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Abstract 

Background:  Chronic obstructive pulmonary disease (COPD) is a major public health problem and cause of mortal-
ity worldwide. However, COPD in the early stage is usually not recognized and diagnosed. It is necessary to establish a 
risk model to predict COPD development.

Methods:  A total of 441 COPD patients and 192 control subjects were recruited, and 101 single-nucleotide polymor-
phisms (SNPs) were determined using the MassArray assay. With 5 clinical features as well as SNPs, 6 predictive models 
were established and evaluated in the training set and test set by the confusion matrix AU-ROC, AU-PRC, sensitivity 
(recall), specificity, accuracy, F1 score, MCC, PPV (precision) and NPV. The selected features were ranked.

Results:  Nine SNPs were significantly associated with COPD. Among them, 6 SNPs (rs1007052, OR = 1.671, P = 0.010; 
rs2910164, OR = 1.416, P < 0.037; rs473892, OR = 1.473, P < 0.044; rs161976, OR = 1.594, P < 0.044; rs159497, OR = 1.445, 
P < 0.045; and rs9296092, OR = 1.832, P < 0.045) were risk factors for COPD, while 3 SNPs (rs8192288, OR = 0.593, 
P < 0.015; rs20541, OR = 0.669, P < 0.018; and rs12922394, OR = 0.651, P < 0.022) were protective factors for COPD 
development. In the training set, KNN, LR, SVM, DT and XGboost obtained AU-ROC values above 0.82 and AU-PRC 
values above 0.92. Among these models, XGboost obtained the highest AU-ROC (0.94), AU-PRC (0.97), accuracy (0.91), 
precision (0.95), F1 score (0.94), MCC (0.77) and specificity (0.85), while MLP obtained the highest sensitivity (recall) 
(0.99) and NPV (0.87). In the validation set, KNN, LR and XGboost obtained AU-ROC and AU-PRC values above 0.80 and 
0.85, respectively. KNN had the highest precision (0.82), both KNN and LR obtained the same highest accuracy (0.81), 
and KNN and LR had the same highest F1 score (0.86). Both DT and MLP obtained sensitivity (recall) and NPV values 
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Background
It has been reported that chronic obstructive pulmonary 
disease (COPD) is a public health challenge due to its 
high prevalence and related disability, mortality and soci-
oeconomic burden worldwide [1–3]. Approximately 90% 
of deaths related to COPD occur in Asia and Africa [4]. 
In 2013, more than 0.9 million deaths related to COPD 
occurred, and COPD was reported to be the third leading 
cause of death in China [5].

The typical symptoms of COPD include dyspnea, 
chronic cough, and sputum production, and spirometry 
is considered the gold-standard method for the diagno-
sis of COPD [6]. Spirometry is essential for diagnosis and 
provides a useful description of the severity of pathologic 
changes in COPD. The forced expiratory volume in one 
second (FEV1), forced vital capacity (FVC), and the ratio 
of FEV1 to FVC are used to evaluate pulmonary function 
[7]. COPD is now clinically defined as a post-bronchodi-
lator FEV1/FVC less than 70% of the predicted value and 
FEV1 less than 80% of the predicted value [8].

Rehman et  al. [3] reported that in Europe and the 
USA, the prevalence of COPD ranges from 3.4 to 13.4%, 
whereas in Asia, the prevalence ranges from 3.5 to 19.1% 
[9] due to urbanization, industrial pollution, tanneries 
and the sue of biomass fuel inside homes [10].

Smoking is a well-known risk factor for COPD devel-
opment; however, fewer than 20% of smokers develop 
COPD, and more than 15% of non-smokers have COPD 
[11]. Recent studies have shown that many people 
develop COPD without ever smoking. Therefore, other 
factors besides personal smoking, other environmental 
triggers, such as second-hand smoke during pregnancy 
or early childhood, various genetic factors, occupational 
exposure to dust, noxious fumes and vapors, indoor air 
pollution from the use of biomass fuels, and outdoor air 
pollution, may interact in an additive manner with risk 
factors within individual and lifestyle issues (diet and 
exercise) [12]. Zhong reported that COPD was more 
common among rural residents than among urban resi-
dents in China, probably because of a number of envi-
ronmental and individual risk factors, such as old age, 
smoking, coal use, infection, and low body mass index 
(BMI) [13]. In addition, it has been reported that infec-
tions could promote the progression of COPD, such as 
in patients with emphysema and adenoviral infections 

or patients with asthma and intracellular infections [14–
16]. Beyer et  al. reported that COPD may originate in 
childhood or even in utero. Lung function can be com-
promised during lung development in utero—e.g., low 
birthweight babies or children whose mothers smoked 
during pregnancy have reduced lung function soon after 
birth [17].

