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Abstract
Background It is unclear regarding the association between metabolomic state/genetic risk score(GRS) and brain 
volumes and how much of variance of brain volumes is attributable to metabolomic state or GRS.

Methods Our analysis included 8635 participants (52.5% females) aged 40–70 years at baseline from the UK Biobank. 
Metabolomic profiles were assessed using nuclear magnetic resonance at baseline (between 2006 and 2010). Brain 
volumes were measured using magnetic resonance imaging between 2014 and 2019. Machine learning was used to 
generate metabolomic state and GRS for each of 21 brain phenotypes.

Results Individuals in the top 20% of metabolomic state had 2.4–35.7% larger volumes of 21 individual brain 
phenotypes compared to those in the bottom 20% while the corresponding number for GRS ranged from 1.5 to 
32.8%. The proportion of variance of brain volumes (R [2]) explained by the corresponding metabolomic state ranged 
from 2.2 to 19.4%, and the corresponding number for GRS ranged from 0.8 to 8.7%. Metabolomic state provided no 
or minimal additional prediction values of brain volumes to age and sex while GRS provided moderate additional 
prediction values (ranging from 0.8 to 8.8%). No significant interplay between metabolomic state and GRS was 
observed, but the association between metabolomic state and some regional brain volumes was stronger in men or 
younger individuals. Individual metabolomic profiles including lipids and fatty acids were strong predictors of brain 
volumes.

Conclusions In conclusion, metabolomic state is strongly associated with multiple brain volumes but provides 
minimal additional prediction value of brain volumes to age + sex. Although GRS is a weaker contributor to brain 
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Introduction
The importance of brain structure on behaviors such as 
personality traits and intelligence and diseases especially 
psychosocial and neurological disorders has been inves-
tigated in an increasing number of studies [1, 2]. Non-
pathological brain damage may be a prelude to dementia 
[3], and some other neurodegenerative disorders [4]. 
Brain atrophy is a public health challenge in the global 
ageing population as older age is the most important 
risk factor for brain atrophy [4, 5]. Although numerous 
chronic conditions and biomarkers have been linked to 
brain atrophy [5–8], these previous studies failed to iden-
tify determinants (besides age) with great contribution to 
brain atrophy. Therefore, it is imperative to identify new 
important determinants for brain atrophy.

Cohort studies have shown that metabolic disor-
ders including diabetes, hypertension, and obesity were 
associated with greater brain atrophy [5, 6, 9, 10]. Data 
from three independent cohorts showed that higher 
glucose levels and lower small high-density lipoprotein 
(HDL) were associated with brain atrophy [11]. In con-
trast, a recent study of 9290 individuals from 15 popu-
lations investigated the association between individual 
metabolomic profiles and white matter hyperintensities 
(WMH) and found that lipids and amino acids might 
play an important role in WMH variance [12]. Buergel 
et al. applied machine learning to generate metabolo-
mic state by involving 168 metabolomic profiles, which 
was strongly predictive of multiple common diseases 
[13]. However, the potential of metabolomic profiles as 
a whole state in the prediction of brain atrophy has not 
been investigated thus far.

Although genome-wide association studies (GWAS) 
of brain imaging phenotypes have been conducted based 
on the UK Biobank cohort [14], it is unknown regarding 
the proportion of variance in brain volumes explained 
by genetic risk score (GRS). Machine learning-based 
GRS has been demonstrated to have better performance 
in disease risk prediction [15]. A GRS has not been 
established for brain volume using machine learning 

techniques. It is unknown regarding the interaction 
between metabolomic state and GRS for brain volumes.

Using the UK Biobank, we aimed to examine associa-
tions of metabolomic states with brain volumes and to 
establish GRS for brain volumes using machine learning. 
We also tested whether metabolomic states and GRS pro-
vided additive values for the prediction of brain volumes 
compared with age + sex, multimorbidity and/or multiple 
risk factors. The interplay between metabolomic states 
and GRS for brain volumes was then examined.

