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Our aim is to use neurophysiological sleep-related consolidation (SRC) phenomena
to identify putative pathophysiological mechanisms in CECTS linked to diffuse
neurocognitive deficits. We argue that there are numerous studies on the association
between seizure aspects and neurocognitive functioning but not as many on interictal
variables and neurocognitive deficits. We suggest two additional foci. First, the interictal
presentation in CECTS and second, neuronal oscillations involved in SRC processes.
Existing data on mechanisms through which interictal epileptiform spikes (IES) impact
upon SRC indicate that they have the potential to: (a) perturb cross-regional coupling
of neuronal oscillations, (b) mimic consolidation processes, (c) alter the precision of the
spatiotemporal coupling of oscillations, and (d) variably impact upon SRC performance.
Sleep spindles merit systematic study in CECTS in order to clarify: (a) the state of the
slow oscillations (SOs) with which they coordinate, (b) the precision of slow oscillation-
spindle coupling, and (c) whether their developmental trajectories differ from those of
healthy children. We subsequently review studies on the associations between IES load
during NREM sleep and SRC performance in childhood epilepsy. We then use sleep
consolidation neurophysiological processes and their interplay with IES to help clarify
the diffuse neurocognitive deficits that have been empirically documented in CECTS. We
claim that studying SRC in CECTS will help to clarify pathophysiological mechanisms
toward diverse neurocognitive deficits. Future developments could include close links
between the fields of epilepsy and sleep, as well as new therapeutic neurostimulation
targets. At the clinical level, children diagnosed with CECTS could benefit from close
monitoring with respect to epilepsy, sleep and neurocognitive functions.
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Abbreviations: CECTS, childhood epilepsy with centrotemporal spikes; IFE, idiopathic focal epilepsy; EEG,
electroencephalogram; IES, interictal epileptiform spikes; SWA, slow wave activity; NREM sleep, non-rapid eye movement
sleep; SWS, slow wave sleep; SRC, sleep-related consolidation; ADHD, attention deficit hyperactivity disorder; ESES,
electrical status epilepticus during slow wave sleep; CSWS, continuous spike and wave during sleep; PAC, phase amplitude
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INTRODUCTION

Childhood Epilepsy With Centrotemporal
Spikes
Childhood epilepsy with centrotemporal spikes (CECTS)
belongs to a common group of idiopathic focal childhood
epilepsies (IFEs), often of genetic origin (Panjwani et al.,
2016; Strug and Pal, 2017). It is conceptualized as an age-
related neurodevelopmental dysfunction of a self-remitting
nature (Miano and Datta, 2019). Traditionally, CECTS was
thought to be free of structural abnormalities and this is still
reflected in some of the diagnostic practices (Pavlou et al.,
2012). However, evidence of subtle functional and structural
abnormalities in CECTS has been mounting (Pardoe et al.,
2013; Dryźałowski et al., 2018). Despite a growing consensus
that neurocognitive impairment in CECTS subsides beyond
the active phase (Deonna et al., 2000; Varesio et al., 2020),
there is also evidence about verbal deficits in the remission
period associated with persistent EEG abnormalities (Massa
et al., 2001; Filippini et al., 2013). The onset of CECTS is
between early childhood and middle adolescence. The incidence
of the disorder is between 10 and 20: 100,000 in children
between the ages of 3 and 15 (Parakh and Katewa, 2015;
Smith et al., 2016) and its prevalence is approximately 15%
in children with epilepsy between 1 and 15 years of age
(Parakh and Katewa, 2015).

Centrotemporal spikes are a defining feature of CECTS
and are documented through sleep-electroencephalogram
(EEG) during NREM sleep (Pavlou et al., 2012). The
negative impact of interictal epileptiform spikes (IES) on
children’s neurocognitive profile has been substantiated
through: (a) the increased prevalence of IES in children
with developmental language (Neuschlová et al., 2007)
or behavior disorders (Silvestri et al., 2007) and, (b) the
contribution of IES to neurocognitive deficits in epileptic
children when accounting for confounding variables (Fastenau
et al., 2009). The evolution of the child’s neurocognitive profile
partially depends on the spike index and the localization
of IES (Nicolai et al., 2007; Zhao et al., 2007). Moreover,
the frequency of IES is among the factors that determine
whether CECTS will follow a typical or atypical trajectory
(Kanemura et al., 2012).

