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ABSTRACT: Ionic liquids (ILs) have been regarded as “designer
solvents” because of their satisfactory physicochemical properties.
The 5% onset decomposition temperature (Td,5%onset) is one of the
most conservative but reliable indicators for characterizing the
possible fire hazard of engineered ILs. This study is devoted to
develop a quantitative structure−property relationship model for
predicting the Td,5%onset of binary imidazolium IL mixtures. Both in
silico design and data analysis descriptors and norm index were
employed to encode the structural characteristics of binary IL
mixtures. The subset of optimal descriptors was screened by
combining the genetic algorithm with the multiple linear regression
method. The resulting optimal prediction model was a four-
variable multiple linear equation, with the average absolute error
(AAE) for the external test set being 12.673 K. The results of rigorous model validations also demonstrated satisfactory model
robustness and predictivity. The present study would provide a new reliable approach for predicting the thermal stability of binary IL
mixtures.

1. INTRODUCTION

By definition, ionic liquids (ILs) are novel green solvents
composed of organic cations and organic or inorganic anions,
which are liquid at room temperature. They are labeled as
“designer solvents” because of their excellent physical and
chemical properties such as high conductivity, low melting
point, remarkable thermal stability, and good solubility.1−3 ILs
have achieved a rapid development and are widely applied in
various fields such as catalysis,4 carbon capture,5 electrolytes in
batteries,6 and pharmaceutical processing.7

However, it is still difficult to find the ideal IL that satisfies
the deeper demand of desired properties. Since each new IL
requires a complete property analysis and registration, it can be
costly and time-consuming to study and develop a new IL. A
feasible and alternative solution is the IL mixtures. IL mixtures,
which are also known as double salt ILs (DSILs),8 make it
possible to further fine-tune their properties. DSILs often
exhibit different physicochemical properties from pure ILs
since new ionic associations generate. By changing the
combinations of ILs, the desired IL mixtures can be designed
and synthesized for certain properties. A great deal of research
has been published on the applications of IL mixtures in
multiple fields, e.g., electrochemistry,9,10 carbon dioxide
capture,11,12 catalysis,13 and extraction.14

Since many industrial processes generate substantial heat or
need to be carried out under high-temperature conditions, high

requirements are put forward for the thermal stability of ILs.
Although the ILs are almost nonflammable, there still exists
thermal decomposition. During high-temperature industrial
processes, the ILs may change their structures and thermally
decompose, which leads to unwanted byproducts and
unexpected accidents.15 Therefore, the thermal decomposition
temperature (Td) is commonly referred to characterize the
thermal hazards of ILs.16−19 Furthermore, compared to the
traditional onset decomposition temperature (Td,onset), the
temperature at 5% decomposition (Td,5%onset) is considered as
a more realistic and conservative indicator to determine the
maximum permissible working temperature during the opera-
tional process.20,21

Extensive research on Td,5%onset of IL mixtures has been
performed.12,22−24 All of them tested the thermal stability by
experimental studies, which requires a lot of manpower and
material resources. Furthermore, for those samples with
poisonous and harmful substances, there remains difficulties
and hazards in measurement. Currently, there is a trend that
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the quantitative structure−property relationship (QSPR)
method is widely employed to predict the physicochemical
properties of chemicals. Compared with the experimental
method, the QSPR is apparently a more convenient and
efficient approach.
In the past few years, considerable efforts have been made to

predict the Td of pure ILs and IL composites. Lazzuś
established a theoretical prediction model for the Td of 198
ILs based on a group contribution method.25 The data set
contains 27 cationic groups and 31 anionic groups, and the
resulting model provided an alternative approach to predict the
Td of ILs. Venkatraman and Alsberg employed partial least
squares and random forests (RF) to develop models for
predicting Td of 995 diverse ILs that consisted of 461 cations
and 119 anions.26 Electronic, thermodynamic, and geometrical
descriptors calculated from semiempirical PM6 were selected,
and the RF model showed better predictive performances.
Zhao et al. established a QSPR model to describe Td values for
a total of 168 ILs.27 They used the DRAGON program
(version 6) to calculate descriptors and employed genetic
algorithm with the multiple linear regression (GA-MLR) to
filter the most relevant variables. Both the structure for single
ions and the cation−anion interactions were considered, and
the results showed satisfactory predictability. Zeeshan et al.
combined 29 diverse imidazolium ILs with two diverse metal−
organic frameworks (MOFs) and proposed QSPR models
based on the MLR method to predict Td values.