Wang et al. reported a national cross-sectional study in 
China that indicated that COPD was highly prevalent in 
the Chinese adult population. Cigarette smoking, ambi-
ent air pollution, underweight, childhood chronic cough, 
parental history of respiratory diseases, and low educa-
tion are major risk factors for COPD in the Chinese pop-
ulation. Among these factors, cigarette smoking and air 
pollution are major preventable risk factors for this dis-
ease [18]. With rapid industrialization and urbanization, 
ambient air pollution has become a major public health 
crisis in China [19]. The air quality composite index 
(AQCI) was obtained from the Chinese Official website, 
which included the pollution degree of the six pollutants 
SO2, NO2, PM10, PM2.5, CO and O3 and other pollutants. 
The higher the AQCI is, the more serious the pollution. 
In the present study, we used a combination of AQCI and 
other risk factors, such as age, sex, BMI and smoking, to 
predict COPD development.

In addition, COPD susceptibility- or disease progres-
sion-related genes have been reported [20], and genome-
wide association studies (GWASs) have revealed single 
nucleotide polymorphism (SNP) sites related to COPD 
occurrence and development, such as HHIP [21], IL13 
[22], MMP9 [23], SFTPB [24], SOD3 [25], CHRNA3 
[26], RNF150 [27], BICD1 [28], COL4A3 [29], AQP5 
[30], AGPHD1 [31], IREB2 [32], etc. Many studies have 
indicated that some candidate genes are associated with 
COPD over the past few years. However, there have 
been few studies on the susceptible loci of COPD in the 
Chinese population in recent years (Additional file  1: 
Table S1).

Lung function is the gold standard for the clinical 
diagnosis of COPD; however, when the FEV1/FVC or 
FEV1% value is abnormal, lung function is a defective 
indicator in approximately 30% of patients [33]. COPD 
in the early stages is usually not recognized, diag-
nosed, or treated and therefore may not be included as 
a diagnosis in patient medical records. Therefore, the 

above 0.94 and 0.84, respectively. In the feature importance analyses, we identified that AQCI, age, and BMI had the 
greatest impact on the predictive abilities of the models, while SNPs, sex and smoking were less important.

Conclusions:  The KNN, LR and XGboost models showed excellent overall predictive power, and the use of machine 
learning tools combining both clinical and SNP features was suitable for predicting the risk of COPD development.

Keywords:  COPD, SNP, AQCI, Allele frequencies, Machine learning tools
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applicability of the lung function index for the early 
diagnosis of COPD is limited. With the rapid aging of 
the Chinese population, COPD has become one of the 
leading causes of disability and a large economic bur-
den [34]. Therefore, it is necessary to develop a relia-
ble early warning method for COPD that could lead to 
early intervention and treatment for COPD.

In the present study, we performed a case–con-
trol study including 441 patients with COPD and 192 
healthy controls. Then, the odds ratios (ORs) of the 
genotypes of 101 SNPs and clinical features for COPD 
development were calculated. We established and com-
pared six prediction models that included susceptible 
SNPs and clinical features using statistical, machine 
learning and neural network approaches.

Methods and materials
Study population
A total of 441 COPD patients and 192 control sub-
jects were randomly recruited from seven subcenters 
in China from January to December 2017, including 
Linfen People’s Hospital (Linfen city, Shanxi Province), 
Jincheng People’s Hospital (Jincheng city, Shanxi Prov-
ince), Heji Hospital Affiliated with Changzhi Medical 
College (Changzhi city, Shanxi Province), General Hos-
pital of Tisco (Sixth Hospital of  Shanxi Medical Uni-
versity) (Taiyuan city, Shanxi Province), Hebei General 
Hospital (Shijiazhuang city, Hebei Province), General 
Hospital of Datong Coal Mine Group Co., Ltd. (Datong 
city, Shanxi Province), and Shanghai Zhangjiang Insti-
tute of Medical Innovation (Shanghai). COPD was diag-
nosed according to the Global Initiative for Chronic 
Obstructive Lung Disease (GOLD) criteria [6], and 
patients with other medical histories were excluded. 
All procedures were performed in accordance with the 
ethical standards of the Clinical Research Ethics Com-
mittee of the above hospitals, and informed consent 
was obtained from all individuals included in the study.

The basic characteristics of all participants are listed 
in Additional file  2: Tables S2 and Additional file  3: 
Table  S3. Smoking status was defined as follows: non-
smokers had never smoked, and smokers included 
ex-smokers and current smokers. BMI was measured 
in kg/m2(underweight < 19, normal = 19–25, over-
weight = 25–30, obese ≥ 30). AQCI values were derived 
from the following seven regions according to offi-
cial government website statistics in China: five cities 
from Shanxi Province (http://sthjt​.shanx​i.gov.cn/html/
tndt/20180​119/58694​.html), Shijiazhuang from Hebei 
Province (http://hbepb​.hebei​.gov.cn/hjzlz​kgb/) and 
Shanghai (http://www.mee.gov.cn/hjzl/zghjz​kgb/lnzgh​
jzkgb​/).

DNA extraction and genotyping
We selected 101 SNPs from 76 genes and 9 intergenic 
regions that were previously reported to be associated 
with COPD [20, 23–29, 32, 35–60]. A 4-mL peripheral 
blood sample was obtained from each participant for 
DNA analysis. Genomic DNA was extracted from whole 
blood using the GoldMag-Mini Whole Blood Genomic 
DNA Purification Kit (GoldMag Co. Ltd., Xi’an City, 
China). The DNA concentration was measured using 
a NanoDrop 2000 (Thermo Scientific, Fitchburg, WI, 
USA).