Sleep-Related Consolidation Processes
The synaptic homeostasis hypothesis (Tononi and Cirelli, 2006,
2014) purports that daytime tasks result in high synaptic
potentiation in cortical neuronal networks. Slow wave activity
(SWA) and slow oscillations (SOs) in particular, subsequently
globally depotentiate the synapses that were potentiated. SWA
hence has been reported to directly reflect the level of synaptic
potentiation that took place during the previous waking period.
This has stimulated several sleep-related consolidation (SRC)
research protocols.

In the active system consolidation model (Rasch and
Born, 2013) new stimuli are recorded simultaneously in two
different “stores:” (a) a hippocampal fast-learning temporary

“store” and, (b) a neocortical slow-learning long-term “store”
(Rasch and Born, 2013). Through a process termed system
consolidation, memory traces undergo significant qualitative
transformations, as they move from hippocampal temporary
neuronal networks into neocortical long term “storage” (Rasch
and Born, 2008). Once they reach the neocortex, the newly
reorganized memory representations need to be strengthened.
A bulk of research has shown that Non-Rapid Eye Movement
sleep (NREM), particularly slow wave sleep (SWS), plays
a key role in enhancing declarative memory, which is
hippocampus dependent. Sleep spindles are a characteristic
feature of NREM sleep and have a “waxing and waning”
electrophysiological representation (Weiner and Dang-Vu,
2016). An advantage of this model over others, is that it describes
the electrophysiological and neurochemical mechanisms through
which sleep enhances performance. These two models of SRC are
not mutually exclusive.

Sleep-related consolidation, a type of neuroplasticity,
correlates with cortical maturation and cognition (Kopasz
et al., 2010). It has been studied in children with sleep
disorders (Cellini, 2017), in children with attention deficit
hyperactivity disorder (ADHD) (Prehn-Kristensen et al., 2011),
and in children with epilepsy (Sud et al., 2014) including
children with idiopathic focal epilepsies (Urbain et al., 2011;
Galer et al., 2015).

CECTS and Sleep-Related Consolidation
Studying SRC in CECTS is particularly relevant for a number
of reasons. First, there is increasing consensus that CECTS
and electrical status epilepticus during slow wave sleep (ESES),
an IFE complicated by continuous spike and wave during
sleep (CSWS), are within the same continuum, with ESES
comprising the severe end of the continuum (Galer et al.,
2015; Halász et al., 2019). It has been recognized that frequent
and diffuse IES, such as those present in ESES, contribute
to severe behavioral and cognitive deficits. The mechanism
through which IES produce this result in ESES is potentially
through SRC phenomena (Tassinari et al., 2009). CSWS EEG
patterns are known to exist in CECTS, too, especially in
atypical forms of the disorder (Parisi et al., 2017). Second,
in CECTS, IES present mainly during NREM sleep; hence a
time frame that is crucial for SRC processes, particularly in
declarative memory.

It has been suggested that IES may interfere with the
neurophysiological consolidation processes subserving learning.
This hypothesis is strengthened by associations between
behavioral and cognitive deficits and IES severity at the
acute epileptic phase (Storz et al., 2020). It is also supported
by a pilot study documenting that an IES-free EEG signal
tends to revert the cognitive deficits (Urbain et al., 2011).
Furthermore, the lateralization and localization of IES
are among the factors that impact upon SRC in children
with IFE (Galer et al., 2015). Therefore, CECTS can serve
as a model to elucidate whether, due to epilepsy-related
phenomena and alterations in neuronal networks, there
is a subsequent alteration in the SRC processes leading to
neurocognitive deficits.
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IES AND SLEEP-RELATED
CONSOLIDATION PERFORMANCE IN
CHILDHOOD EPILEPSY

Associations between IES load during NREM sleep and
SRC performance in various types of childhood epilepsy
have been found in a limited number of studies so far
(Table 1). Collectively these studies advance the field by
(a) differentiating the impact of sleep from that of a wake
delay, (b) delineating associations between IES load and
sleep-related gains in childhood epilepsy, (c) demonstrating
that home measurements are producible in the unfamiliar
hospital setting, and (d) by bridging SRC performance data
in idiopathic and structural childhood epilepsies. In relation
to the latter point, an inverse correlation between IES load
and SRC in structural childhood epilepsy was suggested as a
pathophysiological mechanism bridging findings from studies of
structural and idiopathic focal epilepsies (Chan et al., 2017). The
most common limitations in this type of study are heterogeneous
sampling, small sample size, pharmacotherapy variations and
occasionally the lack of a control group. Future studies could
add electrophysiological data and in particular data reflecting
the function of the three cardinal neuronal oscillations in
SRC processes.