28 The results
demonstrated satisfactory prediction of Td values of IL/MOF
composites, and they found that ILs with the [NTf2]

− anion
possess higher thermal stability in the composites. Recently,
Duan et al. developed the QSPR model for 158 different
imidazolium ILs via norm index descriptors.29 The descriptors
they employed not only characterize the structures of anions
and cations but also describe the interaction between anions
and cations.
However, with more research on IL mixtures, there is still no

prediction model for the Td,5%onset of IL mixtures because of
the lack of experimental data. In this study, the data set was
selected from previous publications, aiming to develop a simple
and reliable model to predict the decomposition temperatures
of imidazolium IL mixtures via the QSPR method. In this
study, descriptors for both structural characteristics of ions and
cation−anion interactions were calculated and combined
together to represent the characteristics of the selected
imidazolium IL mixtures. In particular, in silico design and
data analysis (ISIDA), which represents the molecular
structure based on a finite number of topological frag-
ments,30,31 was employed to explore the relationship between
target properties and ionic structures. Besides, the norm index
descriptor was utilized to describe the interaction between
cations and anions.29,32,33 The QSPR modeling was carried out
in this study for a total of 31 different imidazolium IL mixtures,
and various rigorous model validation strategies were then
performed to ensure the model performance. Through our

work, it was expected to provide an efficient approach to
evaluate the thermal stability of IL mixtures and provide some
guidance for experimental design and mixing of ILs.

2. RESULTS AND DISCUSSION
2.1. Results of Prediction. The most optimal subset was

selected after the process of GA-MLR. In this study, three
structural descriptors with “augmented atoms” type “IIAB”
(including a cation descriptor and two anion descriptors) and
an interaction descriptor were obtained to encode the
characteristics of imidazolium IL mixtures. To analyze the
contribution of substructures, the representations of these
selected descriptors are listed in Table 1. The optimal MLR
model is shown as follows:

= − + − +
+

= = = =
=

Y X X X X

R Q n F

Model: 32.615 23.264 20.285 11.392
384.437

0.969, 0.949, SE 9.666, 24,
150.113

1 2 3 4

2
LOO
2

(1)

where R2 represents the squared correlation coefficient, Q2
LOO

represents the value of leave-one-out (LOO) cross-validation
(CV), SE represents the standard error of the model, n
represents the number of mixtures in the training set, and F
represents the Fischer F-ratio.
Then, the predictive ability of the model was tested by

comparing the predicted and observed values, which is shown
in Figure 1. The predicted values are presented in the
Supporting Information (Table S1). The plot clearly depicts
that the majority of data points are located in the diagonal line,
which indicates a good correlation between the predicted and
observed values of IL mixtures. Table 2 summarizes the main

Table 1. Descriptors Selected for the Present Model for the Prediction of IL Mixturesa

structure descriptor representation ionic type mixing rule interaction descriptor representation

X1 C(−N′) cation | − |x d x d1 1 2 2 X4 normin1(CM2,1,2)

X2 F(−C′) anion +x d x d1 1 2 2 / /

X3 F(−C′) anion − Δ Δx d(1 ) / /
aHere, N, C, and F represent the kinds of atoms and “−” represent the single bond, with those outside of brackets denoting augmented atoms and
those in brackets denoting their neighbor atoms and bonds

Figure 1. Plot of the predicted vs observed values of the Td,5%onset of
binary IL mixtures.
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statistical parameters of the MLR model. The result shows that
the Td,5%onset values of IL mixtures can be effectively predicted
by the model equation with an AAE of 7.294 K. In addition,
the predicted percentage error of 31 samples is shown in
Figure 2. The distribution showed the specific number of

samples in each error interval. The obtained minimum relative
error is 0.14%, the maximum relative error is 5.91%, and the
average relative error is 1.93%.
2.2. Model Stability Validation and Result Analysis.

