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ABSTRACT
Objectives  Early diagnosis and intervention are keys for 
improving long-term outcomes of children with autism 
spectrum disorder (ASD). However, existing screening 
tools have shown insufficient accuracy. Our objective is 
to predict the risk of ASD in young children between 18 
months and 30 months based on their medical histories 
using real-world health claims data.
Methods  Using the MarketScan Health Claims Database 
2005–2016, we identified 12 743 children with ASD and 
a random sample of 25 833 children without ASD as 
our study cohort. We developed logistic regression (LR) 
with least absolute shrinkage and selection operator and 
random forest (RF) models for predicting ASD diagnosis 
at ages of 18–30 months, using demographics, medical 
diagnoses and healthcare service procedures extracted 
from individual’s medical claims during early years 
postbirth as predictor variables.
Results  For predicting ASD diagnosis at age of 24 
months, the LR and RF models achieved the area under 
the receiver operating characteristic curve (AUROC) of 
0.758 and 0.775, respectively. Prediction accuracy further 
increased with age. With predictor variables separated by 
outpatient and inpatient visits, the RF model for prediction 
at age of 24 months achieved an AUROC of 0.834, with 
96.4% specificity and 20.5% positive predictive value at 
40% sensitivity, representing a promising improvement 
over the existing screening tool in practice.
Conclusions  Our study demonstrates the feasibility of 
using machine learning models and health claims data 
to identify children with ASD at a very young age. It is 
deemed a promising approach for monitoring ASD risk 
in the general children population and early detection of 
high-risk children for targeted screening.

INTRODUCTION
Autism spectrum disorder (ASD) is a devel-
opmental disorder that involves persistent 
challenges in social interaction, speech and 
nonverbal communication, and restricted 
and repetitive behaviours.1 In the USA, the 
prevalence of ASD has increased substantially 
in the past two decades, with an estimate of 
every 1 in 44 children to be identified with 
ASD by age 8 in 2016.2 Although there exist 
evidence-based interventions which improve 
core symptoms in children with ASD, many 
children with ASD still experience long-term 

challenges with daily life, education and 
employment.3

Early diagnosis is the key to early interven-
tion for improving the long-term outcomes 
of children with ASD. However, despite the 
growing evidence shows that accurate and 
stable diagnoses can be made by 2 years,4 in 
real-world settings, the median age of ASD 
diagnosis is 50 months.2 To improve early 
diagnosis, the American Academy of Pedi-
atrics (AAP) has recommended universal 
screening among all children at 18-month 
and 24-month well-child visits in the primary 
care settings using the Modified Checklist 
for Autism in Toddlers (M-CHAT),5 a ques-
tionnaire that assesses children’s behaviour 
for toddlers.6 However, growing evidence 
has shown that using M-CHAT alone may 

WHAT IS ALREADY KNOWN ON THIS TOPIC
	⇒ Growing evidence has shown that existing autism 
spectrum disorder (ASD)-specific screening tools 
(eg, Modified Checklist for Autism in Toddlers) may 
not yield sufficient accuracy for early detection of 
children with ASD in clinical practice.

	⇒ Previous clinical and health service research has 
identified clinical risk factors associated with ASD, 
but the clinical factors from an individual’s prior 
medical history have not been used comprehen-
sively to assess the risk of ASD in young children.

WHAT THIS STUDY ADDS
	⇒ This study demonstrated the feasibility of predicting 
ASD diagnosis with promising accuracy based on an 
individual’s medical record from health claims data 
using machine learning models.

	⇒ Our prediction models were clinically interpretable, 
which systematically identified key predictors in line 
with known risk factors and symptoms among ASD 
children in the literature.