Methods
Study population
The UK Biobank is a population-based cohort of more 
than 500,000 participants aged 40–70 years at enrol-
ment [16]. Baseline data (2006–2010) was collected from 
502,505 participants out of approximately 9.2  million 
invited people. These participants attended one of the 22 
assessment centers throughout the UK. The study design 
has been shown in detail elsewhere [16]. 

The UK Biobank Study’s ethical approval has been 
granted by the National Information Governance Board 
for Health and Social Care and the NHS North West 
Multicenter Research Ethics Committee (REC reference: 
16/NW/0274). All participants provided informed con-
sent through electronic signature at recruitment.

Brain magnetic resonance imaging
Brain magnetic resonance imaging (MRI) data collected 
between August 2014 and October 2019 were used in 
the analysis. Images were generated using a standard 
Siemens Skyra 3T scanner with a standard 32-channel 
radio-frequency receiver head coil [17, 18]. The T1- and 
T2-weighted scans with the Functional MRI of the Brain 
Software Library were used to estimate brain volumes. 
Total brain volume was the sum of the grey and white 
matter volumes. Volumes of total brain, grey matter, 
white matter, peripheral cortical grey matter, and ven-
tricular cerebrospinal fluid were normalised for head 
size [17, 18], using the ratio-corrected method [17]. Con-
sidering the positively skewed distribution, WMH was 

volumes than metabolomic state, it provides moderate additional prediction value of brain volumes to age + sex. Our 
findings suggest metabolomic state and GRS are important predictors for multiple brain phenotypes.

Key points
 • Question: What is the relationship between metabolomic/genetic profiles and brain volumes?
 • Finding: Metabolomic profiles show a robust association with various brain volumes, while genetic profiles 

have a less significant impact on brain volumes.
 • Meaning: This study elucidated the landscape of the relationship between metabolomic/genetic profiles and 

brain volumes.
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log-transformed in the analysis. Volumes of the hippo-
campus, thalamus, caudate, putamen, pallidum, amyg-
dala, and accumbens on both right and left sides were 
calculated. Larger volumes of total and regional brain but 
smaller WMH load represent better brain health. Nor-
malization of each brain phenotype was conducted to 
result in it being Gaussian distributed, with mean = 0 and 
SD = 1.

Metabolomic profiling
A high-throughput NMR-based metabolic biomarker 
profiling platform was used to measure metabolomic 
profiles [19]. EDTA plasma samples at baseline were col-
lected from a randomly selected subset of 117,121 UK 
Biobank participants. Levels of 249 metabolic traits (168 
concentrations and 81 ratios) including the lipoprotein 
lipids in 14 subclasses, fatty acids, amino acids, ketone 
bodies, and glycolysis were quantified in the study (Table 
S1). Quality control was performed to eliminate systemic 
and technical variance  (   h t  t p s  : / / b  i o  b a n k . c t s u . o x . a c . u k / c 
r y s t a l / l a b e l . c g i ?     id = 220). Sample collection, metabolo-
mic quantification, and quality control were conducted 
according to protocols [19, 20]. Metabolite levels were 
normalized with mean = 0 and SD = 1.

Genetic data
BiLEVE Axiom array, or the UK Biobank Axiom array 
was used for genotyping by Affymetrix. Linear associa-
tion tests on the samples were performed between each 
of the 17,103,079 genetic variants and each of the 21 
brain phenotypes. We included these 21 brain pheno-
types in the analysis because these brain volume mea-
surements have been demonstrated to be reliable [21] 
and have been linked to behavioral and psychological 
symptoms of dementia in previous studies [22]. Single 
nucleotide polymorphisms (SNPs) with significant asso-
ciations were then selected to create GRS for individual 
brain phenotypes. Bgenie software was used to conduct 
the GWAS and record the effect sizes (beta), standard 
errors, and − log10 (P-value) values for the associations. 
(R1.1)