MassArray assay
We used the https​://agena​cx.com website to design mul-
tiplex primers for each SNP: 1st PCR primer, 2nd PCR 
primer, and UEP primer. The primers for the 101 SNPs 
are shown in Additional file 4: Table S4. The SNPs were 
genotyped with an Agena BioscienceTMMassARRAY​
® Analyzer 384-well Configuration (Agena, CA, USA) 
according to the standard protocol recommended by the 
manufacturer.

PCR amplification was performed in a reaction sys-
tem with a total volume of 5 μl containing 10 ng genomic 
DNA, 1 U PCR enzyme (Agena), 0.5 μl 10× PCR buffer, 
0.1 μl dNTPs mix and 0.5 μl of each primer under the fol-
lowing program: 2 min denaturation at 95  °C, 45 cycles 
of 30 s at 95 °C, 30 s at 56 °C and 60 s at 72 °C and a final 
extension at 72  °C for 5  min. Then, the PCR products 
were cleaned by 2 μl SAP (Agena) including 1.53 μl nan-
opure water, 0.17  μl SAP buffer and 0.5 U SAP enzyme 
with the following steps: 40  min at 37  °C and 5  min at 
85 °C. Finally, the single-base extension used 2 μl iPLEX 
EXTEND mix (Agena) containing 0.619  μl nanopure 
water, 0.94 μl Extend primer mix, 0.041 μl iPLEX enzyme, 
0.2 μl iPLEX buffer and 0.2 μl iPLEX termination mix and 
was performed with the following steps: initial denatura-
tion at 94  °C for 30  s, followed by 40 cycles of a 3-step 
amplification profile of 5 s at 94 °C, an additional 5 cycles 
of 5  s at 52  °C and 5  s at 80  °C and a final extension at 
72 °C for 3 min. Data management and analysis were per-
formed using Typer Analyzer 4.0 software (Agena). Sev-
eral SNP samples were finally excluded because ≥ 10% of 
the genotyping data were missing.

Model construction in the training set
First, 290 COPD patients and 103 control subjects were 
enrolled as the training set, and the OR values of all gen-
otypes of SNPs were calculated using the PLINK soft-
ware package (version 1.07) [61]. The genotypes with 
missing OR values were assigned the average OR value. 
Nine SNPs were identified to be significantly associ-
ated with COPD risk in the Chinese population. Then, 6 

http://sthjt.shanxi.gov.cn/html/tndt/20180119/58694.html
http://sthjt.shanxi.gov.cn/html/tndt/20180119/58694.html
http://hbepb.hebei.gov.cn/hjzlzkgb/
http://www.mee.gov.cn/hjzl/zghjzkgb/lnzghjzkgb/
http://www.mee.gov.cn/hjzl/zghjzkgb/lnzghjzkgb/
https://agenacx.com
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models were established to predict COPD development, 
including a logistic regression (LR) model, an artificial 
neural network of the multilayer perceptron (MLP), a 
decision tree model (DT), a XGboost model, a support 
vector machine (SVM) and a k-nearest neighbors classi-
fier (KNN) model, and included 5 clinical features and 9 
SNPs. K-folder cross validation (k = 5) was used to train, 
construct and compare the 6 predictive models. The con-
fusion matrix, area under the receiver operating char-
acteristic (ROC) curve (AU-ROC), the area under the 
precision-recall (PR) curve (AU-PRC), specificity, sensi-
tivity (recall), positive predictive value (PPV (precision)), 
negative predictive value (NPV), accuracy, F1 score and 
MCC were used to evaluate and compare the compre-
hensive performance of feature selection. AU-ROC is one 
of the most used metrics in evaluating binary classifiers 
and shows the true positive rate against the false posi-
tive rate. Compared with AU-ROC, AU-PRC is useful for 
unbalanced data, such as our study, and shows precision 
against recall. The F1 score takes the harmonic mean of 
precision and recall [62]. The MCC result ranges between 
-1 and 1, where a value of 1 indicates a perfect positive 
correlation, a value of -1 indicates a perfect negative cor-
relation, and a value of 0 indicates no correlation [63].

Model selection was based on several currently and fre-
quently adopted predictive model types. For example, the 
linear LR model [64] and SVM model have been widely 
adopted in many clinical applications, such as for CKD 

disease prediction [65]. The DT model [66] is based on a 
radial basis function neural network and support vector 
machine coupled with firefly algorithm techniques; the 
XGboost and MLP models have also been used in clinical 
research [65, 67]. KNN was chosen due to its simplicity 
and ability to perform multiclass classification, and this 
algorithm could run with default parameters [68]. When 
tuning the parameters in the KNN, SVM and DT mod-
els, the overall effect did not perform as well as choos-
ing default parameters, so tuning parameters were not 
chosen in the three models, while tuning parameters 
were used in the LR, MLP and XGboost models. All the 
corresponding parameters are listed in Additional file 5: 
Table S5.