PUTATIVE PATHOPHYSIOLOGICAL
MECHANISMS BASED ON
ELECTROPHYSIOLOGICAL
PHENOMENA

During NREM sleep, neuronal networks from different brain
regions “converse” through the temporal coupling of their
respective electrophysiological features (Buzsáki, 1996). Phase
amplitude coupling (PAC) refers to the temporal precision
with which one oscillation modulates its amplitude by the
phase of another oscillation. There is now evidence that PAC
is crucial in SRC; in old age and in certain pathological
conditions, oscillations lose the ability to interact in a temporally
precise way (Muehlroth et al., 2019). More specifically, temporal
coupling involves thalamic sleep spindles, hippocampal ripples
and neocortical slow oscillations (SOs) (Buzsáki, 1996). The
temporal co-ordination of these key electrophysiological features
involves two temporal frames: (a) a top-down, and (b) a
bottom-up (McDevit et al., 2017). During the top-down
frame, the neocortical SOs act as a “metronome;” during
certain phases they suppress spindles and ripples, while
during other phases there is a rebound in the expression
of the latter (McDevit et al., 2017). The bottom-up frame
is an intricate process, during which hippocampal ripples
nest within succeeding troughs of spindles and thus, convey
replayed memory traces to spindles (Staresina et al., 2015).
Next, spindles “pass on” this information to the neocortex.
We suggest that each one of them should be studied
systematically in CECTS, and herewith advocate sleep studies in
children with epilepsy.

Interictal Epileptiform Spikes Issues
Perturbing (Cross-)Regional Coupling
Direct intracranial EEG recordings have provided evidence of
the coupling of SOs, spindles and ripples within the human
hippocampus during NREM sleep (Staresina et al., 2015). The
aforementioned coupling was possible because SOs and spindles
appear simultaneously across vertex electrode Cz on the EEG
and the hippocampus (cross-regional coupling) (Staresina et al.,
2015). IES in CECTS, due to their centrotemporal location and
NREM occurrence, may perturb one or more of the oscillations
within the hippocampal area as well as their neuronal coupling
potentially leading to neurocognitive deficits. This is partially
supported by the fact that in adults, hippocampal interictal spikes
in NREM sleep negatively correlate with memory consolidation
performance (Lambert et al., 2020).

Mimicking Consolidation Processes
IES undergo sleep-related reactivation and consolidation
processes utilizing physiological mechanisms that were
considered to be reserved for meaningful stimuli (Bower
et al., 2017). To date, data are available only from patients
with refractory epilepsy. The pathological patterns of the IES
were found to be preferentially reactivated during SWS; hence
strengthened through physiological consolidation mechanisms
(Bower et al., 2017). The aforementioned findings offer a
new perspective on how epilepsy interacts with sleep-related
neuroplasticity mechanisms and highlight the importance of
collecting IES data.

Altering the Precision of the Spatiotemporal
Co-ordination
Based on adult studies IES couple with slow wave oscillations at
different transitional points (up to down states) in comparison to
what physiological oscillations do (down to up states) (Frauscher
and Gotman, 2019). In healthy children and adolescents spindle
power decreases during the “down state” and increases during the
“up-state;” hence there is an influence of the SO phase on spindle
activity across development (Hahn et al., 2020). Hence, SRC and
IES data collection in CECTS is pertinent in order to investigate
whether the aforementioned normative processes are followed in
this clinical group.

Variably Impacting Upon SRC Performance
In epileptogenesis the impact of IES, ranging from proictal
to antiictogenic, does not depend only on IES characteristics
but also on the complex interaction between IES and specific
neuronal networks (Chvojka et al., 2019). In relation to
SRC processes, the complex interplay of IES with the three
cardinal neuronal oscillations may partially explain (a) why it
is difficult to find clear causal links between IES characteristics
and alterations in SRC performance and (b) the diverse
neurocognitive outcomes.

Sleep Spindles Issues
Sleep spindles merit systematic study in CECTS. Namely, within
the hierarchical nesting of one oscillation within the other,
spindles play an intermediary role since they are organized by
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TABLE 1 | Studies on IEDs and SRC performance in childhood epilepsy.

