital
ataxia. The aim of the study was to analyze the clinical, radiologic, and genetic features of a
cohort of Brazilian patients with congenital ataxia.

Methods
Thirty patients with a clinical diagnosis of congenital ataxia were enrolled in this study. Clinical
and demographic features and neuroimaging studies were analyzed. Genetic testing (whole-
exome sequencing) was also performed.

Results
A heterogeneous pattern of genetic variants was detected. Eighteen genes were involved:
ALDH5A1, BRF1, CACNA1A CACNA1G, CC2D2A, CWF19L1, EXOSC3, ITPR1, KIF1A,MME,
PEX10, SCN2A, SNX14, SPTBN2, STXBP1,TMEM240,THG1L, andTUBB4A. Pathogenic/likely
pathogenic variants involving 11 genes (ALDH5A1, CACNA1A, EXOSC3,MME, ITPR1, KIF1A,
STXBP1, SNX14, SPTBN2, TMEM240, and TUBB4A) were identified in 46.7% of patients.
Variants of uncertain significance involving 8 genes were detected in 33.3% of patients. Congenital
ataxias were characterized by a broad phenotype. A genetic diagnosis was more often obtained in
patients with cerebellar-plus syndrome than in patients with a pure cerebellar syndrome.

Discussion
This study re-emphasizes the genetic heterogeneity of congenital ataxias and the absence of a
clear phenotype-genotype relationship. A specific genetic diagnosis was established in 46.7% of
patients. Autosomal dominant, associated with sporadic cases, was recognized as an important
genetic inheritance. The results of this analysis highlight the value of whole-exome sequencing
as an efficient screening tool in patients with congenital ataxia.

Introduction
The term “congenital ataxia”was first used in 1893 by Freud and in 1903 by Batten to describe a
heterogeneous group of rare hereditary ataxias characterized by motor developmental delay in
the first months of life followed by cerebellar ataxia in early childhood.1 Because many affected
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patients do not progress to neurodegeneration over time, the
disease is supposed to be nonprogressive.2-4 Congenital ataxia
is often misdiagnosed as cerebral palsy.1-5

Congenital ataxias have been described a long time ago. Still,
little progress has been made in the elucidation of their ge-
netic causes. In the past decade, advancements in next-
generation sequencing have increased the frequency of ge-
netic diagnosis of a large number of neurologic disorders.
However, only a few genes have been implicated in a small
number of cases of congenital ataxias.2,4 This study was
designed to enhance our understanding of congenital ataxias.
Phenotypic features, neuroimaging findings, and inheritance
patterns determined by whole-exome sequencing were ana-
lyzed in a cohort of Brazilian patients with congenital ataxia.

Methods
Clinical Protocol and Brain Imaging
Thirty patients previously diagnosed with congenital cere-
bellar ataxia of unknown genetic origin were examined at the
Ataxia Unit of the Federal University of São Paulo (UNI-
FESP) between 2018 and 2022.

Inclusion criteria were as follows: patients with the typical
phenotype of congenital ataxia (very early onset of cerebellar
ataxia, up to 3 years of age, preceded by hypotonia and/or
motor developmental delay, and nonprogressive disease).
Patients with clinical and neuroimaging findings of ponto-
cerebellar hypoplasia (a congenital ataxia subtype with a
complex neurologic phenotype, which may include ataxia,
other movement disorders, epilepsy, microcephaly, spinal
amyotrophy, and pontocerebellar hypoplasia on brain imag-
ing) were also included. Patients with acquired causes of
cerebellar ataxia, such as prematurity, perinatal hypoxia, pre-
natal infections, exposure to teratogens, and metabolic dis-
orders or leukoencephalopathies, were excluded. Data on sex,
first symptoms, and clinical and neurologic signs were col-
lected. Brain MRI data were gathered from 29 of 30 patients
(one patient had not been submitted to brain imaging).
Routine digital brainMRI sequences, including at least T1 and
T2-weighted, diffusion-weighted, and fluid-attenuated in-
version recovery images, were retrospectively analyzed. Brain
imaging studies performed at different centers were also
reviewed.