Assessment of the six models in the test set
In the validation set, we no longer calculated the OR val-
ues from PLINK software and directly mapped the OR 
value of each genotype from the training set. However, 
the genotypes with missing OR values were assigned the 
average OR value independently in the test set. To vali-
date the training set, we recruited 151 COPD patients 
and 89 controls in the test set. Six models were selected 
for validation in the test set. The entire process is shown 
in Fig.  1. All the input data and sample output fold-
ers were uploaded to GitHub (https​://githu​b.com/weila​
n-yuan/COPD_machi​ne-learn​ing).

Fig. 1  Flow chart display. Flow chart showing the SNP selection, model training, and performance evaluation processes. A total of 633 subjects 
were recruited for the current study. The data were preprocessed and randomly divided into a training set (393 participants) and a test set (240 
participants). k-fold cross-validation was used in the training set, and performance evaluation indexes such as AU-ROC and AU-PRC were adopted to 
judge the average predictive performance of each model

https://github.com/weilan-yuan/COPD_machine-learning
https://github.com/weilan-yuan/COPD_machine-learning


Page 5 of 14Ma et al. J Transl Med          (2020) 18:146 	

Statistical analysis
For all SNPs, the ORs and 95% confidence intervals 
(CIs) of the minor alleles were assessed without adjust-
ing for age, sex, BMI, smoking status and AQCI by 
Chi squared tests using the PLINK package between 
COPD patients and healthy controls. Furthermore, 
six predictive models (KNN, LR, DT, SVM, XGboost 
and MLP) for COPD risk were used and evaluated by 
Python (version 3.7.0) and included 9 SNPs with 5 
clinical features. The diagnostic values of the 6 mod-
els were assessed by ROC and PRC analysis. Paramet-
ric statistics (t-test) were used for normally distributed 
data, and nonparametric statistics (Mann–Whitney) 
were used for non-normally distributed data. The 
t-test and nonparametric Mann–Whitney U test or 
Chi squared test was used to compare parametric and 
categorical variables, respectively. Statistical calcula-
tions were performed in R studio (R.3.51). P ≤ 0.05 was 
the threshold for statistical significance.

Results
Clinical characteristics of the participants
The clinical characteristics of the cases and controls 
are shown in Additional file  2: Tables S2 and Addi-
tional file  3: Table  S3. There were significant differ-
ences in age, sex, smoking status, AQCI, FEV1/FVC 
(%) and FEV1 (%) between COPD patients and healthy 
controls (P < 0.0001) in both the training and test sets. 
Only the BMI levels were similar between the two 
groups. The results indicated that COPD patients were 
more likely to be older, male, and smokers, and the 
FEV1/FVC (%) and FEV1 (%) values were lower in the 
COPD group than in the healthy controls.

Allele frequency comparisons between the two groups
In the training set, 6 SNPs (rs3025030, rs28929474, 
rs7326277, rs7326277, rs16969968, and rs59569785) were 
excluded because ≥ 10% of the sample data were missing. 
Finally, 95 of the 101 SNPs were included in the follow-
ing analysis. We assumed that the minor allele (A1) of 
each SNP was a risk factor compared to the main allele 
(A2) and obtained the OR values. All results are shown 
in Additional file 6: Table S6. The results showed that 9 
SNPs tended to be significantly associated with COPD: 
6 SNPs (rs1007052, rs2910164, rs159497, rs473892, 
rs9296092 and rs161976) were risk factors for COPD 
development, while 3 SNPs (rs8192288, rs12922394 
and rs20541) were protective factors against developing 
COPD, as shown in the forest plots in Fig. 2.

The role of six risk SNPs in COPD
Among the 6 risk SNPs, the SNP rs10007052 is located 
in the first intron of the RNF150 gene. Ding et  al. first 
reported that polymorphisms of RNF150 were signifi-
cantly associated with COPD risk in the Chinese Han 
and Li populations [27]. In our present case–control 
study, we also found that the SNP rs10007052 affected 
the pathogenesis of COPD in a Chinese population 
(rs1007052, OR = 1.671, 95% CI 1.128–2.477, P = 0.010). 
rs2910164 was reported as a C/G polymorphism in the 
precursor stem region of pre-miR146a on chromosome 
5q33 and was first associated with genetic predisposi-
tion towards papillary thyroid cancer [69]. In the current 
study, we found that the G allele of the rs2910164 SNP 
(OR = 1.416, 95% CI 1.020–1.967, p < 0.037) is a risk fac-
tor for COPD development. Regarding rs473892, which 
is located in intergenic regions at chromosome 6 near 
the gene OLIG3, the T allele of rs473892 was associated 
with a higher FEV1 level in subjects with high exposure 