Covariates
Geographic information on age, sex, ethnicity, educa-
tion, and income was self-reported using a questionnaire. 
Townsend index of material deprivation was used to rep-
resent neighbourhood-level socioeconomic status. Life-
style factors including diet, smoking, sleep duration, and 
alcohol consumption were assessed using a questionnaire 
on a touch-screen computer. A diet score was calcu-
lated based on seven commonly eaten food groups with 
a higher score representing a healthier diet [23]. Levels 
of physical activity during work and leisure time were 
assessed using a short form of the International Physical 

Activity Questionnaire. The use of medications for anti-
hypertension, lipid-lowering, and glucose-lowering was 
self-reported.

A multimorbidity score for brain atrophy was com-
puted based on the association between individual major 
chronic diseases and brain volumes [24]. The multimor-
bidity score has been shown to be a strong predictor of 
brain atrophy, independent of age. Body mass index 
(BMI) was calculated based on measured weight and 
height. Other chronic diseases were defined using self-
reported data, interviews, or inpatient data. (R1.2)

Statistical analysis
Baseline characteristics were expressed as frequency 
(percentage) or means ± standard deviations (SDs). T-test 
for continuous variables and Chi-square test for categori-
cal variables were used to test the difference of character-
istics by sex.

Metabolomic state model development
For model development and testing, we split the dataset 
into 18 spatially separated partitions based on the loca-
tion of the assessment center at enrolment. Of the 22 
assessment centers, 17 with more than 150 available par-
ticipants were divided into 17 separated partitions and 5 
with < 150 available participants were combined as one 
separated partition.

The data was analyzed in 18-fold nested cross-valida-
tion, setting aside one of the spatially separated partitions 
as a test set. Among the remaining partitions, 50% were 
randomly selected as training data and the other 50% as 
validation data [25]. Within each of the 18 cross-valida-
tion loops, the individual test set was not involved in the 
model development and the validation data was used to 
validate the prediction performance. Metabolomic state 
score was created for each of the 18 test sets based on the 
corresponding obtained model. The score for all partici-
pants was then developed by aggregating predictions of 
18 test sets. This analysis was conducted for each of the 
21 brain phenotypes (Fig. 1).

Four machine learning models including general linear 
regression, random forest, gradient boosting machine, 
and deep learning were used to develop the prediction 
models. The one with the best prediction performance in 
the validation analysis was used to create metabolomic 
state.

Genetic risk score
The same method for metabolomic state development 
was used to develop a GRS for each of 21 brain phe-
notypes. SNPs with P-values < 5×10−5 as tested in the 
GWAS analysis were used to develop the GRS (Fig. 1).

https://biobank.ctsu.ox.ac.uk/crystal/label.cgi?
https://biobank.ctsu.ox.ac.uk/crystal/label.cgi?
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Metabolomic state/Genetic risk score and brain volumes
The association between metabolomic state/GRS and 
brain volumes was examined using general linear regres-
sion models. The percentage of the total variance in brain 
volumes (R [2]) attributable to metabolomic state/GRS 
as well as age + sex, multimorbidity score, and Panel was 
analyzed. Panel predictors included age, sex, education, 
and vascular risk factors [6]. Additional prediction values 
in addition to these traditional predictor sets by metabo-
lomic state/GRS were then calculated.

Associations between individual metabolomic profiles 
and brain volumes were also tested using general linear 
regression models. Benjamin-Hochberg’s procedure was 
used to control the false discovery rate (FDR) at a 5% 
level for multiple comparisons [26]. 

Whether associations between metabolomic state/
GRS and brain volumes were modified by age or sex was 
tested using general linear regression models. The inter-
action between metabolomic state and GRS for brain vol-
umes was also tested.

Multiple imputations for missing data were conducted, 
and age, sex, and all covariates were included in the 
imputation models to create 10 imputed datasets.

Data analyses were conducted using SAS 9.4 for Win-
dows (SAS Institute Inc.) and all P values were two-sided 
with statistical significance set at < 0.05.