For the present model, the Y-randomization test was employed
as a validation approach to determine model stability. It was
carried out 100 times for the training set samples in this paper.
The visual summary of the Y-randomization test is performed
by demonstrating the relationship between the R2 values of
randomized models and the model frequency (Figure 3). The
obtained maximum, minimum, and average R2 values of the
randomized model are 0.465, 0.0153, and 0.168, respectively,
while the value of standard deviation (SD) is 0.110. Since the
difference of R2 between the original model and the mean
highest random is much greater than 3SD, the result indicates
a negligible chance correlation between the randomly shuffled
models and the original model, which emphasizes the unique
connection between the developed model and the selected
variable set.
Furthermore, the predicted residuals and observed values are

analyzed in Figure 4. Evidently from the diagram, all predicted
residuals are distributed on both sides of the zero baseline
uniformly and randomly, which indicates that no systematic
errors occurred during the establishment of the MLR model.

With the rigorous validation of multiple strategies, it can be
concluded that the obtained model shows excellent robustness
and predictability. The QSPR model derived from molecular
structural descriptors can efficiently and conveniently predict
the Td,5%onset values of IL mixtures.

2.3. Applicability Domain of the Present Model. The
domain application of the QSPR model is defined as a
chemical structure space, which is characterized by the
properties of the compounds in the training set. The Williams
plot is employed to analyze the domain application and is
shown in Figure 5. The applicability domain (AD) is depicted
as a squared area within ±3 standard deviations and a leverage
threshold h* of 0.625.
As can be easily observed in Figure 5, all predicted values of

IL mixtures are inside the area. Since all IL mixtures are within
the residual range, the developed model is considered reliable
and can satisfactorily predict Td,5%onset of imidazolium IL
mixtures within the application ranges.

3. CONCLUSIONS
In this work, the QSPR approach was employed to determine
the relationship between the thermal stability and molecular

Table 2. Main Statistical Parameters of the Obtained MLR
Model

statistical parameters training set test set

R2 0.969 0.923
Q2

LOO 0.949
Q2

EXT 0.924
RMSE 9.463 14.152
AAE 7.294 K 12.673 K
n 24 7

Figure 2. Percent errors obtained by the model and the number of
mixtures in each range.

Figure 3. Histogram of R2 of randomization vs frequency of
occurrence of the randomized models.

Figure 4. Plots of the residual vs the observed Td,5%onset values of
binary IL mixtures.
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structures of binary imidazolium IL mixtures. After carrying
out internal and external validations, the results showed that
the predictive model has been successfully developed with
satisfactory model performance. To sum up, this work has the
following main findings:

(1) The relationship between the thermal stability of binary
IL imidazolium mixtures and their molecular structures
was investigated in this study, for the first time, and the
corresponding prediction model was proposed to predict
the Td,5%onset of the IL mixtures.

(2) The norm index descriptors combined with ISIDA
descriptors were employed to extensively and effectively
characterize both molecular structure features and
interactions of binary IL mixtures, which lead to the
resulting QSPR model with satisfactory prediction
performance.

(3) The developed model was conceptually simple, con-
venient for application, and would also be reasonably
expected to reliably predict the decomposition temper-
ature of binary imidazolium IL mixtures with satisfactory
robustness and predictivity, from only their molecular
structures. Additionally, this study could also provide
some guidance for synthesizing or designing IL mixtures
for safety purposes.