Whole-Exome Sequencing
Buccal swabs were obtained from all patients (n = 30) for
whole-exome sequencing (WES). Samples were sent for au-
tomated genomic DNA extraction (QIAsymphony DNA kits,

QIAGEN). Target regions were captured using a custom li-
brary preparation kit (Illumina). Variant calling was then
performed and retrieved variants analyzed using Varstation.6

Variants were classified as per the American College of
Medical Genetics and Genomics.6

Standard Protocol Approvals, Registrations,
and Patient Consents
Written informed consent was obtained from all participants.
This project was approved by the institutional ethics
committee.

Data Availability
The data are not publicly available to protect the privacy of
participants.

Results
Clinical and Demographic Features
Thirty patients (16 male and 14 female patients aged 9
months to 53 years) from 28 families and diagnosed with con-
genital ataxia participated in this study. Except for 2 families with
affected non-twin siblings, all patients were sporadic.

Hypotonia and/or motor developmental delay were the most
common first symptoms in 66.7% (20/30) of patients. Cer-
ebellar ataxia signs were the first manifestation in 6 patients
(20%). Seizures were the first symptom in 3 patients (10%)
and oculomotor abnormalities (oculomotor apraxia) in one
patient (3.3%).

Isolated cerebellar ataxia or pure cerebellar syndrome was
observed in 56.7% (17/30) of patients. Thirteen of 30 pa-
tients (43.3%) had cerebellar-plus syndrome, a complex
congenital ataxia phenotype characterized by epilepsy, pyra-
midal signs, and movement disorders other than cerebellar
dysfunction. Seven patients (23.3%) had ataxia and epilepsy.
Of these, one had seizures, motor stereotypies, and autism
spectrum disorder, and one had epilepsy associated with
oromandibular dystonia. Three patients (10%) had cerebellar
ataxia and a pyramidal syndrome. One of these patients also
had upper and lower motor neuron dysfunction. Other
movement disorders were observed in 16.7% (5/30) of pa-
tients. These included hyperkinetic syndrome (2 brothers),
dystonia (one patient), choreoathetosis in distal limbs (one
patient), and motor stereotypies (one patient). Most patients
had ataxia with no other movement abnormalities.

External eye movement abnormalities such as nystagmus,
convergent strabismus, bilateral horizontal ophthalmoplegia,

Glossary
PCH = pontocerebellar hypoplasia; SCAs = spinocerebellar ataxias; VUS = variants of uncertain significance; WES = whole-
exome sequencing.

2 Neurology: Genetics | Volume 10, Number 3 | June 2024 Neurology.org/NG

http://neurology.org/ng


square-wave jerks, and saccades were observed in 50%
(15/30) of patients.

Brain Imaging
Brain MRI was normal in 20.7% (6/29) of patients. One
patient had not been submitted to brain imaging but met
clinical criteria for congenital cerebellar ataxia and was,
therefore, included in the study.

Isolated global cerebellar hypoplasia was the most common
neurologic finding on brain MRI (16 of 29 patients; 55.2%).
Other cerebellar structural abnormalities included unilateral
hypoplasia, isolated macrocerebellum, molar tooth sign as-
sociated with macrocerebellum, and cerebellar dysplasia.
Pontocerebellar hypoplasia was observed in 2 patients. Clin-
ical examination and brain imaging findings of patients with
congenital ataxia are displayed in Figure 1.

Supratentorial anomalies were rare. One patient had agenesis
of the corpus callosum, one arachnoid cyst in the temporal
lobe, and fusion of the basal ganglia associated with cerebellar
dysplasia. Corpus callosum and pontocerebellar hypoplasia
were also observed in one patient. Brain MRI findings in
patients with congenital ataxia are shown in Figure 2.