Results
Our study utilized the UK Biobank dataset to explore the 
correlations between metabolomic profiles and brain vol-
umes, and to construct GRS for individual brain volumes 
using machine learning algorithms. We assessed the 

additional predictive value of metabolomic profiles and 
GRS in forecasting brain volumes, considering factors 
such as age, sex, multimorbidity, and other risk factors.

The cohort consisted of 8,635 participants, selected 
from the UK Biobank dataset. Metabolomic profiles 
were obtained through NMR scans during the base-
line assessment period (2006–2010), and brain volumes 
were measured using magnetic resonance imaging scans 
from 2014 to 2019. Machine learning techniques were 
employed to derive metabolomic states and GRS for 21 
distinct brain phenotypes. The study design is illustrated 
in Fig. 1 (R2.1).

Population selection
Individuals with no data on MRI assessments 
(n = 462,809), or metabolomic profiles (n = 30635), or 
those of non-European ancestry (n = 277), or those with 
neurological disorders (n = 149) were excluded from the 
analysis. We included 8635 participants (52.5% females) 
in the final analysis. They were aged 40–70 (mean ± SD: 
54.9 ± 7.5) years when lifestyle, biomarkers, and metabo-
lomic profiles were assessed at baseline and aged 44–81 
(63.6 ± 7.6) years when brain MRI assessments at a repeat 
visit were conducted.

Men were more likely to have higher household income 
and to be older and current smokers than women. 
Women had higher diet quality and lower BMI than men 
(Table 1).

Metabolomic state and brain volumes
The prediction performance for machine learning models 
is shown in Table S2. General linear regression had the 

Fig. 1 Flowchart for the development of metabolomic state and genetic risk score for brain volumes using machine learning. a. Dataset preparation and 
model construction. b. Model development
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highest performance and was used to fit the metabolomic 
state.

The association of metabolomic state and brain vol-
umes has been presented in Fig. 2.

As shown in Fig.  2a, the volume of total brain and 
regional areas increased with the increasing metabolo-
mic state. The association between metabolomic state 
and grey matter volume was non-linear, whereas all other 
associations appeared to be linear.

Individuals in the top 20% of metabolomic state (53.8 
(95% CI: 52.7, 54.8) ml) had 35.7% larger volume of 
ventricular cerebrospinal fluid compared with those in 
the bottom 20% (39.6 (95% CI: 38.8, 40.4) ml), indicat-
ing that the different states of metabolomic had signifi-
cantly different brain volumes, which added evidence 
to the potential of metabolomic profiling in predicting 
brain health. For brain stem + 4th ventricle, individuals 
in the top 20% of metabolomic state (24.1 (95% CI: 24.0, 
24.3 ml) had 11.0% larger volume than those in the bot-
tom 20% (21.7 (21.6, 21.9  ml). Larger volumes of total 
brain, grey matter, and other regional areas were also 

observed among individuals in the top 20% than in the 
bottom 20% of metabolomic state. Individuals in the 
top 20% metabolomic state (8.21 (95% CI: 8.16, 8.27 ml) 
had 5.3% higher load of WMH compared with those in 
the bottom 20% (7.79 (95% CI: 7.73, 7.86  ml) (Fig.  2b). 
(R1.3 + 2.1 + 2.2 + R3.1)

Although the adjustment for age and sex substantially 
attenuated the association between metabolomic state 
and brain volumes, most of these associations remained 
significant (Figure S1).

Genetic risk score and brain volumes
As shown in Table S3, general linear regression had the 
highest prediction performance was used to generate 
GRS for individual brain volumes (R3.1).

A higher genetic risk score was associated with larger 
brain volumes. Individuals in the top 20% of GRS (54.2 
(95% CI: (53.1, 55.3)) ml) had 32.8% larger volume of 
ventricular cerebrospinal fluid compared with those in 
the bottom 20% (40.8 (40.1, 41.6) ml). Individuals in the 
top 20% of GRS had larger volumes of left accumbens 
(13.0%), right accumbens (16.6%), brain stem + 4th ventri-
cle (9.8%), left caudate (10.8%), right caudate (10.6%), left 
putamen (10.3%), and right putamen (9.0%) compared to 
those in the bottom 20% (Fig. 3).