Authors, year Type of childhood
epilepsy

MRI Sample size (n) Age Gender (male) Memory
assessment

Experimental design Overnight
recordings

Galer et al. (2015) IFE No structural
abnormality

CE = 15;
Control = 8;

CE = 6–12;
Control = 7–12

CE = 9; Control = 3 V = 6; NV = 5;
V + NV = 4

Immediate retrieval vs. to
post sleep retrieval; home
condition vs. hospital
condition

Polysomnography;
EEG

Info on IEDs: The frequency of IEDs during NREM sleep was computed by calculating a spike-wave index; IED
quantification on the first 30 min of NREM sleep was reliable to assess the rate of interictal spiking during NREM sleep

Conclusion CE: ↓ V performance and NV performance; A significantly positive association between the SWI and the
extent of the deficit in the NV performance; home performance = hospital performance

Chan et al. (2017) Focal
pharmaco-resistant
epilepsy with
structural etiology

Structural
abnormalities

CE = 22;
Control = 21

CE = 6–16;
Control = 6–16

CE = 13;
Control = 9

V and NV A within-subject
comparison of memory
retention across intervals of
wake or overnight sleep;
average interval between
learning and testing was
15 h

EEG;
polysomnography

Info on IEDs: IEDs included sharp waves, spikes, spike and slow wave complexes, and polyspike- and slow wave
complexes; The count was recorded as the number of IEDs per minute, calculated by dividing the total number of IEDs
by the duration of sleep time over which they were counted

Conclusion CE: in the sleep condition ↑ V and NV performance. V and NV performance negatively correlated with
IEDs rate; a longer history of epilepsy associated with greater contribution of sleep to V performance

Conclusion Control: in the sleep condition ↑ V and NV performance

Sud et al. (2014) Refractory epilepsy 4 out of 10 with
structural
abnormalities

CE = 10 CE = 8–18 CE = 7 V A within-subject
comparison of memory
retention across intervals of
wake or overnight sleep;
No control group

Continuous
video-EEG;
actigraphy

Info on IEDs: A spike index was done in a blinded fashion by one of the researchers to determine the number of IEDs;
Interictal spike frequency was visually for 25 min (5 × 5 epochs) randomly selected during the waking and NREM sleep
periods; The average spike index was calculated (combining sleep and wake epochs) for spike/min

Conclusion CE: No ↑ in V performance after a period of sleep than after a wake period

(Continued)
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TABLE 1 | Continued

Authors, year Type of childhood
epilepsy

MRI Sample size (n) Age Gender (male) Memory
assessment

Experimental design Overnight
recordings

Urbain et al. (2011) IFE No structural
abnormality

CE = 4 (only tested
in the sleep
condition); sleep
control = 12; wake
control = 12

CE = 7–10; control
participants
matched to
patients for age

CE = 3; sleep
control = 8; wake
control = 7

V Comparing the wake to the
sleep condition in healthy
controls; comparing the
healthy sleep condition to
the patient sleep condition

Video EEG

Info on IEDs: Sleep EEG was analyzed qualitatively using a grading system and quantitatively in calculating SWI in
stages 1 and 2 of NREM sleep

Conclusion CE:↓ V performance after sleep

Conclusion Control: ↑ V performance after sleep; ↓ V performance after wake interval

Storz et al. (2020) Self-limited focal
epilepsy

Not reported CE = 14;
Control = 15
(Wilhelm et al.,
2008)

CE = 5.5–11.6;
Control = 6.8–9.1

CE = 10;
Control = 6

V and NV Comparing immediate
performance to that after a
night’s sleep; whether IEDs
rate in NREM sleep predicts
retention performance

EEG; EOG; EMG

Info on IEDs: In patient EEGs, sleep stages were scored visually; IEDs were visually detected in a bipolar and an
average referenced montage of the standard 10–20 electrodes by a pediatric epileptologist; A SWI was then calculated
by dividing the number of seconds affected by spike waves by the number of seconds analyzed multiplied by 100

Conclusion CE:↓ V performance after a night’s sleep; Positive association between SWI rates and V performance
deficit; No overnight NV performance change; SWI rates not correlated with NV performance

Conclusion Control: ↑ V performance after a night’s sleep; No VN performance overnight change of performance