4. MATERIALS AND METHODS
4.1. Data Set. The observed 5% onset decomposition

temperatures of binary imidazolium IL mixtures were selected
from previous publications.12,23 The data set consists of 31
data points containing 4 pure imidazolium ILs and 27 mixtures
of binary imidazolium ILs. The Td,5%onset values of these
mixtures ranged from 402 to 597 K. The details of 31 binary IL
mixtures are listed in Table S2 of the Supporting Information.
4.2. Calculation of Molecular Descriptors. 4.2.1. Calcu-

lation of Descriptors for Ions. The ISIDA fragment descriptor,
which is also realized as the substructure molecular fragment
(SMF) descriptor, is defined as the number of topological
fragments of the molecular structure. There are two main
classes of molecular subgraphs: (I) “sequences” and (II)
“augmented atoms.” The “sequences” means the shortest path
of two atoms connected by chemical bonds. There are three

types of “sequences,” which are performed as atom types (A),
bond types (B), and atom and bond types (AB). For each type
of sequence, the minimal and maximal lengths of the path are
defined as nmin and nmax, respectively. In this study, the length
of the sequence corresponds to nmin = 2 and nmax = 8. The
selected atoms with their environment are defined as
“augmented atoms,” which also includes neighbor atom and
bond types (AB), atom types (A), or bond types (B).
Since ILs are composed of anions and cations, it is necessary

to calculate descriptors for cations and anions separately. The
detailed descriptor calculation process is performed as follows:
first, the 2D chemical structures of each cation and anion were
drawn using MarvinSketch (version 15.6.29.0) and optimized
based on the clean in 2D method. Structure data files (SDF)
including two cations and three anions were then, respectively,
imported into EdiSDF, a program of the ISIDA system, to
generate SDF records of cations and anions. The described
SMF descriptors were generated by the SMF module of the
ISIDA system.
The mixture descriptor for the IL mixture was developed by

combining the descriptors of diverse cations and anions
separately. The 12 proposed formulas that take into account
their respective mole fractions were used to calculate mixed-
cation descriptors and mixed-anion descriptors34 (Table 3).
Then, descriptors for constituted species were concatenated to
describe the structure of the multiple-ion system.35

4.2.2. Calculation of Interaction Descriptors. Since ILs
consist of cations and anions, their thermal stability and the
character of the cations and anions are intimately connected.
Thus, not only the structural characteristics of ions should be
taken into account, but also the contribution of interaction is
indispensable. The molecular structure can be intuitively
represented by the SMF module, while the interactions
between the cations and anions cannot be represented because
of the limitation of the software. Considering the diverse
associations that possibly exist in a multiple-ion system of IL
mixtures, the descriptors based on the norm index were
proposed to describe each cation−anion interaction of
imidazolium IL mixtures in this work.

Figure 5. Williams plot describing the AD of the QSPR model for the
Td,5%onset of the binary IL mixtures (h* = 0.625).

Table 3. List of Mixture Formulasa

no. formula

(1) = +D x d x d1 1 2 2

(2) = | − |D x d x d1 1 2 2

(3) = +D x d x d( ) ( )1 1
2

2 2
2

(4) = +D x d x d1
2

1 2
2

2

(5) = +D x d x d1 1 2 2

(6) = +D x d x d( )1 1 2 2
2

(7) = − Δ ΔD x d(1 )
(8) = − Δ ΔD x d(1 )2

(9) = − Δ ΔD x d(1 )2

(10) = +D d d( )/21 2

(11) = −D d d( )1 2
2

(12) = | − |D d d1 2
aD is the descriptor of mixture; x1 and x2 are the molar fractions of
components 1 and 2; respectively; d1 and d2 are ISIDA descriptor
values for components 1 and 2, respectively; Δx is the absolute value
of the difference between x1 and x2; and Δd is the absolute value of
the difference between d1 and d2.
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First, the 3D structure of each cation and anion was achieved
by Chemdraw (version 14), with the optimization based on the
MM2 module (the class 1 Allinger molecular mechanics
program). For further optimization, the Gaussian (version
GaussView 6.0.16) was employed to carry out density
functional theory (DFT) M06-2X functional calculation on
the basis of 6-311+G (d,p). Then, the optimized molecular
structures were characterized by the matrix norm index.33

The calculation process of distance matrices and property
matrices is shown as follows:

= [ ] =
≠

=

l
m
oo
n
ooa a

n i j

i j
MS

if

0 ifij ij
(2)

n is the path between atoms i and j.