The adjustment for age and sex did not substantially 
change the association between metabolomic state and 
brain volumes (Figure S2).

Attribution of metabolomic state and clinical predictors to 
brain volumes
The application of several sets of predictors (metabo-
lomic state, age + sex, multimorbidity score, GRS) was 
examined in the analysis. The largest variance of brain 
volumes was explained by age + sex, followed by metabo-
lomic state and multimorbidity score (Fig. 4). Metabolo-
mic state added minimally additional prediction value to 
age + sex but large additional prediction value to multi-
morbidity and GRS (Figure S3).

Attribution of GRS and clinical predictors to brain volumes
GRS explained 7.4% (95% CI: 3.4–10.5%), 5.4% (1.0-9.2%), 
and 2.6% (0.2–5.6%) of the variance of brain volumes of 
brain stem + 4th ventricle, ventricular cerebrospinal fluid, 
and peripheral cortical grey matter, respectively. The per-
centage of the variance of volumes of thalamus, caudate, 
putamen, pallidum, and accumbens explained by GRS 
ranged from 3.1 to 8.7% (Fig.  5). Although the predic-
tion values by GRS were lower than that by metabolomic 
state, GRS added higher prediction values to age + sex 
(Figure S4).

Table 1 Baseline characteristics in women and men
Women Men P-value*

Age (years) 63.0 ± 7.4† 64.4 ± 7.6 < 0.0001
Education 0.0565
 0–5 years 265 (5.8) 271 (6.6)
 6–12 years 2211 (48.8) 1858 (45.3)
 ≥13 years 2054 (45.4) 1976 (48.1)
Household income 
(pounds)

< 0.0001

 <18,000 576 (12.7) 381 (9.3)
 18,000–30,999 1094 (24.2) 848 (20.7)
 31,000–51,999 1405 (31.0) 1283 (31.3)
 52,000-100,000 1154 (25.5) 1263 (30.8)
 >100,000 301 (6.6) 330 (8.0)
Diet score†,‡ 4.37 ± 1.31 3.69 ± 1.38
Physical activity 
(MET-minutes/week)†

2420.2 ± 2058.6 2553.8 ± 2394.7 0.0053

Smoking < 0.0001
 Never 2927 (64.6) 2332 (56.8)
 Former 1380 (30.5) 1481 (36.1)
 Current 223 (4.9) 292 (7.1)
Sleep duration (hours/
day)†

7.20 ± 1.08 7.15 ± 0.97 0.0403

Alcohol consumption < 0.0001
 Never 124 (2.7) 61 (1.5)
 Previous 92 (2.0) 83 (2.0)
 Current 4314 (95.3) 3961 (96.5)
BMI (kg/m2) 26.11 ± 4.57 27.13 ± 3.84 < 0.0001
*T-test for continuous variables and Chi-square test for categorical variables 
were used to analyze the difference between women and men
†Data are means ± SDs. Others are frequency (percentage)
‡Diet score was computed based on seven commonly eaten food groups 
following recommendations on dietary priorities for cardiometabolic health 
with a higher score representing healthier diet quality
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Individual metabolomic profiles and brain volumes
After controlling for FDR, 139 individual metabolomic 
profiles were significantly associated with brain volumes 
(Fig. 6). When age and sex were adjusted for, this number 
was reduced to 51 (Figure S5). Lipids (medium VLDL, 

small LDL/HDL, large LDL/HDL, very large LDL/HDL), 
fatty acids (polyunsaturated fatty acids to total fatty acids 
ratio, saturated fatty acids to total fatty acids ratio), and 
amino acids (histidine) were important determinants for 
brain volumes.