IEDs = interictal epileptiform discharges; IFE = idiopathic focal epilepsy; CE = childhood epilepsy; V = verbal declarative memory task (word-pair learning task); NV = non-verbal declarative memory tasl (2D object
location task); EEG = electroencephalogram; EOG, electrooculogram; EMG = electromyogram; SWI = spike wave index; ↑, increased; ↓, decreased.
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the SOs upstates (in adults) and in their turn they group ripples
within their own troughs (McDevit et al., 2017). In children too,
there is an influence of the SO phase on spindle activity (Hahn
et al., 2020). It is possible that some pathological alterations in
sleep spindles in CECTS may jeopardize the efficient transfer of
information through the hierarchical nesting of oscillations.

One important line of research would be to concurrently
study the characteristics of sleep spindles in CECTS, the state
of SOs with which they co-ordinate and NREM sleep-related
gains. In fact, sleep spindle abnormalities have already been
found in various clinical populations such as in mental disability
(Shibagaki et al., 1982), autistic spectrum disorder (ASD)
(Limoges et al., 2005), sleep disorders (Bove et al., 1994) and
mental illness (Wamsley et al., 2012). Given that in CECTS some
of the pathological phenomena, such as IES, occur predominantly
at night time, the need arises to systematically study sleep spindles
within this clinical population.

Neocortical SO Phase Amplitude
Coupling Issues
Precise SO-spindle coupling, detected at scalp level, is crucial
for consolidation: (a) frontal spindles are thought to be time-
locked to SOs “upstates” during childhood and adolescence;
(b) the precision of SO-spindle coupling increases in parallel
with brain maturation, especially in fronto-parietal areas and
(c) subjects whose coupling strength increased from childhood
to adolescence also presented with improved SRC performance
in adolescence (Hahn et al., 2020). In adulthood too, the
spatiotemporal precision of SO-spindle coupling is essential in
enabling the consolidation of declarative memories (Muehlroth
et al., 2019). In CECTS the properties of SO-spindle precision
may partially explain long term deficits.

DISCUSSION

CECTS is associated with a range of neurocognitive deficits and
of varied severity. Deficits have been documented in executive
functions (Filippini et al., 2016), attentional processes (Deltour
et al., 2007), memory (Verrotti et al., 2014) language (Teixeira and
Santos, 2018), reading comprehension (Currie et al., 2018) and
neuropsychiatric comorbidities (Ross et al., 2020). A review of
studies on neurocognitive functioning in CECTS reported lower
outcomes in this clinical population compared to healthy subjects
in a wide range of cognitive functions. Specifically, there was a
large effect on long-term storage and retrieval, moderate effects
on overall intelligence quotient (IQ), acquired knowledge, fluid
reasoning, short-term memory, processing speed, and fluency in
retrieval and a small effect in visual processing (Wickens et al.,
2017). Of note, even general intelligence ability presented deficits,
challenging the traditional view that in CECTS, the IQ remains
within the normal range. This might be partially explained by
the exclusion criteria of many studies in CECTS, excluding
children with low general intellectual ability (Wickens et al.,
2017). Alterations in synaptic homeostasis in CECTS may disrupt
neuropsychological functioning by placing competing demands
on SRC processes (Chan et al., 2021).

There are two commonly hypothesized reasons for the
diffusely impaired neurocognitive profile in CECTS. The first one
is that IES propagate; hence their effect expands beyond the area
of initial presentation (Chvojka et al., 2019). The second reason
is related to the myriad of concurrent developmental processes
that take place in the young organism’s brain. To mention but a
few, there are adaptive and maladaptive developmental processes
in: (a) sleep regulation (Bathory and Tomopoulos, 2017), (b)
ontogenetic trajectories of specific neuronal oscillations (Clawson
et al., 2016), (c) cortical maturation (Selvitelli et al., 2009;
Fujiwara et al., 2018; Siripornpanich et al., 2019), (d) cognitive
maturation (Kolb, 2018), and (e) topographical evolution of
NREM sleep phenomena moving along a posterior to anterior
axis (Kurth et al., 2010). The onset of CECTS plays a key role
as to which neuronal networks and which functions will be
affected. For instance, functions that have reached a relatively
mature level by the time CECTS commences might be less
affected than functions that are at a crucial stage in their
formation (Jurkevièiene et al., 2012). Given the sheer importance
of developmental issues in the interplay of CECTS and SRC,
it is noteworthy that many theories and datasets are adult-
based. This research gap could be addressed by longitudinal
prospective studies of CECTS that would simultaneously gather
electrophysiological data on IES and neuronal oscillations, as
well as behavioral data (sleep-related gains in learning material,
particularly declarative).