HOW THIS STUDY MIGHT AFFECT RESEARCH, 
PRACTICE OR POLICY

	⇒ This study may serve as a basis for integrating pre-
dictive modelling into the health information system 
and the clinical workflow to enhance the current 
ASD screening practice.
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not yield sufficient accuracy in detecting ASD cases, with 
a sensitivity below 40% and a positive predictive value 
(PPV) under 20%.7 8

In addition to ASD-specific behavioural questionnaires, 
general clinical and healthcare records may also contain 
meaningful signals to differentiate the ASD risks among 
very young children. Studies have found that children 
with ASD are oftentimes accompanied by certain symp-
toms and medical issues such as gastrointestinal prob-
lems,9 infections10 11 and feeding problems.12 This implies 
that past diagnosis and healthcare encounter informa-
tion, commonly available from health insurance claims or 
Electronic Healthcare Record (EHR), could potentially 
be used for ASD risk prediction. In fact, medical claims 
and EHR data have been widely used in the health infor-
matics literature for identifying disease-specific early 
phenotypes even before the hallmark symptoms start to 
manifest, such as for chronic diseases like heart failures,13 
diabetes14 and Alzheimer’s disease.15 In the context of 
ASD, health record data has been used to identify the ASD 
subtypes16 17 and to predict the suicidal risk in adolescents 
with ASD18; however, its use for predicting ASD diagnosis 
in young children has remained limited. To fill this gap, 
the objective of this study is to examine the feasibility of 
using large-scale real-world medical claims data to develop 
a prediction model for ASD diagnosis in young children, 
which can be used to support effective ASD screening 
strategies and facilitate early detection.

METHODS
Data source
We used the deidentified individual-level longitu-
dinal healthcare claims data from the IBM MarketScan 
Commercial Claims and Encounters Database from 
2005 to 2016. This database includes over 273 million 
unique individuals for both privately and publicly insured 
people in the USA.19 The claims data include baseline 

demographics (eg, sex, birth year, postal region), service 
providers, insurance plans, medical diagnoses (in inter-
national Classification of Diseases (ICD)-9/10 codes) and 
procedures (in Healthcare Common Procedure Coding 
System (HCPCS) and Current Procedural Terminology-4 
codes) at each encounter of healthcare services.

Study population
We constructed an initial cohort consisting of young 
children with and without ASD (figure 1). The inclusion 
criteria of the ASD cohort are as follows: (1) having at 
least 2 outpatient or 1 inpatient ASD diagnosis encoun-
ters (299 for ICD-9 and F84 for ICD-10) throughout 
the existing records20 21; and (2) having continuous 
enrolment from 4 months to 30 months to ensure the 
completeness of health records from the claims data that 
can be used for diagnosis prediction at up to 30 months 
(online supplemental figure S1). To create the non-ASD 
cohort, we first identified individuals without any ASD 
diagnosis throughout their health records, then downs-
ampled 5% of the population to obtain a computation-
ally manageable yet sufficiently large subset of samples. 
To ensure patients had adequate follow-up time to receive 
confirmed ASD diagnosis in the database, we restricted 
our selection of non-ASD patients by requiring a full 
enrolment period from 4 months to 60 months (online 
supplemental table S1).

Predictor variables for ASD diagnosis
We examined all diagnosis and procedure codes of a 
child’s medical encounters available from as early as 
within 4 months after birth up to the age for prediction 
of ASD. We applied the Clinical Classifications Software 
(CCS),22 a commonly used tool in health informatics 
research, to aggregate the large number of distinct diag-
nosis and procedure codes into clinically meaningful 
groups (figure  1). The single-level CCS maps the ICD-
9/10 and HCPCS codes to a substantially smaller yet 

Figure 1  Overview of study design for the predictive analysis. ASD, autism spectrum disorder; AUROC, area under receiver 
operating characteristic curve; AUPRC, area under precision-recall curve; LASSO, least absolute shrinkage and selection 
operator; PPV, positive predictive value.
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practical set that includes 285 diagnosis and 231 proce-
dure categories.22 We further removed the same-day 
duplications of CCS codes after the mapping by counting 
at most one encounter of a specific CCS category for each 
person on each day.