= [ ] =
≠

=

l
m
ooo
n
ooo

a a
r i j

i j
MD

1/ if

0 if
ij ij

ij

(3)

rij is the Euclidean spatial distance between atoms i and j.

= [ ]MP AW/Ra1 (4)

= [ × ]MP EN Ra2 (5)

= [ ]MP exp(AW/MW)3 (6)

= [ ]MP AQ/AW4 (7)

= [ + ]MP 1/(1 exp(BD))5 (8)

where AW, Ra, EN, MW, AQ, and BD are atom weight, atom
radius, electronegativity, molecular weight, atom charge, and
branching degree, respectively.
Then, the distance matrices and the property matrices are

combined as CM matrices, which are calculated as follows:

=
Ä

Ç

ÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑ
CM

MP

MS
m

m
1,

(9)

=
Ä

Ç

ÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑ
CM

MP

MD
m

m
2,

(10)

= [ × + ]CM MP MP MSm m m3,
T

(11)

= [ × + ]CM MP MP MDm m m4,
T

(12)

where m = 1, 2, 3, 4, and 5, which correspond to matrices MP1
to MP5. Furthermore, the three norm indexes are defined in
eqs 12−14:

∑= | | =
=

l
m
oo
n
oo

|
}
ooo
~
oo j qCM CMnorm( , 1) max , 1, 2, ...,j

i

p

i j
1

,

(13)

λ= ×CM CM CMnorm( , 2) (max( ( )))i
H

(14)

∑ ∑=
i

k

jjjjjjj
y

{

zzzzzzzCM CMnorm( , 3)
j

q

i

p

ij
2

(15)

where p and q represent the number of rows and columns of
matrix CM, respectively. λi is the eigenvalue of the matrix, and

the CMH is defined as the Hermite matrix of the matrix.

Considering that the thermal stability is related to the
various interactions of the binary IL system, the descriptors for
multiple cation−anion interactions are further proposed based
on the original calculation for single ILs,29,33 which are defined
as follows:

= × + ×

w

w w

CM

CM CM

norm ( , )

CF norm ( , ) AF norm ( , )
in1

Ca1 An1

(16)

= × + ×

w

w w

CM

CM CM

norm ( , )

CF norm ( , ) AF norm ( , )
in2

Ca1 An2

(17)

= × + ×

w

w w

CM

CM

norm ( , )

CF norm ( , ) AF norm (CM, )
in3

Ca2 An2

(18)

= × + ×

w

w w

CM

CM CM

norm ( , )

CF norm ( , ) AF norm ( , )
in4

Ca2 An1

(19)

In this study, all the four interaction descriptors
wCMnorm ( , )in1 , wCMnorm ( , )in2 , wCMnorm ( , )in3 , and
wCMnorm ( , )in4 were proposed to represent the cation−

anion interactions individually, and then all those descriptors
were concatenated to describe the characteristics of multiple-
interaction system, where w = 1, 2, and 3, corresponding to
norm(CM,1), norm(CM,2), and norm(CM,3), and CF and
AF refer to the mass fractions of the cations and anions,
respectively. The wCMnorm ( , )Ca1 , wCMnorm ( , )Ca2 and

wCMnorm ( , )An1 , wCMnorm ( , )An2 refer to the norm indexes
of matrices calculated from the cations and anions,
individually.