Whole-Exome Sequencing
Whole-exome sequencing revealed a heterogeneous geno-
typic spectrum. Eighteen genes were identified: ALDH5A1,
BRF1, CACNA1A, CACNA1G, CC2D2A, CWF19L1,
EXOSC3, ITPR1, KIF1A, MME, PEX10, SCN2A, SNX14,
SPTBN2, STXBP1, TMEM240, THG1L, and TUBB4A.
Pathogenic/likely pathogenic variants were identified in

46.7% (14/30) of patients. Variants of uncertain significance
(VUS) were found in 33.3% (10/30) of patients. Only 20%
(6/30) of patients had normal WES results.

Pathogenic variants were found in 11 genes: TUBB4A,
ALDH5A1, MME, TMEM240, KIF1A, STXBP1, CACNA1A,
SNX14, SPTBN2, EXOSC3, and ITPR1. The autosomal-
dominant pattern of inheritance prevailed in patients with a
genetic diagnosis established in this study. These patients had
no family history (sporadic cases). Only 3 patients had bial-
lelic variants in the ALDH5A1, EXOSC3, and SNX14 genes.
New variants (not reported in population databases such as
gnomAD and ABraOM) were limited to 3 genes: TUBB4A,
MME, and TMEM240. Relationships between cerebellar
structural abnormalities on brain MRI and genetic features of
patients with congenital ataxia are shown in Figure 3.

Phenotypic and genetic data of patients with congenital ataxia
are presented in the Table.

Discussion
Congenital ataxias are a group of clinically and genetically
heterogeneous disorders. Despite advancements in neuro-
genetics over the past few decades, the genetic etiology of
congenital ataxias cannot be determined in a large number of
patients.2,3 A specific genetic diagnosis was established in
46.7% of cases in this cohort of Brazilian patients with con-
genital ataxia. Autosomal dominant, associated with sporadic
cases, was the most common genetic inheritance. Patient
phenotype was characterized by pure cerebellar ataxia or

Figure 1 Phenotype Features and Cerebellar Pattern on Brain MRI in Brazilian Patients With Congenital Ataxia
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cerebellar-plus syndrome associated with a broad genotype.
This study emphasizes the challenges involved in the estab-
lishment of phenotype-genotype relationships in congenital
ataxias.

Congenital ataxias are classified into 4 subtypes according to
clinical features, disease course, and neuroimaging findings:
syndromic, cerebellar malformation, congenital cerebellar
hypoplasia, and pontocerebellar hypoplasia (PCH).1 In this
series, 14 patients had congenital cerebellar hypoplasia, 4
patients had cerebellar malformations (congenital isolated
macrocerebellum, cerebellar dysplasia, and unilateral hemi-
spheric cerebellar hypoplasia, one, one, and 2 patients, re-
spectively), 3 patients had syndromic congenital ataxia
(Joubert syndrome, cerebello-facio-dental syndrome or Uner
Tan syndrome, one patient each), and one patient had PCH.
Seven patients had no cerebellar structural abnormalities on
brainMRI and/or no features suggestive of specific syndromic
congenital ataxias and hence did not meet the criteria for any
of the aforementioned subtypes. A fifth subtype of congenital

ataxia may, therefore, be suggested: cerebellar syndrome with
or without clinical features other than cerebellar dysfunction
and no cerebellar atrophy or structural abnormalities on brain
imaging. The congenital ataxia classification of patients in this
series is summarized in the Table.

It is often difficult to establish the etiology of congenital
ataxias because of marked genetic heterogeneity and variable
inheritance. X-linked, autosomal dominant, and autosomal
recessive inheritance patterns have been described.1,2 Genetic
findings in this study were heterogeneous. Pathogenic variants
were identified in 11 genes involved in cerebellar ataxia.1,2,7-11

Different patients had variants in different genes. The only
exceptions were variants in the SPTBN2, CACNA1A, and
ITPR1 genes, which were found in more than one patient.
This finding emphasizes the role of these genes in the etiology
of congenital ataxias.