To predict the ASD diagnosis at the age of 24 months in 
our base case model, in line with the age when a diagnosis 
can possibly be made by an experienced professional,4 
we defined the predictor variables as the total number 
of encounters for each CCS category up to the age for 
prediction of 24 months. We also included sex and the 
encounters of emergency department visits, which are 
well-known clinically relevant factors associated with the 
autism population.23 Variables that were present in <1% 
of both ASD and non-ASD cohorts were excluded.24 A 
total of 170 input predictor variables were included for 
prediction at the age of 24 months. Having considered 
that the course of clinical events may be following a 
different pattern after an encounter with ASD diagnosis, 
we excluded any children who had at least one encounter 
with ASD diagnosis code prior to the age for prediction 
in our analysis.

Prediction model development and validation
We employed two machine learning methods, logistic 
regression (LR) and random forest (RF), which have 
been widely used for developing risk prediction models 
in various clinical settings. LR assumes that the indepen-
dent variables are linearly related to the log odds and that 
the effects of multiple variables are additive, whereas RF 
is particularly suitable for exploiting nonlinear interac-
tive effects in high-dimensional data. For the LR model, 
we also applied the least absolute shrinkage and selec-
tion operator (LASSO) as a feature selection technique 
to enforce the coefficients of weak predictors to be zero. 
The RF model was limited to up to 100 decision trees 
in the base case setting (other choices of the maximum 
number of trees were tested in sensitivity analysis).

To train our model, we sampled 10 000 ASD and 10 000 
non-ASD subjects (N=20 000) from the initial cohort to 
build a large balanced training sample for maximising the 
discriminatory power learnt by the prediction model. To 
evaluate the model prediction performance, we created 
an independent imbalanced testing set (N=16 201) 
comprised of ASD and non-ASD patients from the 
remaining cohort that were mutually exclusive from the 
training set. The testing set resembled the real-world esti-
mates for ASD prevalence of 2.3% (ie, 1 in every 44) in 
the general population.2

We measured the prediction performance with sensi-
tivity (also known as true positive rate or recall), speci-
ficity (or true negative rate) and PPV (or precision)25 
at various selected risk thresholds. The model’s overall 
discrimination ability was measured using the area under 
the receiver operating characteristic curve (AUROC). We 
also calculated the area under the precision-recall curve 
(AUPRC) where the precision-recall curve represents the 
relationship between PPV and sensitivity, and F1 score 

is defined as the harmonic mean of PPV and sensitivity, 
which are suited for evaluating the prediction perfor-
mance for the imbalanced testing sample.26 27 To assess 
the stability and the uncertainty of prediction perfor-
mance, we repeated the training and testing set sampling, 
model training, testing and performance evaluation with 
50 independent replications. The 95% CIs of all perfor-
mance measures were reported.

Predicting ASD diagnosis at different ages
In addition to the base case prediction model where the 
risk of ASD diagnosis was assessed based on clinical infor-
mation up to 24 months, we compared the accuracy of 
ASD prediction with varying lengths of available medical 
history at (1) a younger age, 18 months, considering 
that the universal ASD screening is recommended for 
children at both 18 months and 24 months5; and (2) an 
older age, 30 months, which is still a critical time point for 
monitoring the developmental delays and consideration 
of early intervention.28 We followed the same approach 
in the base case to exclude predictor variables of low 
frequency (resulting in 150 and 180 predictor variables 
in total for prediction at 18 and 30 months, respectively) 
and the children with ASD diagnosis prior to the age for 
prediction.

Identifying key predictor variables
We further explored how many and which key predictive 
variables had the most impact on the prediction perfor-
mance using the Gini importance index from the RF 
model. We added variables incrementally following the 
order of Gini Index (ie, starting with the most important 
variable) and evaluated how the prediction accuracy 
changed as more variables were included. Selected key 
predictive variables were then compared with those iden-
tified by alternative strategies using (1) the absolute value 
of coefficients from the LASSO LR model and (2) the 
prevalence of each variable in the identified ASD cohort.

Separating inpatient and outpatient visits
Considering that the underlying severity of the symp-
toms could potentially differ by inpatient hospitalisations 
and outpatient visits,29 we split the number of encoun-
ters for each diagnosis and procedure by inpatient and 
outpatient visit separately and augmented the predic-
tion model with more detailed encounter variables. We 
compared the prediction performance of the models 
using the augmented variables with our base case models.