Fig. 2  Nine SNPs associated with COPD. Forest plots show 9 SNPs associated with COPD (odds ratios (ORs) and 95% confidence intervals (CIs)). ORs 
are denoted by black boxes, and 95% CIs are denoted by the corresponding black lines
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to mineral dust than in those without exposure in the 
LifeLines and Vlagtwedde-Vlaardingen samples [70]. In 
the present study, we found that the C allele of rs473892 
(OR = 1.473, 95% CI 1.008–2.152, P < 0.045) was a risk 
factor for COPD development. These findings indicated 
that the T allele of rs473892 may be a protective locus 
for COPD, while the C allele is a risk locus for COPD. It 
has been reported that BICD1 (rs161976) is a potential 
susceptibility gene in COPD patients. rs161976 was pre-
viously demonstrated in a GWAS to be associated with 
emphysema in patients with COPD with an FEV1 < 80% 
of the predicted value [71]. In the present study, we 
found that rs161976 (OR = 1.594, 95% CI 1.010–2.515, 
P < 0.044) is also a risk locus in COPD. rs159497 is 
located in intergenic regions near the PDE4D gene. It 
was reported that PDE4D was not only a susceptibility 
gene for asthma [72] but also for ever-smokers who were 
associated with a reduced FEV1 level [73]. In the current 
study, we also showed that rs159497 (OR = 1.445, 95% 
CI 1.007–2.073, P < 0.045) was a risk factor for COPD 
development. rs9296092 is located in intergenic regions 
that lie in the gene region between the zinc finger and 
BTB domain containing 9 and BCL2-antagonist/killer1 
(ZBTB9-BAK1) at chromosome 6 p21.32. Ding et  al. 
also reported that in a case–control study, rs9296092 
was associated with the greatest increase in the risk 
of COPD in the Hainan Province of China [74]. In our 
current study, we found that the A allele of rs9296092 
(OR = 1.832, 95% CI 1.005–3.34, P < 0.045) is also a risk 
factor for COPD development.

The roles of rs8192288, rs20541 and rs12922394 in COPD
In addition, 3 SNPs were protective against COPD; 
among them, the SNP rs8192288 is located in the first 
intron of the SOD3 gene [25]. In our present results, we 
found that the T allele of rs8192288 (OR = 0.593, 95% CI 
0.388–0.906, P < 0.015) was associated with a reduced 
risk of COPD. The SNP rs20541 is in the fourth exon of 
the IL-13 gene [75]. In the present study, we found that 
the A allele of rs20541 (OR = 0.669, 95% CI 0.480–0.942, 
P < 0.018) is a protective factor against COPD. The SNP 
rs12922394 is in the first intron of the CDH13 gene and is 
usually removed during the gene-splicing process. Yuan 
et al. reported that the T allele of rs12922394 was associ-
ated with a significantly reduced risk of COPD [44]. In the 
current study, we found that the T allele of rs12922394 
(R = 0.651, 95% CI 0.449–0.942, P < 0.022) was also asso-
ciated with a reduced risk of COPD, indicating that this 
variant may protect against COPD development.

Comparison of 6 prediction models in the training set
In the training set, k-fold cross-validation (k = 5) 
was used, and various parameter combinations were 

exhausted by grid search. Six models were established 
in this study. For each model, the evaluation indica-
tors used were the confusion matrix, AU-ROC, AU-
PRC, specificity, sensitivity (recall), PPV (precision), 
NPV, accuracy, F1 and MCC score. The average AU-
ROC, AU-PRC and 95% CI are shown in Fig. 3a, b. Five 
models had AU-ROC values above 0.82, and only the 
MLP model had a lower value (0.80). The AU-PRC val-
ues were above 0.91 for all models. Otherwise, the six 
models presented varying performances, as shown in 
Table 1. Five models, namely, KNN, LR, SVM, DT and 
XGboost, had excellent performance, and the accuracy, 
PPV (precision), sensitivity (recall), and F1 score were 
above 0.81, 0.85, 0.87 and 0.87, respectively. Among the 
five models, the MCC, specificity and NPV were above 
0.69, 0.78 and 0.80, respectively, for both the DT and 
XGboost models; the MLP model obtained the high-
est sensitivity (recall) (0.99) and NPV (0.87) but had 
the lowest specificity rate (0.10). XGboost obtained 
the highest AU-ROC value of 0.94 (95% CI 0.89–0.98) 
and AU-PRC value of 0.97 (95% CI 0.93–0.99), with the 
highest accuracy (0.91), PPV (precision) (0.95), F1 score 
(0.94), MCC (0.77) and specificity (0.85). The results 
indicated that XGboost was the best-performing model 
in the training set. Therefore, we used the XGboost 
model to analyze the importance of features including 
9 SNPs and 5 clinical features, and the feature score (F. 
score) rankings were measured by the total_gain met-
ric in XGboost (Fig.  4). The results showed that loca-
tion (AQCI), age and BMI played important roles in the 
model, while 9 SNPs, smoking status and sex were less 
important.

To verify the importance of clinical features or SNPs for 
predicting COPD in all models, we used only 9 SNPs and 
5 clinical features and selected the top 5 ranked features, 
which included 3 clinical features (AQCI, age and BMI) 
and 2 SNPs (rs12922394 and rs10007052), to be included 
in the six models. The results indicated that with only 
the input of 9 SNPs, the AU-ROC values were only 0.51–
0.66, but the AU-PRC values of all models were 0.80–0.86 
(Additional file 7: Fig. S1). The PPV (precision), sensitiv-
ity (recall) and F1 score of all models were above 0.70, 
and the accuracy rate was above 0.61. However, the other 
evaluation indexes, such as MCC, specificity and NPV, 
were poor for all six models (Additional file 8: Table S7). 
The AU-PRC is an alternative approach for assessing the 
performance of a biomarker and is a summary statis-
tic that reflects the ability of a biomarker to identify the 
diseased group [76]. In the present study, we found that 
with only the input of the 9 SNPs, all models had reduced 
AU-ROCs, but the AU-PRC showed a satisfactory perfor-
mance (0.80–0.86). The results indicated that AU-PRC 
may be a good biomarker for predicting COPD.
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In addition, the 5 clinical features showed better perfor-
mance than the SNPs. The AU-ROC and AU-PRC values 
were above 0.82 and 0.92, respectively (Additional file 9: 
Fig. S2), with the, PPV (precision), sensitivity (recall) and 
F1 score exceeding 0.80 for all models; the MCC and 
specificity for DT and XGboost were above 0.70. KNN 
had the highest sensitivity (recall) (0.94). Both DT and 