Pathogenic homozygous variants were found in 3 genes:
ALDH5A1, EXOSC3, and SNX14. The ALDH5A1 gene is

Figure 2 Brain MRI Findings in Brazilian Patients With Congenital Ataxia

(A) Sagittal T1-weighted showing global cerebellar hypoplasia in a patient with a pathogenic heterozygous mutation in the ITPR1 gene. (B) Axial FLAIR-
weighted and (C) coronal T2-weighted showing global cerebellar hypoplasia in a patient with a pathogenic homozygous mutation in the ALDH5A1 gene. (D)
Sagittal T1-weighted and (E) axial FLAIR-weighted showing global cerebellar hyperplasia in a patient with unknown genetic etiology. (F) Sagittal T1-weighted
showing global cerebellar hypoplasia in a patient with a VUS in the THG1L gene. (G) Axial T2-weighted showing normal cerebellar structure in a patient with
unknown genetic etiology. (H) Coronal T2-weighted brain MRI showing unilateral cerebellar hemisphere hypoplasia in a patient with unknown genetic
etiology. (I) Sagittal T1-weighted showing global cerebellar hypoplasia in a patient with a monoallelic pathogenic mutation in the KIF1A gene. (J) Sagittal T1-
weighted showing global cerebellar hypoplasia in a patient with a VUS in the SCN2A gene. (K) Coronal T2-weighted showing cerebellar dysplasia, followed by
hypoplasia of the left cerebellar hemisphere and cortical polymicrogyria in a patient with a novel pathogenic monoallelic mutation in the MME gene. (L) Axial
T2-weighted showing abnormal fusion of the basal ganglia, cortical polymicrogyria, and cerebellar dysplasia in patient with a pathogenicmutation in theMME
gene. FLAIR = fluid-attenuated inversion recovery.
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associated with succinic semialdehyde dehydrogenase
deficiency (OMIM 271980), a rare autosomal recessive
neurologic disorder caused by a defect in the GABA degra-
dative pathway and characterized by mental retardation,
cerebellar ataxia, seizures, behavioral disorders, and sleep
disturbances.12-14 Variants in the SNX14 gene are linked to
autosomal recessive spinocerebellar ataxia 20 (SCAR 20), a
neurodevelopmental disorder characterized by severe psy-
chomotor developmental delay and early cerebellar dysfunc-
tion.15 These disorders may be associated with a congenital
ataxia phenotype.

Pontocerebellar hypoplasia is a rare subtype of congenital
ataxia characterized by prenatal-onset neurodegenerative
disorders.1,16-18 Seventeen types of PCH have been described
to date. In this sample, 1 patient classified as having PCH
(patient 21) had pathogenic homozygous variants in the
EXOSC3 gene, indicative of PCH type 1B. Spinal amyotrophy
associated with pontocerebellar hypoplasia on brain imaging
is one of the distinguishing characteristics of PCH type 1.16-18

Monoallelic pathogenic variants prevailed in this cohort of
Brazilian patients with congenital ataxia. Spinocerebellar
ataxias (SCAs) tend to manifest in adult life. However, in
some SCAs, the first symptoms may appear during childhood.
Heterozygous variants in the SPTBN2 gene, involved in
SCA5, have recently been recognized as a relevant cause of
nonprogressive, very early-onset ataxia.4,8,19-23 Likewise,
ITPR1, the causative gene of SCA15 and SCA29, and
TMEM240, a gene involved in SCA21, have been implicated
as causes of congenital ataxia.4,9,24-27 These data are supported

by findings of this study (i.e., identification of 5 patients with a
congenital ataxia phenotype associated with monoallelic var-
iants in the aforementioned genes). One patient (patient 27)
with a monoallelic mutation in the ITPR1 gene was diagnosed
with Uner Tan syndrome (quadrupedal gait, cognitive im-
pairment, speech impairment, and cerebellar ataxia),
expanding the phenotype of ITPR1-related disorders.28 The
same variant detected in the ITPR1 gene using Gene-
Matcher28 has been identified in one pair of siblings from the
Netherlands diagnosed with Gillespie syndrome (un-
published data).