Sensitivity analysis
We performed sensitivity analysis on several modelling 
assumptions to assess the robustness of our prediction 
models. Specifically, we strengthened the inclusion 
criteria for non-ASD subjects by requiring one additional 
year of enrollment, that is, increased from 4–60 months 
to 4–72 months. Furthermore, we assessed the potential 
loss of information due to excluding variables with <1% 
prevalence, to verify that such a variable prescreening 
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procedure would not miss out on rare but crucial predic-
tive information.

RESULTS
Predicting ASD diagnosis at age of 24 months
We identified the study cohort consisting of 12 743 ASD 
subjects and 25 833 non-ASD subjects (more details in 
online supplemental table S1). When predicting the ASD 
diagnosis at the age of 24 months in independent testing 
samples, the LR and RF models achieved the AUROC of 
0.758 (95% CI 0.755 to 0.762) and 0.775 (95% CI 0.771 
to 0.779), respectively (table 1, figure 2). Compared with 
the LR model, RF model also showed a higher AUPRC 
(LR 0.101 (95% CI 0.098 to 0.104); RF 0.143 (95% CI 
0.138 to 0.148)) and F1 score (LR 0.193 (95% CI 0.188 
to 0.197); RF: 0.246 (95% CI 0.240 to 0.251)). The limit 
of up to 100 trees in the RF model was deemed sufficient 
to achieve stable performance. Further increasing the 
model complexity did not translate to an improvement in 
prediction accuracy (online supplemental table S2).

Predicting ASD diagnosis at different ages
Comparing the prediction models at the ages of 18, 24 and 
30 months, we found that the prediction performance 
increased substantially with the age. Specifically for the 
RF model, the AUROC increased from 0.717 (0.714–
0.721) at age of 18 months to 0.832 (0.828–0.835) at 30 
months (table 1). Similarly, the AUPRC increased from 
0.067 (0.065–0.069) to 0.234 (0.227–0.240) (figure  3), 
and F1 score increased from 0.130 (0.125–0.134) to 0.326 
(0.322–0.331) from age of 18–30 months. The LR model, 
although with a lower prediction accuracy compared 
with the RF model in general, also showed a consistently 
increasing prediction performance as the age increased.

Identifying key predictive variables
As the RF model included more variables following the 
importance order by the Gini index, it showed higher 
AUROC (online supplemental figure S2). For predic-
tion at age of 24 and 30 months, 30–40 most important 
variables were sufficient to achieve stable prediction 
performance with AUROC, whereas for an earlier age of 
18 months, the top 50 important variables contributed 
to most of the prediction performance, while including 
additional variables could continue to marginally improve 
the prediction performance. We closely examined the 50 
most important variables of the RF model (ranked by 
Gini index) and the LR model (ranked by the median 
absolute value of the coefficient) for prediction at age of 
24 months (online supplemental figure S3). The identi-
fied important variables included sex, developmental and 
nervous system disorders, psychological and psychiatric 
services, respiratory system infections and symptoms, 
gastrointestinal-related diagnosis, ear and eye infections, 
perinatal conditions, and ED visits, which have also been 
seen as separate risk factors associated with ASD cases in 
the clinical literature. The key predictors of the RF model Ta
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were also highly consistent with high prevalence variables, 
sharing 47 out of 50 most common variables in the ASD 
cohort (online supplemental figure S4).

Prediction using separated inpatient and outpatient data
Separating inpatient and outpatient encounters further 
increased the AUROC for prediction at the age of 24 
months to 0.766 (95% CI 0.762 to 0.769) in the LR model 
and 0.834 (95% CI 0.831 to 0.837) in the RF model. At 
the target sensitivity of 40%, the RF model achieved a 
higher specificity of 96.4% (95% CI 96.2% to 96.5%) with 
a PPV of 20.5% (95% CI 19.8% to 21.1%), outperforming 
the existing screening tool M-CHAT/F (with a sensitivity 
of 38.8%, specificity of 94.9% and PPV of 14.6%). We 
found that using claims data separated by inpatient and 
outpatient visits improved the prediction performance 
consistently across all ages (figure 4).