4.3. Descriptor Selection and Model Development.
Based on the above programs, descriptors for IL mixtures were
obtained. Determining the optimal descriptors that are most
relevant to the target attribute is a critical step in QSPR
modeling. The GA has been proved to be an efficient method
applied for variable selection. In this paper, the optimal subset
of descriptors that accurately characterize structural features
corresponding to their target properties was selected by
combining the GA-MLR method. The selection process of GA-
MLR was implemented by Materials Studio (version 8.0).

4.4. Model Validation. To ensure the model reliability of
resulted QSPR models, model validation can be absolutely
necessary. Multiple verification strategies were employed for
both internal and external validation in the present work.
The squared correlation coefficient (R2) is commonly used

to measure the fit between the observed and predicted values.
The model has good fit if the R2 value is greater than 0.6. The
root-mean-square error (RMSE), the SE, and the AAE were
also presented to evaluate the predictive capability.36

=
∑ −= y y

n
RMSE

( )i
n

i1 0
2

(20)

=
∑ −

−
= y y

n
SE

( )

1
i
n

i1 0
2

(21)
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where yi is defined as the observed Td,5%onset value, y0 represents
the predicted Td,5%onset value, and n is the number of the IL
mixtures.
The CV is considered as an approach of great use to verify

the robustness of the resulting model. The internal predictive
ability was tested by the CV result (Q2) in internal validation.
The most economical LOO CV (Q2

LOO) was utilized in this
work,37 which is calculated as follows:
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2 1
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0

2

1
training 2
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where yi, y0, and ¯Y represent, respectively, the observed,
predicted, and mean observed Td,5%onset values of the IL
mixtures in the training set.
To determine the generalizability and the prediction ability

of the resulting QSPR model, external validation is
indispensable. The data set was divided into a training set
and an external test set. The training set is used for descriptor
selection and model development, while the test set is for
model external validation. There are three main strategies
commonly applied for data set partition of mixtures, including
“Points out,’, ‘‘Compounds out,’’ and ‘‘Mixtures out.’’ The
“Points out” strategy was employed in this work.
In this study, the data set was randomly divided into a

training set with 24 samples (77.4% of the data set) and a test
set (22.6% of the data set) with seven samples based on the
“Points out” strategy. Then, the squared correlation coefficient
for external validation (Q2

ext) was calculated to indicate the
predictive capability of the established QSPR model. The
calculation process is as follows:

= −
∑ −

∑ − ̅
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y y

y y
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i i

i i
ext
2 1

test
0

2

1
test

tr
2

(24)

where yi and y0 represent the observed and predicted Td,5%onset
values of the IL mixtures in the test set, and ¯y tr represents the
mean observed Td,5%onset values of the IL mixtures in the
training set.
Furthermore, the Y-randomization test was applied to verify

the stability of the prediction model. It randomly scrambles the
dependent variables and keeps independent variables un-
changed. Then, the performance of the presented model is
compared with the original model. The operation is repeated
50−100 times through the program. If the randomly shuffled
models present much lower R2 values than the original model,
it can be considered that no chance correlation exists in the
modeling process.
4.5. AD. An explicitly defined AD is required for any

resulting QSPR model according to OECD principle 3.38 The
AD is a theoretical area defined by the molecular similarity of
the training set and determines if the developed model can
reliably predict the valid range of new chemicals. The popular
Williams plot is applied as a practical tool for the definition of
the AD. It is presented as a two-dimensional scatter plot
determining whether the chemicals of the developed model are
located in or out of the AD.
The structural similarity between the sample and the

training set is represented by the leverage value hi, which is
defined as

= =−h X X X X i n( ) ( 1, 2, 3, ..., )i i i
TT 1

(25)

where Xi represents the descriptor row-vector of descriptors
for the ith sample, and X represents the matrix of descriptors
for all samples in the training set. The warning leverage value
h* is defined as follows:

* = +
h

k
m

3( 1)
(26)

where k represents the number of selected descriptors in the
developed model, and m represents the number of samples in
the training set. If the leverage value (hi) of the sample is
higher than the warning leverage value (h*), the predicted
result of the compound is considered out of the valid range of
application and the prediction is considered unreliable.
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