Identification of novel monoallelic variants in the TUBB4A
and MME genes expands the phenotypic expression of
related disorders. Mutations in the TUBB4A gene are asso-
ciated with DYT-TUBB4A (OMIM 128101), hypomyeli-
nating leukodystrophy-6 (OMIM 612438), and cerebral
malformations with structural abnormalities in the cerebellum
and basal ganglia.29 One patient (patient 1) with a pathogenic
variant in the TUBB4A gene was classified as having con-
genital cerebellar hypoplasia with no other structural brain
abnormalities, expanding the spectrum of TUBB4A-related
disorders. The MME gene has been implicated as the causa-
tive of SCA43, a typical adult-onset SCA.30 Another patient
(patient 20) with a novel monoallelic variant in the same gene
and a congenital ataxia phenotype extended the phenotypic
spectrum of disorders related to the MME gene.

CACNA1Amutations are thought to be an important etiology
in patients with congenital ataxia.10,31-33 Seizures and mi-
graine are often associated with cerebellar dysfunction in

Figure 3 Relationships Between Cerebellar Structural Abnormalities on Brain MRI and Genetic Features of Brazilian
Patients With Congenital Ataxia
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Table Clinical, Neuroimaging, and Genetic Features of Brazilian Patients With Congenital Ataxia

Patients Sex
First
symptoms Other neurologic signs

Brain structure
on MRI

Congenital ataxia
classificationa Variants

Classification
of ACMG
2015b

1 M Hypotonia,
developmental
delay

Pyramidal syndrome, strength
proximal decreased,
sensorineural deafness

Global cerebellar
hypoplasia

Congenital cerebellar
hypoplasia

TUBB4A:c.1096A>G;
p.(Thr366Ala)
Monoallelic

Likely
pathogenic

2 F Tremor (ataxia) Hypermetric saccades, deep
hyporeflexia

Normal Unclassified STXBP1:c.169+5G>A;p.?
Monoallelic

VUS

3 M Hypotonia,
developmental
delay

Deep hyporeflexia, bilateral
convergent strabismus

Global cerebellar
hypoplasia

Congenital cerebellar
hypoplasia

ALDH5A1:c.803G>A;
p.Gly268Glu
Biallelic

Pathogenic

4 F Oculomotor
ataxia

Oculomotor ataxia Molar tooth sign,
macrocerebellum

Congenital ataxia
syndrome (Joubert
syndrome)

1) CC2D2A:c.2102T>G;
p.Leu701Arg2
2) CC2D2A:c.3725T>C;
p.Ile1242Thr
Biallelic

1) VUS
2) VUS

5 M Hypotonia,
developmental
delay

Bilateral convergent
strabismus, some coffee au lait
spots, epilepsy

Macrocerebellum Congenital cerebellar
malformation
(macrocerebellum)

Not found Nothing found

6 F Hypotonia,
developmental
delay

Horizontal ophthalmoplegia Unilateral
hypoplasia of the
left cerebellar
hemisphere

Congenital cerebellar
malformation
(unilateral cerebellar
hypoplasia)

Not found Nothing found

7 M Hypotonia,
developmental
delay

Isolated ataxia cerebellar
syndrome

Global cerebellar
hypoplasia

Congenital cerebellar
hypoplasia

Not found Nothing found

8 F Hypotonia,
developmental
delay

Isolated ataxia cerebellar
syndrome

Unilateral
hypoplasia of the
left cerebellar
hemisphere

Congenital cerebellar
malformation
(unilateral cerebellar
hypoplasia)

Not found Nothing found

9 M Cerebellar
ataxia

Convergent strabismus Global cerebellar
hypoplasia

Congenital cerebellar
hypoplasia

CACNA1G:c.3309G>C;
p.Trp1103Cys
Monoallelic

VUS

10 M Seizures Axial hypotonia, hypertonia of
appendages, and epilepsy

Cerebellar
dysplasia, corpus
callosum
agenesis,
arachnoid cyst,
basal ganglia
fusion

Congenital cerebellar
malformation
(cerebellar dysplasia)

MME:c.838G>T;
p.Glu280Ter
Monoallelic

Likely
pathogenic

11 M Tremor (ataxia) Deep areflexia, horizontal
nystagmus

Global cerebellar
hypoplasia

Congenital cerebellar
hypoplasia

PEX10:c.851C>T;
p.Thr284Ile
Monoallelic

VUS

12 F Hypotonia,
developmental
delay

Square-wave jerks, head
tremor (titubation)