Robustness check and sensitivity analysis
With a more stringent inclusion criterion for non-ASD 
subjects by requiring a longer full enrollment period up 
to 72 months (vs 60 months in our base case), we found 
that the prediction performance had modest improve-
ment (online supplemental table S3). It could be partially 
attributed to the fact that with longer years to ascertain 

the non-ASD cohort, children would be less likely to be 
misclassified. We also verified that including the low-
prevalence variables would not result in substantial differ-
ences but only marginal changes of AUROC within 0.01 
across all model specifications.

DISCUSSION
Early identification is vital for children with ASD to ensure 
their access to timely intervention and to optimise long-
term outcomes. In this study, we demonstrated the feasi-
bility of predicting ASD diagnosis at early ages using health 
claims data and machine learning models. We found that 
LASSO LR and RF models achieved an overall AUROC 
above 0.75 when predicting ASD diagnosis at age of 24 
months. Our results also showed that prediction perfor-
mance increased with age at the time of prediction. This 
is reasonable because more clinical information accumu-
lated over a longer follow-up period since birth may contain 
more distinctive patterns to effectively differentiate chil-
dren with ASD. The prediction models developed in our 
study are clinically interpretable. Key predictors, such as sex 
(male), developmental delays, gastrointestinal disorders, 
respiratory system infections and otitis media have shown 
strong predictive values for ASD diagnosis, which are in line 
with previous clinical studies that have shown these symp-
toms being associated with ASD children. Finally, our study 
showed that separating inpatient and outpatient claims as 
predictors could further improve the prediction accuracy.

In our study, both LASSO LR and RF models showed 
promising accuracy in predicting ASD diagnosis based on 
an individual’s medical claims data. This robust finding 
implies that there may exist distinct patterns in health 
conditions and health service needs among young chil-
dren with ASD, well before the onset of most hallmark 
ASD behavioural symptoms. Such predictive signals can 

Figure 2  Receiver operating characteristic curves (A) and 
precision-recall (PR) curves (B) for prediction of autism 
spectrum disorder (ASD) diagnosis at age of 24 months. The 
prevalence stands for the baseline 2.27% (ie, 1 in 44) ASD 
prevalence in the general population. AUC, area under curve; 
LR, logistic regression; RF, random forest.

Figure 3  Receiver operating characteristic curves (A) and 
precision-recall curves (B) for prediction of autism spectrum 
disorder at ages of 18, 24 and 30 months, respectively, by the 
random forest model. AUC, area under curve.

Figure 4  Comparison of area under the receiver operating 
characteristic curve (AUROC) with combined versus 
separated inpatient and outpatient encounters by LASSO 
logistic regression (LR) and random forest (RF) models, at 
the age of 18, 24 and 30 months, respectively. Error bars 
in the figure represent the 95% CIs based on results from 
50 replications of independent runs. LASSO, least absolute 
shrinkage and selection operator.

https://dx.doi.org/10.1136/bmjhci-2022-100544
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be easily extracted from the electronic health records or 
medical claims administrative data, and used for the early 
identification of ASD cases. We also observed differences in 
the performance between the two models. The RF model 
outperformed the LASSO LR model in general, likely 
because, with its tree-based model structure, the RF model 
is better at capturing complex interactive effects among 
the predictor variables to distinguish between the ASD 
and non-ASD cases, whereas the LR model synthesises the 
effects of multiple variables additively. The advantage of the 
RF model became more salient when input variables were 
separated by inpatient and outpatient claims into a more 
granular level.