From a neurophysiological perspective, deficits in general
intelligence in CECTS could be tentatively explained by the fact
that sleep spindles have been identified as an index of intelligence
or general aptitude for learning (Fogel and Smith, 2011). A gap
in the research is the relative lack of normative data on the
developmental trajectories of sleep spindles with few notable
exceptions (Scholle et al., 2007; Mcclain et al., 2016; Gorgoni et al.,
2020). One approach would be to collect normative data on key
features of sleep spindles across development. Another approach
would be to consider whether sleep spindles have sufficient
plasticity so as to adjust to their neurophysiological environment,
namely the characteristics of the hippocampal ripples and the
SOs, in order to optimize PAC and SRC.

In the latter case scenario, there are interesting implications
for SRC processes in CECTS. Even within a neuronal
environment burdened by IES, compensatory mechanisms
could still enable sleep spindles to adjust their characteristics
in order to achieve SRC processes. Hence, this would further
support heterogeneous results in terms of SRC alterations
in CECTS, possibly leading to heterogeneous long-term
neurocognitive profiles.

Hippocampus-dependent memory is traditionally studied
using declarative memory tasks including verbal and visuospatial
tasks (non-verbal). Initial findings suggest that SRC is altered in
CECTS (Urbain et al., 2011; Galer et al., 2015; Storz et al., 2020)
meaning that language and visuospatial deficits could be partially
explained on the basis of long-term problematic consolidation
of this type of material. Indeed, a measure that involved
IES in NREM sleep was associated with poorer performance
on a visuospatial task in IFE subjects (Galer et al., 2015).
Attentional deficits have been linked to altered NREM sleep
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in another clinical group, children with ADHD (Urbain et al.,
2013). Attentional deficits in CECTS could thus be at least
partially attributed to altered SRC processes. Language deficits are
similarly expected in CECTS, especially when the centrotemporal
IES are located in the left hemisphere, given that these brain
areas are linked to language skills and processing of auditory
stimuli (Teixeira and Santos, 2018; Halász et al., 2019). To
date, the initial studies in SRC in CECTS in sleep-related gains
were hampered by small numbers and sample heterogeneity.
The field would benefit from replicating these studies with
substantial samples and possibly with more than a single night’s
sleep recording.

An additional challenge in CECTS is that since there is
no clinical need for intracranial recordings, there is a lack of
direct recordings of some types of neuronal oscillations. In
order to overcome this issue well developed theoretical models
are needed with testable hypothesis. There is a also a need to
develop measures that can be detected at scalp level, such as
the SO-spindle coupling measure based on which data can be
inferred related to the quality of the hippocampal-neocortical
communication (Helfrich et al., 2019). Future developments
could include close links between the epilepsy and the sleep
research fields. Sleep disruption is known to impact upon the
neurophysiological mechanisms of SRC as well as upon EEG
discharges (Parisi et al., 2017). At the same time, children
with sleep-disordered breathing present an increased risk of
neurocognitive deficits (Leng et al., 2017; Spruyt, 2021).

It is crucial that the contribution of each neuronal oscillatory
pattern to the SRC process is well understood so that children
with CECTS might be able to benefit from the fast developing
field of sleep memory manipulation, and, in particular, of
oscillatory sleep patterns. In adults various neurostimulatory
methods, such as transcranial direct stimulation (Marshall
et al., 2004) and acoustic stimulation (Ngo et al., 2013)
boost SOs and spindles and concurrently increase sleep-related
declarative memory gains (Marshall et al., 2006; Ngo et al., 2013).

Future therapeutic approaches might include increasing SO
or spindle intensity in CECTS in order to increase sleep-
related gains in declarative memory tasks. Early stabilization
of SRC processes might in turn avert long-term neurocognitive
deficits leading to a better prognosis and quality of life for this
vulnerable clinical group.

We propose that studying SRC in the context of CECTS will
give us further insight into the pathophysiological mechanisms
that lead to neurocognitive deficits in this pediatric population
in the long term. At the clinical level, children diagnosed with
CECTS could benefit from closely monitoring with respect to
their epilepsy, sleep and neurocognitive functions.
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