Global cerebellar
hypoplasia

Congenital cerebellar
hypoplasia

TMEM240:c.305G>A;
p.Trp102Ter
Monoallelic

Likely
pathogenic

13 F Gait ataxia Pyramidal syndrome Global cerebellar
hypoplasia

Congenital cerebellar
hypoplasia

KIF1A:c.760C>T;
p.Arg254Trp
Monoallelic

Pathogenic

15 M Hypotonia,
developmental
delay

Slight appendage hypertonia,
facial dysmorphism

Pontocerebellar
hypoplasia

Congenital ataxia
syndrome (syndrome
cerebello-facio-dental)

BRF1:c.878C>T;
p.Ser293Leu
Biallelic

VUS

16
17c

M
F

Seizures Hyperkinetic syndrome, axial
hypotonia, multidirectional
nystagmus, deep hyporeflexia

Normal Unclassified Not found Nothing found

18 F Head tremor
(ataxia)

Hypometric saccades,
nystagmus in all directions

Normal Unclassified CACNA1A:c.4988G>A;
p.Arg1663Gln
Monoallelic

Pathogenic

19 F Hypotonia,
developmental
delay

Oculomotor apraxia, deep
areflexia, dystonia in lower
limbs and oral region, epilepsy

Global cerebellar
hypoplasia

Unclassified SNX14:c.1108G>T;
p.Glu370Ter
Biallelic

Pathogenic

Continued

6 Neurology: Genetics | Volume 10, Number 3 | June 2024 Neurology.org/NG

http://neurology.org/ng


these cases.33 In 2 patients in this sample (Patients 28 and 30),
different monoallelic pathogenic mutations in the CACNA1A
gene were associated with a congenital ataxia phenotype. Of
interest, the father of patient 30 had the same variant and
suffered from hemiplegic migraine.

STXBP1 gene variants, an important cause of early-onset
epileptic encephalopathies,34,35 and KIF1A gene variants im-
plicated in autosomal dominant mental retardation 9 (OMIM
614255), hereditary sensory neuropathy type II C (OMIM
614213), and spastic paraplegia type 30 (OMIM610357) play
an important role in the etiology of congenital ataxias.36-39 The
current clinical spectrum of STXBP1-related disorders is not
limited to the epileptic phenotype.35 In this study, amonoallelic
pathogenic mutation in the STXBP1 gene was implicated as the
cause of congenital ataxia with cerebellar-plus syndrome and
normal brain structure on MRI. Although patients with
the congenital ataxia phenotype associated with monoallelic

variants in the KIF1A gene may have pyramidal signs, these
are not the prevailing clinical characteristic. Extrapyramidal
symptoms, epilepsy, and peripheral neuropathy are also un-
common38 in these cases, as seen in patient 18.

Variants of unknown significance were identified in 33.3% of
patients in this cohort and involved 8 genes. In some patients,
the phenotype was consistent with the genotype (patients
with variants in STXBP1, CC2D2A, CACNA1G, BRF1,
THG1L, and CWF19L1 genes). Although the phenotype is
indicative of pathogenicity in these cases, complementary
diagnostics such as parental segregation studies or functional
biochemical tests are needed to confirm a deleterious effect.

This study contributes to the understanding of the clinical and
genetic aspects of congenital ataxias. However, small sample
size, analysis of neuroimages obtained at different centers
using different protocols, lack of cognitive function tests, and

Table Clinical, Neuroimaging, and Genetic Features of Brazilian Patients With Congenital Ataxia (continued)

Patients Sex
First
symptoms Other neurologic signs

Brain structure
on MRI

Congenital ataxia
classificationa Variants

Classification
of ACMG
2015b

20 F Hypotonia,
developmental
delay

Epilepsy, psychiatric disorder
(schizophrenia)