Fig. 2 Metabolomic state and brain phenotypes. a. Trends of 21 brain phenotypes by metabolomic state percentile. b. Brain volumes stratified by me-
tabolomic state quantiles (red, bottom 20%; blue, median 20%; green, top 20%), with 95% CIs
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Fig. 3 Genetic risk score and brain phenotypes. a. Trend of 21 brain phenotypes by genetic risk score percentile. b. Brain volumes stratified by genetic 
risk score quantiles (red, bottom 20%; blue, median 20%; green, top 20%), with 95% CIs
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After controlling for FDR, 147 individual metabolomic 
profiles were significantly associated with brain volumes 
of thalamus, caudate, putamen, pallidum, hippocampus, 
amygdala, and accumbens (left/right sides) (Fig. 7). When 
age and sex were adjusted for, this number was reduced 
to 133 (Figure S6). Lipids (VLDL, LDL, and HDL) were 
important determinants for these brain volumes.

Moderation analysis
The association between metabolomic state and volumes 
of thalamus, pallidum, hippocampus, and accumbens 
at both sides was stronger in men than in women. The 
association between metabolomic state and volumes of 
thalamus and accumbens was stronger in younger than 
in older individuals. The association for total brain and 
WMH volumes did not differ between sexes or those 
younger and older participants (Figure S7). GRS was 
not a significant moderator for the association between 
metabolomic state and brain volumes.

The association between GRS and volumes of ventricu-
lar cerebrospinal fluid, thalamus, pallidum, hippocam-
pus, and accumbens was stronger in men than in women. 
The association between GRS and volumes of white 
matter and ventricular cerebrospinal fluid was stronger 
among individuals aged ≥ 65 years than those aged < 65 
years (Figure S8).

Discussion
This large cohort study of community-dwelling middle-
aged and older adults demonstrated that both metabo-
lomics and genetics played an important role in the 
variance of brain volumes. Metabolomic profiles were 
more predictive of brain volumes compared with tradi-
tional risk factors (multimorbidity and GRS), but these 
associations were substantially attenuated after adjust-
ment for age and sex. These findings are consistent 
with previous studies demonstrating the importance of 
lipid metabolism on brain health, as most of the brain is 

Fig. 4 The variance of brain phenotypes by metabolomic state only and its combination with age + sex, multimorbidity, and panel predictors. The per-
centage of the total variance in brain volumes (R2) attributable to metabolomic state as well as age + sex, multimorbidity score, and Panel was estimated 
by bootstrapping with 500 iterations. MS refers to metabolomic state, and the panel refers to predictors including age, sex, education, and vascular risk 
factors. The dashed horizontal lines indicate the variance of brain volumes of age + sex, multimorbidity score, and Panel. The vertical lines indicate 95% CIs. 
For those R2 with the lower 95% CIs < 0, the associations were reversed when the analysis was conducted among some bootstrapped samples compared 
with other samples. In the figure, colors were used to distinguish different items. Grey represents individual groups of predictors (age + sex, multimorbid-
ity score, and Panel), while red, green, and purple indicate these groups plus the metabolomic state. (R2.3)
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composed of lipids [27, 28]. Although GRS than metabo-
lomic state was a smaller contributor to brain pheno-
types, these associations were not significantly changed 
by age and sex. Metabolomic state provided minimal val-
ues and GRS provided moderate values to the prediction 
of brain volumes in addition to age and sex. No signifi-
cant interplay between metabolomic state and GRS was 
observed, but the association between metabolomic state 
and some regional brain volumes was stronger in men 
or younger individuals. Individual metabolomic profiles 
including lipids and fatty acids were strong predictors of 
brain volumes. (R1.4)