Our study has made an important contribution to 
applying health informatics in the field of ASD. Although 
there exists a plethora of literature identifying individual 
risk factors of ASD, using large healthcare service data and 
machine learning models to systematically predict ASD 
diagnosis has remained much less explored. Unlike existing 
clinical informatics studies that focused on detecting ASD 
subtypes,16 17 we aim to detect ASD cases among the general 
children population, that is, the early detection. This could 
be particularly challenging due to the low prevalence of 
ASD in the general population (ie, a highly imbalanced 
dataset), and the scarcity of information available at such 
a young age. Nevertheless, our model showed promising 
prediction performance. The RF model with separated 
inpatient and outpatient encounters achieved a specificity 
of 96.4% at a sensitivity of 40% for the ASD prediction at 
the age of 24 months, outperforming the accuracy of the 
existing ASD-specific screening tool (sensitivity: 38.8%; 
specificity: 94.9%) from a clinical observational study.7 It is 
worth noting that under a similar ASD prevalence (2.2%), 
our model showed a higher PPV (20.5% vs 14.6%).

Our prediction model for ASD diagnosis could lead to 
a significant impact on the screening strategies for ASD in 
young children. Although the AAP guidelines recommend 
universal screening in all children, it has been debated that, 
without the perfect screening tool, universal screening may 
result in overburdened diagnostic services in the health-
care system as these clinical resources are in extremely 
short supply.30 Our prediction models have demonstrated 
promising improvement over the existing ASD screening 
tool by using clinical information, which could potentially 
serve as a ‘triaging tool’ for identifying high-risk patients for 
diagnostic evaluation. Moreover, the models only based on 
health claims data makes it practically feasible to integrate 
into an EHR system or insurance claims database. It could 
further enable an automatic screening tool, which can 
continuously monitor an individual’s risk as new diagnosis 
and procedure information emerges, and send reminders 
to patients or providers for a timely clinical assessment if 
necessary. On the other hand, it is possible that some diag-
nosis and procedure information appear after a concern 
that the child had autism has already existed, such as 
following a positive screening event, which could alter the 
course of subsequent clinical events. As such, our prediction 
model is not designed to direct the screening decisions, but 

rather a tool to enhance the screening accuracy. If more 
detailed electronic health record data were available, the 
proposed risk prediction model could be further extended 
by incorporating screening results with clinical informa-
tion, or by differentiating the clinical information before 
versus after the screening events, to further improve the 
accuracy of identifying high-risk ASD cases for further diag-
nostic evaluation.

Our study has several limitations. First, diagnosis of ASD 
established only based on existing diagnosis codes from 
claims data could be inaccurate and unreliable sometimes 
in practice. We followed a validated approach in ASD 
health service research literature to identify the ASD cohort 
in our study.31 Second, the absence of ASD diagnosis codes 
in one’s health record may not necessarily indicate an indi-
vidual not having ASD, especially for children born in later 
years, due to limited follow-up time prior to the cut-off date 
in the database. Thus, we required full enrollment up to 
60 months without ASD diagnoses to identify the non-ASD 
cohort, and verified the robustness of our base case results 
in a sensitivity analysis requiring full enrolment up to 72 
months. Third, as autistic children are likely to have a wide 
range of comorbid conditions with various frequencies, for 
individuals who do not present comorbid conditions from 
the past healthcare encounter data, our model may provide 
limited value. Our risk prediction model can be further 
augmented by additional information other than informa-
tion from the health claims database, such as ASD/develop-
mental screening results and behaviour-related information 
from a more comprehensive EHR dataset in future studies. 
Lastly, the diagnosis and procedure codes in insurance 
claims data may be subject to variabilities and irregulari-
ties. Instead of the original detailed clinical codes, we used 
aggregated CCS categories for diagnoses and procedures 
for more robust clinical measures.

CONCLUSIONS
Using real-world health claims data and machine learning 
methods, we developed a prediction model that can success-
fully predict ASD diagnosis for children under 30 months 
with promising prediction accuracy. Our model also identi-
fied the important predictors for the diagnosis prediction, 
which showed meaningful clinical relevance and intuition. 
Our predictive modelling approach could potentially be 
generalised to broader clinical settings for predicting the 
diseases that may show early signals from past healthcare 
service encounters in claims or EHR data. Future studies 
could explore the prediction of ASD diagnosis dynamically 
over time as new healthcare encounter occurs, and inves-
tigate how validated risk prediction models could be inte-
grated and used to inform ASD screening strategies.
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