XGboost had the same highest F1 score (0.93) and the 
same highest NPV (0.82) (Additional file  10: Table  S8). 
Among all models, the XGboost model also obtained the 
highest AU-ROC (0.93, 95% CI 0.91–0.95) and AU-PRC 
(0.97, 95% CI 0.92–0.98), similar to the results shown in 
Fig. 3, as well as the highest accuracy (0.91), PPV (preci-
sion) (0.95), MCC (0.77) and specificity (0.86).

Fig. 3  Evaluation of the predictive models. a, b The picture shows the AU-ROC and AU-PRC curves of the 6 models in the training set. Mean AUC 
values and 95% CIs of different prediction models are shown in the box
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When inputting the top 5 ranked features, the AU-
ROC and AU-PRC values were above 0.80 and 0.91, 
respectively (Additional file 11: Fig. S3), with PPV (preci-
sion), sensitivity (recall) and F1 score exceeding 0.82, 0.88 
and 0.85 in all models, respectively; among these values, 
the accuracy values of KNN, LR, DT and XGboost were 
above 0.81. The MCC, specificity and NPV were above 
0.71, 0.77 and 0.80 for both the DT and XGboost models, 
respectively; the MLP model had the lowest MCC rate 
(0.43), and the SVM had the lowest specificity rate (0.47) 
(Additional file  12: Table  S9). Moreover, the XGboost 
model still obtained the highest AU-ROC (0.93, 95% CI 

0.88–0.98) and AU-PRC (0.97, 95% CI 0.89–0.99) as well 
as the highest accuracy (0.91), PPV (precision) (0.94), 
sensitivity (recall) (0.94), F1 score (0.94), MCC (0.78), 
specificity (0.84) and NPV (0.84). These results indicated 
that clinical features played more important roles than 
SNPs in predicting COPD development.

Validation of the six models in the test set
According to the training results, we validated all models 
in the test set. The AU-PRC values were above 0.80 for all 
models. Among the models, the KNN, LR, and XGboost 
models had excellent overall predictive power, the AU-
ROC values were above 0.80 (Fig.  5), and the accuracy, 
PPV (precision), sensitivity (recall), F1 score and NPV 
were above 0.79, 0.78, 0.90, 0.84, and 0.80, respectively. 
The DT obtained the lowest AU-ROC value (0.73); the 
MLP model obtained the highest sensitivity (recall) (1.00) 
and NPV (1.00) but had the lowest specificity rate (0.38) 
(Table 2).

In addition, we validated only 9 SNPs, 5 clinical fea-
tures and the top 5 ranked features in six models. The 
results indicated that with the 9 SNPs, all models per-
formed poorly, as in the training set (Additional file 13: 
Table  S10), while the recall and F1 score were above 
0.89 and 0.73, respectively, for four models (KNN, LR, 
SVM and MLP). However, the AU-PRC values (0.63–
0.81) were higher than the AU-ROC values (0.47–0.50) 
(Additional file  14: Fig. S4). When only considering 5 
clinical features, the AU-PRC values of all models were 
above 0.79; three models, KNN, LR, and XGboost, had 
AU-ROC values above 0.81 (Additional file 15: Fig. S5), 
and the accuracy, PPV (precision), sensitivity (recall), 
F1 score and NPV were above 0.79, 0.78, 0.92, 0.85 
and 0.82, respectively (Additional file  16: Table  S11). 
The SVM had the lowest MCC (0.27) and specificity 

Table 1  The efficacy of KNN, LR, SVM, DT, MLP and XGboost in the training set

AU-ROC area under the receiver operating characteristic curve, AU-PRC area under the precision-recall curve, MCC Matthews correlation coefficient, SPC specificity, NPV 
negative prognostic value, KNN k-nearest neighbors classifier, LR logistic regression, SVM support vector machine, DT decision tree, MLP multilayer perceptron, 95% CI 
95% confidence interval

Metrics KNN LR SVM DT MLP XGboost
(95% CI) (95% CI) (95% CI) (95% CI) (95% CI) (95% CI)

AU-ROC 0.83 (0.76–0.86) 0.89 (0.83–0.93) 0.88 (0.84–0.91) 0.85 (0.77–0.88) 0.80 (0.74–0.84) 0.94 (0.89–0.98)

AU-PRC 0.93 (0.90–0.94) 0.96 (0.93–0.98) 0.95 (0.89–0.96) 0.95 (0.94–0.97) 0.92 (0.89–0.94) 0.97 (0.93–0.99)