Global cerebellar
hypoplasia

Unclassified SPTBN2:c.1307T>C;
p.Met436Thr
Monoallelic

Likely
pathogenic

21 F Hypotonia,
developmental
delay

First and second neuron
syndrome, bilateral horizontal
nystagmus, and a craniofacial
disproportion

Pontocerebellar
hypoplasia

Pontocerebellar
hypoplasia congenital
ataxia

EXOSC3:c.395A>C;
p.Asp132Ala
Biallelic

Pathogenic

22
23
24c

M
F
F

Hypotonia,
developmental
delay

Isolated ataxia cerebellar
syndrome

Global cerebellar
hypoplasia

Congenital cerebellar
hypoplasia

SCN2A:c.2749G>A;
p.Asp917Asn
Monoallelic

VUS

25 M Hypotonia,
developmental
delay

Deep hyperreflexia and mild
facial telangiectasias

Global cerebellar
hypoplasia

Congenital cerebellar
hypoplasia

SPTBN2:c.1310G>A;
p.Arg437Gln
Monoallelic

Pathogenic

26 F Cerebellar
ataxia

Profound hyporeflexia,
cephalic titubation, mild
thoracolumbar scoliosis

Global cerebellar
hypoplasia

Congenital cerebellar
hypoplasia

CWF19L1:c.24-1G>C;p.?
Biallelic

VUS

27 M Gait delay Quadrupedal ataxia Global cerebellar
hypoplasia

Congenital ataxia
syndrome (Uner Tan
syndrome)

ITPR1:c.7952G>A;
p.Gly2651Glu
Monoallelic

Pathogenic

28 M Bilateral ptosis
and motor
delay

Dyskinetic movements in
hands and feet, bilateral ptosis
and presence of 3 café au lait
spots, and congenital heart
disease (pulmonary stenosis)

Normal Unclassified ITPR1:c.731A>G;
p.His244Arg
Monoallelic

Likely
pathogenic

29 M Hypotonia,
developmental
delay

Global hypotonia, horizontal
nystagmus, deep hyporeflexia,
epilepsy

Global cerebellar
hypoplasia

Congenital cerebellar
hypoplasia

1) THG1L:c.164T>C;
p.Val55Ala
2) THG1L:c.287A>T;
p.Asp96Val
Biallelic

1) Pathogenic
2) VUS

30 F Hypotonia,
developmental
delay

Hypotonia and oculomotor
apraxia

MRI not
performed

CACNA1A:
c4991G>A.p.Arg1664Gln

CACNA1A:
c4991G>A.p.Arg1664Gln
Monoallelic

Pathogenic

F = female; M = male.
a Congenital cerebellar ataxia classification proposed by Raslan IR et al.1
b ACMG: American College of Medical Genetics and Genomics.
c Siblings.
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complementary diagnostics such as microarray testing and
whole-genome sequencing in patients with VUS and patients
with normal WES results are potential limitations of this
study.

This study highlights the value of WES as an efficient
screening tool in patients with congenital ataxia. In this cohort
of Brazilian patients with congenital ataxia, genetic variants
were identified in 80% of patients and a specific genetic di-
agnosis obtained in 46.7% of cases. Accurate diagnosis of
congenital ataxia requires a comprehensive approach in-
cluding prenatal and postnatal history, physical examination,
neuroimaging, and laboratory testing. Whole-exome se-
quencing represents another important step in this process.

The genetic diagnosis of congenital ataxia is often challenging
because of the diversity of clinical and genetic features. This
study re-emphasizes the genetic heterogeneity of congenital
ataxias, confirms monoallelic variants as an important in-
heritance pattern, expands the genotype associated with this
disorder, and underscores the difficulties involved in estab-
lishing phenotype-genotype relationships.

Despite significant advancements in neurogenetic technology,
in many cases of congenital ataxia the genetic etiology cannot
be determined. Further research is needed to understand the
complex and unexplored field of congenital ataxia. Genetic
testing abbreviates the difficult diagnostic process, optimizes
patient management, and facilitates accurate recurrence risk
and prenatal counseling, with significant effects on the life of
patients and their families.
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