Only several studies have investigated the associa-
tion between multiple metabolomic profiles and brain 
volumes with inconsistent results. A pooled analysis 
of three independent cohorts (n = 3962) showed that 
higher glucose levels and lower total cholesterol in small 
HDL, cholesterol esters in small HDL, and total lipids 
in small HDL levels were associated with smaller total 
brain volume whilst only glucose level was independently 

associated with WMH [11]. Another pooled analysis of 
8 community-based cohorts demonstrated that lipids 
including lysophosphatidylcholines, hydroxysphingomy-
elins, low-density lipoprotein size, and composition and 
amino acids including hydroxyphenylpyruvate and gluc-
uronate were significantly associated with WMH [12]. 
Consistently, our study demonstrated the importance 
of lipids and amino acids on brain atrophy. In addition, 
we found fatty acids were strongly associated with brain 
volumes. Several recent cohort studies have examined 
the association between patterns of metabolomic pro-
files and brain volumes. A study of 689 participants from 
the Alzheimer’s Disease Neuroimaging Initiative cohort 
identified 9 principal components from 84 triglycerides 
and two consisting of long-chain, polyunsaturated fatty 
acid–containing triglycerides were significantly associ-
ated with hippocampal volume and entorhinal corti-
cal thickness [29]. In the analysis of a subgroup of the 
UK Biobank cohort, some patterns of metabolic profiles 
(high triglycerides and liver enzymes or high BMI, CRP, 

Fig. 5 The variance of brain phenotypes by genetic risk score only and its combination with age + sex, multimorbidity and panel predictors. The percent-
age of the total variance in brain volumes (R2) attributable to genetic risk score as well as metabolomic state, age + sex, and multimorbidity score was 
estimated by bootstrapping with 500 iterations. The dashed horizontal lines indicate the variance of brain volumes of metabolomic state, age + sex, and 
multimorbidity score. The vertical lines indicate 95% CIs. For those R2 with the lower 95% CIs < 0, the associations were reversed when the analysis was 
conducted among some bootstrapped samples compared with other samples
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and cystatin C) were associated with smaller grey matter 
and hippocampal volumes and higher WMH load [25]. 
The importance of metabolomic state developed based 
on 168 metabolomic profiles on the development of mul-
tiple common diseases has been highlighted in a previous 

study [13]. Our study showed that metabolomic state was 
a stronger predictor of brain volumes compared with 
conditional vascular risk score [6, 30, 31]. These previous 
studies focused on only several brain phenotypes includ-
ing total brain, grey matter, WMH, and/or hippocampus. 

Fig. 6 Individual metabolomic profiles and total brain phenotypes. a. Manhattan plot shows the P values for correlations between total brain pheno-
types and individual metabolomic profiles. The height of each point denotes the negative logarithm of the unadjusted correlation P value between one 
brain phenotype and one metabolomic profile. The area of the point denotes the absolute value of the Pearson’s correlation coefficient. The color of the 
point denotes the brain phenotype. The false discovery rate for multiple comparisons (α = 0.05) is shown as a red horizontal line. b. Manhattan plot shows 
the Pearson’s correlation coefficients for correlations between total brain phenotypes and metabolomic profiles. The height of each point denotes the 
unadjusted correlation coefficient between one brain phenotype and one metabolomic profile. The area of the point denotes the negative logarithm 
of the age- and sex-adjusted correlation P value. The color of the point denotes the brain phenotype. The red horizontal line denotes the reference of 
coefficient as 0
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Our findings on multiple brain phenotypes including 
peripheral cortical grey matter, ventricular cerebrospi-
nal fluid, brain stem + 4th ventricle, thalamus, caudate, 
putamen, pallidum, amygdala, and accumbens need to be 
confirmed by further research.