Accuracy 0.82 (0.77–0.86) 0.83 (0.77–0.86) 0.84 (0.82–0.88) 0.89 (0.84–0.92) 0.76 (0.74–0.79) 0.91 (0.88–0.95)

Precision 0.88 (0.83–0.92) 0.86 (0.83–0.89) 0.88 (0.84–0.91) 0.92 (0.89–0.95) 0.76 (0.74–0.79) 0.95 (0.93–0.96)

Recall 0.88 (0.85–0.90) 0.91 (0.85–0.96) 0.92 (0.90–0.95) 0.94 (0.92–0.98) 0.99 (0.98–1.00) 0.93 (0.88–0.97)

F1 score 0.88 (0.84–0.90) 0.89 (0.84–0.91) 0.90 (0.88–0.92) 0.93 (0.91–0.96) 0.86 (0.85–0.88) 0.94 (0.91–0.96)

MCC 0.54 (0.39–0.64) 0.54 (0.39–0.61) 0.58 (0.51–0.69) 0.70 (0.57–0.79) 0.22 (0.10–0.40) 0.77 (0.70–0.86)

SPC 0.67 (0.53–0.80) 0.59 (0.48–0.71) 0.63 (0.50–0.76) 0.79 (0.72–0.85) 0.10 (0.05–0.26) 0.85 (0.81–0.90)

NPV 0.66 (0.56–0.71) 0.72 (0.56–0.83) 0.74 (0.69–0.79) 0.81 (0.70–0.98) 0.87 (0.54–1.00) 0.81 (0.73–0.89)

Fig. 4  Analysis of the importance of each feature. The histogram 
describes the relative importance of 9 SNPs and 5 clinical features 
in the XGboost model. The relative importance is quantified by 
assigning a weight between 0 and 1000 for each variable
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(0.33) and DT had the lowest AU-ROC (0.73). The MLP 
obtained the highest sensitivity (recall) (0.99) and NPV 
(0.98). When inputting the top 5 ranked features, all 
models had AU-PRC values above 0.80; among these 
models, KNN, LR, MLP and XGboost all had AU-PRC 
values above 0.77 (Additional file  17: Fig. S6) as well 
as an accuracy, PPV (precision), sensitivity (recall), F1 
score and NPV above 0.78, 0.77, 0.88, 0.83 and 0.76, 

respectively. The SVM had the lowest MCC (0.26) and 
specificity (0.33). DT had the highest recall (0.97) and 
NPV (0.90), but the lowest AU-ROC (0.73), KNN, LR 
and XGboost had specificity rates above 0.60 (Addi-
tional file 18: Table S12).

Fig. 5  Validation of the training set. a, b The picture shows the AU-ROC and AU-PRC curves of all models in the test set
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Discussion
COPD is an irreversible and progressive disease, so there 
is an urgent need to diagnose COPD in the early stage. 
COPD development is affected by various factors, includ-
ing genetic susceptibility, air quality, smoking status, age 
and BMI [12, 13]. However, the combination of genetic 
polymorphisms and the above factors has not yet been 
reported to predict early-stage COPD in the Chinese 
population.

With the development of artificial intelligence, such as 
machine learning, deep learning, and neural networks, 
these methods have been successfully used for disease 
diagnosis and prediction [77–79]. In the present study, 
we used machine learning to establish risk models (LR, 
KNN, SVM, MLP, DT and XGboost models) that com-
bined various factors to predict COPD.

In the present study, we employed a dataset with 441 
patients with COPD and 192 healthy controls, which 
satisfied the power analysis. A total of 101 SNPs were 
identified, and 9 SNPs were significantly associated 
with COPD development based on PLINK software. 
Our results showed that 6 SNPs (rs1007052, rs2910164, 
rs473892, rs161976, rs159497, and rs9296092) were risk 
factors for COPD, while 3 SNPs (rs8192288, rs20541, and 
rs12922394) were protective factors for COPD devel-
opment. These results were roughly shown by previ-
ous studies. However, there is controversy regarding the 
role of individual SNPs in COPD. For example, a GWAS 
found no significant relationship between rs10007052 
and COPD in Europeans [80]. However, rs10007052 was 
a risk factor for COPD in China [27]. In this study, we also 
found that rs10007052 was a risk locus for COPD, which 
provided more evidence for its role in COPD among the 
Chinese population. The inconsistent results from these 
studies may result from racial and ethnic differences. A 
meta-analysis that included 11 studies with 3077 partici-
pants (1896 cases and 1181 controls) indicated that the 

A allele of rs20541 was associated with an elevated risk 
of COPD in Caucasians but not in Asians [81]. However, 
in the present study, we found that the A allele of rs20541 
(OR = 0.669, P < 0.018) was a protective factor for COPD 
in the Chinese population. More data are needed to vali-
date this finding in the Chinese population.

Apart from SNPs, we also considered 5 clinical features 
that may be associated with COPD development, such as 
smoking history, ambient air quality, BMI, age and sex. In 
the training set, 6 models (LR, KNN, SVM, MLP, DT and 
XGboost models) were established to predict COPD risk 
and included 9 SNPs and 5 clinical features. We evaluated 
the predictive performance of these 6 models for COPD 
and found that the XGboost model presented the best 
AU-ROC and AU-PRC values in both the training and 
test sets in all features. The XGboost algorithm is a highly 
effective and widely used machine learning method that 
can build complex models and make accurate decisions 
when given adequate data [65]. We used the XGboost 
model to predict feature importance, and the results 
indicated that the AQCI was the most important factor, 
while SNPs were less important. This finding was con-
sistent with our knowledge that although COPD devel-
opment is affected by genetic susceptibility, ambient air 
pollution and physiological factors may contribute more 
to the process. In order to verify the importance of clini-
cal features or SNPs for predicting COPD in all models, 
when only the 9 SNPs were used in all models, we found 
that the AU-ROC values were very low, but the AU-PRC 
values were above 0.79. AU-PRC has been reported to 
provide better agreement with the PPVs of biomarkers 
and should be preferred over the AU-ROC for evaluat-
ing uncommon or rare disease biomarkers [76]. Using 
unbalanced data, we found that the AU-PRC was a bet-
ter metric than the AU-ROC, and the fluctuations were 
also relatively stable. When the models considered only 5 

Table 2  The efficacy of KNN, LR, SVM, DT, MLP and XGboost in the test set

AU-ROC area under the receiver operating characteristic curve, AU-PRC area under the precision-recall curve, MCC Matthews correlation coefficient, SPC specificity, NPV 
negative prognostic value, KNN k-nearest neighbors classifier, LR logistic regression, SVM support vector machine, DT decision tree, MLP multilayer perceptron

Metrics KNN LR SVM DT MLP XGboost

AU-ROC 0.81 0.82 0.78 0.73 0.79 0.83

AU-PRC 0.88 0.86 0.81 0.87 0.81 0.88

accuracy 0.81 0.81 0.78 0.78 0.77 0.80

precision 0.82 0.80 0.77 0.76 0.73 0.79

recall 0.91 0.93 0.93 0.95 1.00 0.93

F1 score 0.86 0.86 0.84 0.85 0.85 0.85

MCC 0.59 0.58 0.52 0.53 0.53 0.56

SPC 0.65 0.60 0.53 0.51 0.38 0.57

NPV 0.81 0.84 0.82 0.85 1.00 0.84
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clinical features or the top 5 ranked features combined 3 
clinical features and 2 SNPs, both AU-ROC and AU-PRC 
performed well, similar to all features combining both 5 
clinical features and 9 SNPs in the models in the train-
ing set. However, in the test set, when inputting the top 
5 ranked features, both the AU-ROC and AU-PRC values 
of the KNN, LR and XGboost models were slightly lower 
than those of the models that considered only 5 clini-
cal features or combined all features. In addition, when 
only considering clinical features in the validation set, the 
accuracy, precision, MCC, specificity and NPV were 0.68, 
0.69, 0.27, 0.33 and 0.64 for the SVM model, respectively 
(Additional file 16: Table S11). When inputting the top 5 
ranked features, the accuracy, precision, MCC, specific-
ity and NPV were 0.68, 0.69, 0.26, 0.33 and 0.63 for the 
SVM model, respectively (Additional file 18: Table S12). 
When all features, the 5 clinical features and 9 SNPs, 
were inputted, the accuracy, precision, MMC, specificity 
and NPV were 0.78, 0.77, 0.52, 0.53 and 0.82 for the SVM 
model, respectively (Table 2). These results indicated that 
clinical features played more important role than SNPs in 
predicting COPD development, while combined all fea-
tures make various parameters more stable in the models.

There were some limitations in this study. First, the sam-
ple size used was relatively small, and the total sample of 
patients with COPD and healthy controls was unbalanced. 
Second, the samples from the seven centers were severely 
unbalanced; in the training set, only control subjects and 
no COPD patients were collected from the Shanghai area; 
no control subjects were recruited from Jincheng, and only 
one COPD patient came from Datong. In the validation 
set, control subjects and COPD patients from only 5 cent-
ers, excluding Jincheng and Shijiazhuang, were enrolled in 
the test set. Third, we only obtained 9 SNPs for the pre-
diction models, and these SNPs performed worse than the 
clinical features; there may be other genetic susceptibility 
SNPs to be discovered. Fourth, we only collected five clini-
cal features for the prediction models, while other risk fac-
tors were not collected, such as occupational exposure, 
childhood chronic cough, parental history of respiratory 
diseases, and low education in the Chinese population. 
More work is required before these models can be applied 
in the clinic for COPD prediction, and these findings 
should be validated in a larger cohort.

Conclusions
In conclusion, we identified 9 genetically susceptible loci 
for COPD and constructed COPD prediction models that 
comprised SNPs and clinical factors, including ambient 
air pollution. The KNN, LR and XGboost models showed 
excellent overall predictive power. We also identified that 
clinical features were more important than SNPs in pre-
dicting COPD development. Our study also revealed that 

these machine learning tools showed good performance 
for COPD risk prediction and could potentially be benefi-
cial for the early diagnosis and treatment of patients with 
COPD in the Chinese population in the near feature.
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