Although the associations between metabolomic state 
and most brain volumes were independent of age and 
sex, these associations were largely attenuated after 
adjusting for age and sex in our study. Stratified analy-
sis showed that the association between metabolomic 

Fig. 7 Individual metabolomic profiles and regional brain phenotypes. a. Manhattan plot shows the P values for correlations between regional brain 
phenotypes and metabolomic profiles. The height of each point denotes the negative logarithm of the unadjusted correlation P value between one brain 
phenotype and one metabolomic profile. The area of the point denotes the absolute value of the Pearson’s correlation coefficient. The color of the point 
denotes the brain phenotype. The false discovery rate for multiple comparisons (α = 0.05) is shown as a red horizontal line. b. Manhattan plot shows the 
Pearson’s correlation coefficients for correlations between regional brain phenotypes and metabolomic profiles. The height of each point denotes the 
unadjusted correlation coefficient between one brain phenotype and one metabolomic profile. The area of the point denotes the negative logarithm 
of the age- and sex-adjusted correlation P value. The color of the point denotes the brain phenotype. The red horizontal line denotes the reference of 
coefficient as 0
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state and thalamus and accumbens volumes was more 
pronounced among younger than older individuals. We 
also found the association between metabolomic state 
and volumes of thalamus, pallidum, hippocampus, and 
accumbens was stronger in men than in women. This is 
consistent with a previous study showing that associa-
tions between levels of several individual metabolomic 
profiles including hydroxyphenylpyruvate, lysophospha-
tidylcholines, hydroxysphingomyelins, and diameter of 
low-density lipoprotein particles and WMH were stron-
ger in men than in women [12]. Diet quality as a whole 
diet state seems to be more predictive of brain volumes 
and cognitive decline [32, 33]. This suggested the impor-
tance of examining the moderation of GRS, age and sex 
on the association between metabolomic state and brain 
volumes.

Although an increasing number of studies have con-
ducted GWAS analysis on brain volumes [34–36], little 
is known regarding the contribution of GRS to multiple 
brain volumes. A recent cohort study has demonstrated 
that machine learning-based GRS could estimate an 
individual’s predicted risk at desired error level [15]. We 
found GRS developed using machine learning (penal-
ized models based on ridge regression and least absolute 
shrinkage and selection operator) was strongly predictive 
of brain volumes. In our study, the percentage of varia-
tion of caudate explained by GRS was around 8%, and the 
number for ventricular cerebrospinal fluid was greater 
than 5%. Although the prediction value of GRS was 
smaller than that of metabolomic state, GRS was more 
predictive of brain volumes than metabolomic state 
independent of age and sex. In further analysis, GRS was 
more predictive of ventricular cerebrospinal fluid, thala-
mus, caudate, putamen, pallidum, hippocampus, and 
accumbens in men than in women suggesting GRS for 
these brain MRI phenotypes may need to be created sep-
arately for men and women. GRS was a stronger predic-
tor for volumes of white matter, ventricular cerebrospinal 
fluid, and pallidum in older than younger individuals. As 
an accelerated decrease in brain volumes is observed in 
adults beyond age 60 years [4, 5], larger variation of brain 
volumes in older adults may result in a stronger associa-
tion between GRS and brain volumes.

To our knowledge, this is the first large cohort study 
to investigate the association between metabolomic 
state/GRS and multiple brain volumes. Several potential 
limitations need to be considered in our study. Firstly, 
because of the observational design of our study, causal 
relationships cannot be inferred based on the findings. 
Secondly, data on both MRI and metabolomic profiles 
were collected from only a small proportion of the UK 
cohort, from which the findings might not be applied 
to the whole UK population. Finally, the analysis of 
metabolomic and genetic profiles was conducted among 

individuals of European ancestry, which may reduce the 
generalizability of our findings to other ethnic groups.

In conclusion, metabolomic state is strongly associ-
ated with multiple brain volumes but provides minimal 
additional prediction value of brain volumes to age + sex. 
Although GRS is a weaker contributor to brain pheno-
types than metabolomic state, it provides significant 
additional prediction value of brain volumes to age + sex. 
The predominant rationale behind this phenomenon lies 
in the lipid-rich composition of the brain. Metabolomic 
state is more predictive of some brain phenotypes in 
men than in women and in younger than in older indi-
viduals. Our findings suggest metabolomic state and GRS 
are important predictors for multiple brain phenotypes 
(R1.5).
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